Agreement No．CE 53／2008（CE） PLANNING AND ENGINEERING
STUDY ON DEVELOPMENT OF
LOKMA CHAU LOOP
$-I N V E S T I G A T I O N$

Contamination Assessment Report and Remediation Action Plan for Area A

July 2010

Planning Department and Civil Engineering and Development Department

Agreement No. CE6153/20072008(CE)
Planning and
Engineering Study on
Development of Lok Ma
Chau Loop -
Investigation
Contamination
Assessment Report and
Remediation Action
Plan for Area A (CAR and RAP for Area A)

July 2010

This report takes into account the particular instructions and requirements of our client.
It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third

Level 5, Festival Walk, 80 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong Tel +852 25283031 Fax +852 2268 www.arup.com

party

Job number 209840

Job title	Agreement No. CE6153/20072008(CE) Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation	Job number
		209840
Document title	Contamination Assessment Report and Remediation Action Plan for Area A	File reference

Document ref

Contents

Page
1 Introduction 4
1.1 Background 4
1.2 Study Area 4
1.3 Objective 5
1.4 Statutory Legislation and Evaluation Criteria 5
2 Summary of Sampling and Testing Strategy 6
2.1 Background of Potentially Contaminated Site 6
2.2 Chemicals of Concern 7
2.3 Proposed Sampling Locations and Depths 8
3 Site Investigation Works 9
3.1 Soil and Groundwater Sampling 9
3.2 Analytical Parameters 11
3.3 HOKLAS Accredited Laboratory 12
3.4 Strata Logging 12
4 Assessment Criteria 13
5 Interpretation of Laboratory Testing Results 15
5.1 Soil Contamination 15
5.2 Groundwater Contamination 16
5.3 Elutriate Test 16
6 Possible Soil Contamination Extent 17
6.1 Estimation of Possible Soil Contamination Extent 17
6.2 Remediation Strategy 19
7 Remediation Action Plan 21
7.1 Objective 21
7.2 Potential Remediation Methods 21
7.3 Nature of Arsenic 23
7.4 Proposed Remediation Method 23
7.5 Outline Process and Operation of Remediation 24
7.6 Mitigation Measures and Safety Measures 28
7.7 Remediation Report 29
8 Conclusion and Recommendation 30

Figures

Figure 1.1 Study Area Plan
Figure 2.1 Location of Potentially Contaminated Site A
Figure 2.2 Locations of Proposed Sampling Boreholes in Site A
Figure 3.1 Locations of As-built Sampling Boreholes in Site A
Figure 5.1 Locations of 5 Concerned Boreholes with Arsenic Contamination
Figure 5.2 Locations of Additional Boreholes
Figure 5.2.1 Locations of Additional Boreholes for A-S01
Figure 5.2.2 Locations of Additional Boreholes for A-S03
Figure 5.2.3 Locations of Additional Boreholes for A-S20
Figure 5.2.4 Locations of Additional Boreholes for A-S24
Figure 5.2.5 Locations of Additional Boreholes for A-SG10
Figure 6.1 Locations of Possible Contaminated Zones
Figure 6.1.1 Location of Possible Contaminated Zone A-S01
Figure 6.1.2 Location of Possible Contaminated Zone A-S03
Figure 6.1.3 Location of Possible Contaminated Zone A-S20
Figure 6.1.4 Location of Possible Contaminated Zone A-S24
Figure 6.1.5 Location of Possible Contaminated Zone A-SG10

Appendices

Appendix A Strata Log Records of Boreholes

Appendix B RBRGs Criteria

Appendix C Intervention Value downloaded from the website of Ministry of Housing, Spatial Planning and Environment, Netherland

Appendix D Analytical Results of Soil Samples
Appendix E Analytical Results of Soil Samples of 15 Additional Boreholes
Appendix F Analytical Results of Groundwater Samples

Appendix G Analytical Results of Elutriate Samples

Appendix H Laboratory Testing Reports of Soil Samples, Groundwater Samples and Elutriate Samples

Appendix I Laboratory Testing Reports of Soil Samples of 15 Additional Boreholes

1 Introduction

1.1 Background

On 26 May 2009, Planning Department (PlanD) in association with Civil Engineering and Development Department (CEDD) commissioned Ove Arup \& Partners Hong Kong Limited (Arup) as the Consultant for undertaking the "Planning and Engineering Study on Development of Lok Ma Chau Loop Investigation" (the Study).
The Study commenced on 1 June 2009 and is expected to complete before end of 2011 in 28 months' time to carry out planning, environmental and engineering feasibility studies and associated site investigation works with a view to formulating land use and development proposals, confirming the feasibility of implementing the land use and development proposals, carrying out preliminary engineering design, and formulating the implementation strategies and programme for delivering the Development and Infrastructure.

Section 3.4.9.4 of the EIA Study Brief No.: ESB-201/2008 for the LMC Loop Development project dated January 2009 issued by the EPD specified that a land contamination assessment shall be undertaken and that a Contamination Assessment Plan (CAP) shall be submitted to the EPD prior to conducting the assessment.
The CAP for Area A has been prepared and submitted to EPD in July 2009. EPD indicated no further comments on the CAP for Area A in October 2009. Environmental site investigation works were carried out between 25 November 2009 and 1 February 2010.

1.2 Study Area

As a result of the training of the Shenzhen River, which serves as the administrative boundary between Hong Kong and Shenzhen, an area of about 87 ha, previously lying to the north of the river course, became situated to the south of the re-aligned river course and falls within the boundary of the HKSAR. The area, commonly known as the Lok Ma Chau Loop (the Loop), was used as a dumping ground for mud dredged from the river training work, some of which were contaminated.

The study area comprises the area within the LMC Loop (Area A in Figure 1.1) together with the adjoining area in Hong Kong (Area B in Figure 1.1). A separate study for the adjoining area in Shenzhen (i.e. Area C of Figure 1.1) has been commissioned by the Shenzhen side.
The LMC Loop is located near several major cross-boundary transport nodes including the Lok Ma Chau Control Point, the Lok Ma Chau Station of the Lok Ma Chau Spur Line and the San Tin Interchange. To the north across the Shenzhen River is the Huanggang Control Point of Shenzhen. To the southwest is the Mai Po Nature Reserve and to the northeast is Hoo Hok Wai, comprising fish ponds of high ecological value.

Site characteristics of the LMC Loop and its surrounding land uses are:

- predominantly flat land with grasses and shrubs on it;
- surrounding area mainly rural in nature, comprising mostly wetland, natural landscape, hilly terrain, woodland, village settlements, agricultural land and fishponds;
- the Mai Po Nature Reserve, i.e. the Ramsar Site, is at about 5.4 km to the southwest of the Loop;
- the LMC Station of the LMC Spur Line and the LMC Spur Line Boundary Control Point (BCP) is located in close proximity to the southwest;
- across the Shenzhen River to the north is the Futian CBD of Shenzhen, where the Huanggang Station of Shenzhen Metro Line can be connected to the LMC Station via the LMC Spur Line BCP; and
- apart from the LMC Spur Line BCP, the Loop also lies in close proximity to the Lok Ma Chau BCP.

1.3 Objective

Land contamination impact is one of the issues to be addressed in the EIA Study. An assessment shall be conducted prior to the construction in Area A to assess any potential land contamination.
EPD indicated no further comment on the Contamination Assessment Plan (CAP) for Area A in October 2009. Site investigation works were carried out between 25 November 2009 and 1 February 2010 by Tysan Foundation Limited. This Contamination Assessment Report (CAR) and Remediation Action Plan (RAP) summarize the following issues:

- Contamination assessment program;
- Investigation procedures and methodologies;
- Analytical results of soil and groundwater samples;
- Scope of any remedial work required; and
- The particular health and safety requirement that may be required during the works.

1.4 Statutory Legislation and Evaluation Criteria

This CAR and RAP is prepared in accordance with the following Technical Memorandum and Guidance Notes:

- Annex 19 of the Technical Memorandum on Environmental Impact Assessment Process (TM-EIA), Guidelines for Assessment of Impact On Sites of Cultural Heritage and Other Impacts (Section 3 : Potential Contaminated Land Issues);
- Guidance Notes for Investigation Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repairing/Dismantling Workshops, EPD, 1999;
- Guidance Notes for Contaminated Land Assessment and Remediation; and
- Guidance Manual for Use of Risk-Based Remediation Goals (RBRGs) for Contaminated Land Management, EPD, 2007.

2 Summary of Sampling and Testing Strategy

2.1 Background of Potentially Contaminated Site

Area A (i.e. former agricultural land and fish ponds in 1980s and early 1990s) was used as a dumping ground for mud extracted from Shenzhen River Training Works Stages 1 and 2. Approximately $1 \mathrm{Mm}^{3}$ contaminated mud and $3 \mathrm{Mm}^{3}$ uncontaminated mud were dredged and disposed of in Area A from year 1995 to 2000. The depth of the disposed mud in Area A was approximately 5 m (i.e. include about 1 m to 1.5 m thick top layer of uncontaminated mud for capping). However, the disposal pattern, e.g. the disposal location and area of contaminated mud in Area A is unknown. Therefore, the entire Area A is considered as a potentially contaminated site, namely "Site A" (Figure 2.1 and Table 2.1).

Table 2.1 Potentially contaminated land use

Site ID	Location	Current Land Use	Potential Sources of Contamination	Approximate Area $\left(\mathrm{m}^{2}\right)$	Recommended No. of Boreholes
A	Entire Lok Ma Chau Loop (Area A)	Flat land with Grasses and Shrubs	Approx. $1 \mathrm{Mm}^{3}$ contaminated mud and 3Mm 3 uncontaminated mud were dredged from the Shenzhen River and disposed of in Area A from year 1995 to 2000. Total filling depth in Area A is about 5m, which include 1m to 1.5m thick top layer of uncontaminated mud for capping.	870,000 $(87 h a)$	35

2.2 Chemicals of Concern

The proposed sampling and testing schedule for the chemicals of concern (COCs) associated with potential co are summarized in Table 2.2. Table 2.2 Sampling and testing schedule											
Site ID	Borehole No.	Sample Type	No. of Samples	Testing Parameter							
				SVOCs ${ }^{(1)}$	Metals ${ }^{(2)}$	PCBs	Dioxins	Cyanide, free	Chlorinated Pesticides	TOC	Grain Size / Moisture Content
A	A-S01 to A-S25, and A-SG01 to A-SG10 (Total 35)	Soil at all 3 sampling depths	105	\checkmark							
	A-SG01 to A-SG10 (Total 10) ${ }^{(4)}$	Groundwater	10	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
	A-SG01 to A-SG10 (Total 10) ${ }^{(4)}$	Deepest soil sample (for elutriate test) ${ }^{(3)}$	10	\checkmark	\checkmark	\checkmark			\checkmark		
Note:	(1) Only 11 out of 19 SVOCs parameters are required for groundwater sample and soil elutriate test (refer to Appendix B for details) (2) Only "Mercury" test is required for groundwater sample and soil elutriate test. (3) The objective of Elutriate Test is to assess any potential release of contaminants from the filled mud during excavation in Area A, if required in the future. (4) The exact borehole locations of groundwater sampling and elutriate testing are different from the proposed locations (refer to Section 3.1.3 for details)										

(4) The exact borehole locations of groundwater sampling and elutriate testing are different from the proposed locations (refer to Section 3.1 .3 for details)

2.3 Proposed Sampling Locations and Depths

The sampling locations and sampling depths proposed in the CAP for Area A are in Table 2.3. The proposed sampling locations are shown in Figure 2.2.

Table 2.3 Sampling strategy for Site A

Locations			Coordinates		Sampling Strategy	
Site ID	Area $\left(\mathrm{m}^{2}\right)$	Borehole No.	Easting	Northing	Termination Level for Env. Sampling (1)	Frequency of Sampling (1)
A (Figure 2.1)	$\begin{aligned} & 870,000 \\ & \text { (87ha) } \end{aligned}$	A-S01	826297	842935	(Drilling of borehole \& collection of soil samples at the depths of 1.5 m , 3.0 m and 4.5 m .
		A-S02	826457	842866		
		A-S03	826627	842800		
		A-S04	826089	842857		
		A-S05	826256	842804		
		A-S06	826592	842698		
		A-S07	826203	842637		
		A-S08	826370	842583		
		A-S09	826538	842530		
		A-S10	826706	842476		
		A-S11	825981	842522		
		A-S12	826149	842469		
		A-S13	826485	842361		
		A-S14	846094	842301		
		A-S15	826263	842248		
		A-S16	826431	842194		
		A-S17	826551	842192		
		A-S18	825875	842187		
		A-S19	826042	842133		
		A-S20	826341	842035		
		A-S21	825696	842043		
		A-S22	825989	841966		
		A-S23	826156	841912		
		A-S24	825822	841887		
		A-S25	825944	841825		
		A-SG01	826142	843025	5 mbgl	Drilling of borehole \& collection of soil samples at the depths of 1.5 m , 3.0 m and 4.5 m . One groundwater sample should be collected, if encountered.
		A-SG02	826423	842751		
		A-SG03	826738	842631		
		A-SG04	826035	842690		
		A-SG05	826317	842415		
		A-SG06	826622	842323		
		A-SG07	825928	842354		
		A-SG08	826210	842080		
		A-SG09	825821	842019		
		A-SG10	826067	841813		

Note: (1) The proposed Termination Levels and Sampling Frequency are just for reference purpose. The exact termination levels and no. of soil/ groundwater samples of each borehole should be decided by the on-site Land Contamination Specialist.

3 Site Investigation Works

3.1 Soil and Groundwater Sampling

3.1.1 Borehole Locations

Site investigation works were carried out by Tysan Foundation Limited between 25 November 2009 and 23 December 2009. 35 boreholes were drilled for soil and groundwater sampling in accordance with the CAP for Area A. The entire SI programme was supervised by the on-site Land Contamination Specialist. The actual locations and drilling depths are summarized in Table 3.1.

Table 3.1 Sampling location and drilling depths

Borehole No.	Proposed Borehole in CAP for Area A		Actual Borehole Location		Termination Level for Env Sampling (mbgl)		Ground Level (mPD)
	Easting	Northing	Easting	Northing	Proposed	Actual	
A-S01	826297	842935	Same	in CAP	5	5	5.83
A-S02	826457	842866	Same	i CAP			6.22
A-S03	826627	842800	Same	in CAP			3.98
A-S04	826089	842857	Same	in CAP			6.06
A-S05	826256	842804	Same	I CAP			5.40
A-S06	826592	842698	Same	CAP			5.15
A-S07	826203	842637	Same	CAP			5.14
A-S08	826370	842583	Same	CAP			5.67
A-S09	826538	842530	Same	CAP			4.22
A-S10	826706	842476	Same	CAP			4.63
A-S11	825981	842522	Same	CAP			6.05
A-S12	826149	842469	826162	842481			4.42
A-S13	826485	842361	826479	842379			4.55
A-S14	846094	842301	Same	CAP			5.37
A-S15	826263	842248	826246	842239			4.60
A-S16	826431	842194	826464	842214			4.55
A-S17	826551	842192	Same	CAP			4.78
A-S18	825875	842187	825891	842177			5.52
A-S19	826042	842133	Same	CAP			5.77
A-S20	826341	842035	Same	CAP			4.57
A-S21	825696	842043	Same	CAP			4.55
A-S22	825989	841966	Same	CAP			4.08
A-S23	826156	841912	Same	CAP			5.33
A-S24	825822	841887	Same	CAP			3.55
A-S25	825944	841825	Same	CAP			4.29
A-SG01	826142	843025	Same	CAP			6.12
A-SG02	826423	842751	Same	CAP			6.64
A-SG03	826738	842631	Same	CAP			3.16
A-SG04	826035	842690	Same	CAP			5.74
A-SG05	826317	842415	826367	842408			4.05
A-SG06	826622	842323	Same as in CAP				4.82
A-SG07	825928	842354			5.84		
A-SG08	826210	842080	826180	842055			5.79
A-SG09	825821	842019	825827	842012			4.94
A-SG10	826067	841813	Same	CAP			5.14

The as-built drawing showing the actual environmental boreholes locations is given in Figure 3.1.

Eight boreholes have been shifted from the original proposed locations ranged from approximately 10 m to 50 m due to the actual site situation and constrain, e.g. to avoid the damage of reedbed and trees. Deviation from original proposed boreholes locations are summarized in Table 3.2.

Table 3.2 Change of borehole locations due to site constraints

Borehole No.	Deviation from Original Location	Sustification
A-S12	18 m north-east of original location	Avoid damage to reedbed
A-S13	19 m north-west of original location	Avoid damage to reedbed
A-S15	10 m south-east of original location	Avoid damage to reedbed
A-S16	44 m south-east of original location	Avoid damage to reedbed
A-S18	19 m east of original location	Avoid damage to forest
A-SG05	50 m south-east of original location	Avoid damage to reedbed
A-SG08	39 m south-west of original location	Avoid damage to banana trees
A-SG09	10 m south-east of original location	Original proposed drilling point located in water pond

3.1.2 Soil Sampling

Inspection pits from ground surface to 1.5 meter below ground level (mbgl) were excavated at each borehole location before drilling in order to determine the thickness of the top soil (i.e. Area A was capped by a layer of clean top soil after the disposal of dredged mud from Shenzhen River). The on-site observation of inspection pits indicated that the thickness of the top soil ranged approximately from 0.8 mbgl to 1.5 mbgl . Three $\mathrm{U}-100$ undisturbed soil samples were then collected from each borehole at the depths of $1.5 \mathrm{~m}(1.5-1.95 \mathrm{mbgl})$, $3.0 \mathrm{~m}(3.0-3.45 \mathrm{mbgl})$ and 4.5 m ($4.5-$ 4.95 mbgl).

3.1.3 Groundwater Sampling

The Land Contamination Specialist also re-assigned the groundwater sampling locations as groundwater was not encountered at some of the original proposed groundwater sampling boreholes. Nevertheless, total of 10 groundwater samples were collected during the SI. The final groundwater sampling locations were relatively evenly distributed in Area A. The locations of groundwater sampling boreholes are shown in Figure 3.1.

The drill-rig casings were removed from the environmental drillhole after completion of soil sampling, and the drillhole could stand hollow without collapse as the depth of drillholes was relatively shallow (i.e. only 5 m depth). As the drill-rig casing, core-head and other accessories have been decontaminated prior to the drilling, and dry drilling method (i.e. refer to Section 3.1.4 for details) was used during the drilling, the on-site Contamination Specialist decided not to install the groundwater standpipe in
order to avoid the cross-contamination of groundwater due to placing the sand filter pack and bentonite seal during well installation. Well flushing is considered not required as no standpipe was installed and no sand filter pack/bentonite was used. The drillholes were then purged for approximately three times volumes of the drillholes by a Teflon bailer prior to groundwater sampling in order to collect freshly refilled groundwater samples. No free product was encountered during the groundwater sampling.

The pH level and temperature of the collected groundwater samples were insitu measured. The groundwater levels before purging were also recorded. The groundwater levels, pH and temperature of groundwater samples are summarized in Table 3.3.

Table 3.3 Groundwater level, pH and temperature of collected groundwater samples

Borehole No.	Groundwater Level (mbgl)	pH	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
A-S02	2.50	6.32	22.4
A-S07	1.36	6.25	23.2
A-S09	3.85	6.34	21.7
A-S14	3.90	6.79	21.2
A-S16	2.82	6.73	22.0
A-S24	1.70	7.18	23.8
A-SG01	3.65	6.91	23.3
A-SG03	1.85	66.7	22.9
A-SG06	2.15	6.82	21.2
A-SG09	1.45	6.78	23.3

3.1.4 Decontamination Procedures

Before drilling / excavation, the sampler and all equipment in contact with the ground were thoroughly decontaminated by phosphate-free detergent between each sampling event to minimize potential cross contamination. All drilling machines were decontaminated by phosphate free detergent and high pressure hot water jet before mobilization to site. During sampling and decontamination activities, disposable latex gloves were worn to prevent the transfer of contaminants from other sources.

Moreover, dry drilling method was adopted for the entire environmental SI in order to prevent any influence of flushing medium to the soil and groundwater testing results.

3.2 Analytical Parameters

The collected soil and groundwater samples were analyzed for the parameters in accordance with the sampling and testing schedule shown in Table 2.2. The testing parameters include:

- Semi Volatile Organic Compounds (SVOCs): Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g.h.i)perylene, Benzo(k)fluoranthene, Bis-(2-Ethylhexyl)phthalate, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Fluorene, Hexachlorobenzene, Indeno(1,2,3-cd)pyrene, Naphthalene, Phenanthrene, Phenol, Pyrene
- Metals: Antimony, Arsenic, Barium, Cadmium, Chromium III, Chromium VI, Cobalt, Copper, Lead, Manganese, Mercury, Molybdenum, Nickel, Tin, Zinc
- Dioxins / PCBs: Dioxins (I-TEQ), PCBs
- Cyanide: Cyanide, free
- Chlorinated Pesticides: alpha-BHC, beta-BHC \& gamma-BHC, deltaBHC, p,p'-DDE, p,p'-DDD, p,p'-DDT.
- Total Organic Carbon (TOC)
- Grain Size / Moisture Content: Grain Size (\% <63 $\mu \mathrm{m}$) and Moisture Content (\%)

3.3 HOKLAS Accredited Laboratory

A testing laboratory "ALS Technichem (HK) Pty Ltd", accredited under Hong Kong Laboratory Accreditation Scheme (HOKLAS) was appointed to conduct chemical testing for the soil and groundwater samples. All laboratory testing methods were accredited by the HOKLAS or one of its Mutual Recognition Arrangement Partners, except the testing of metal "Chromium III". However, the laboratory is accredited for the testing of "Total Chromium" and "Hexavalent Chromium" (Chromium IV), and the difference of these 2 testing results is reported as the concentration of Chromium III.

3.4 Strata Logging

Strata logging for boreholes was undertaken during the course of drilling and sampling by qualified geologists. The logs included the general stratigraphic descriptions, depth of soil sampling, and sample notation etc.
The strata logs indicated that the site was mainly covered by "Fill" material with "Swamp Deposit" underneath. The strata logs of boreholes are given in Appendix A.
Of the 35 environmental investigation drillholes, a total of 10 drillholes A-S01, A-S07, A-S11, A-S16, A-S19, A-S21, A-S23, A-S24, A-SG05 and A-SG09 were further drilled down after completion of first 5 m environmental drilling and soil \& groundwater sampling in order to collect geotechnical information (i.e. geotechnical investigation) for assessing the geotechnical character of Area A, and water was used as "flushing medium" during the geotechnical investigation. As such, the "flushing medium" in the drillhole records of these 10 drillholes was recorded as "Air / Water". The "Remarks" of these 10 drillhole records have also stated that "Flushing medium for first 5 m is air".

4 Assessment Criteria

The assessment criteria for the proposed testing parameters are described below:

- SVOCs, Metals, Dioxins / PCBs, Cyanide

The chemicals of concern (COCs) listed in EPD's Guidance Manual for Use of Risk-Based Remediation Goals (RBRGs) for Contaminated Land Management were referred to when proposing the analytical parameters of SVOCs, Metals, Dioxins / PCBs, and Cyanide. The RBRGs for soil and soil saturation limits and RBRGs for groundwater and groundwater solubility limits are given in Appendix B.

The RBRGs have developed four different post-restoration land uses, namely "Urban Residential", "Rural Residential", "Industrial" and "Public Parks", to reflect the actual settings which people could be exposed to contaminated soil or groundwater. Definition of post-restoration land uses are given in EPD's Guidance Note for Contaminated Land Assessment and Remediation and RBRGs Guidance Manual.
The planning study for the future land uses of Area A is still ongoing. At this stage, only a Preliminary Outline Development Plan (PODP) is available and the future land uses still could not be confirmed yet. For the sake of the present assessment (i.e. interpretation of the soil and groundwater testing results), the most stringent set of "Rural Residential" RBRG has been adopted for the interpretation of the soil and groundwater testing results.

- Chlorinated Pesticides

The testing results provided in the Shenzhen River Regulation Project Final EIA Study Report indicated that the total concentration of alpha-BHC, betaBHC, gamma-BHC and delta-BHC, and the total concentration of DDE, DDD and DDT in Shenzhen River sediment were at detectable levels. Hence, testing of these 7 Chlorinated Pesticide parameters is proposed in order to determine the level of pesticide / insecticide residuals left in the filled mud of Area A. The "Intervention Value" for soil remediation published in the Netherlands Government Gazette of the $24^{\text {th }}$ February 2000 was referred to establishing the assessment criteria for soil contamination. The assessment criteria of BHCs (i.e. equivalent to HCHs), DDE, DDD and DDT are summarized in Table 4.2. The relevant summary tables of the Intervention Value downloaded from the website of Ministry of Housing, Spatial Planning and Environment, Netherland is given in Appendix C.

Table 4.2 Assessment criteria extracted from Intervention Value for soil remediation

Contaminant	Soil Sediment (mg/kg dry weight)
DDT / DDD / DDE (total) ${ }^{(1)}$	4
BHC combined ${ }^{(2)}$	2

Note: (1) DDT / DDD / DDE is the total of DDT, DDD, DDE
(2) BHC combined is the total of alpha, beta, gamma and delta BHC.

It should be noted that Netherlands is using groundwater for potable purpose, and its stringent "Intervention Value" of groundwater is considered inappropriate in Hong Kong. Therefore, the laboratory's "Reporting Limits"
are adopted as preliminary screening goals for assessing the groundwater quality. In case elevated level of pesticide is detected (i.e. higher than the reporting limits), a site-specific screening levels would be developed to deal with that particular contaminant(s).

- TOC, Grain Size, and Moisture Content

Testing of TOC, Grain Size and Moisture Content is mainly for information gathering.

5 Interpretation of Laboratory Testing Results

5.1 Soil Contamination

A total of 105 soil samples were collected from 35 boreholes (i.e. 3 soil samples per borehole) from 25 November 2009 to 23 December 2009. All available laboratory testing results of the soil samples have been reviewed.
The testing results indicated that nearly all the soil samples were below the value of RBRG for Rural Residential (i.e. the stringent set of RBRGs for SVOCs, Metals, Dioxins / PCBs, Cyanide) and Intervention Value (i.e. for Chlorinated Pesticides), except 6 soil samples collected from 5 boreholes. In these 6 samples, the concentration of only the metal "Arsenic (As)" marginally exceeded the RBRGs of Rural Residential and Urban Residential land uses. The laboratory testing results exceeding the RBRGs are given in Table 5.1 and those for all soil samples are detailed in Appendix D. The laboratory testing reports are given in Appendix H. The locations of the 5 concerned boreholes are shown in Figure 5.1.

Table 5.1 Summary of soil samples exceeding RBRGs

Borehole No.	Depth of Soil Sampling (mbgl)	Contaminant	Concentration (mg/kg dry soil)	RBRGs of Arsenic (mg/kg dry soil)
A-S01	$3.0-3.45$	Arsenic	22.2	Rural Residential RBRG : 21.8 Urban Residential RBRG : 22.1 Public Parks RBRG : 73.5 Industrial RBRG : 196
	4.5-4.95	Arsenic	24.0	
A-S03	$3.0-3.45$	Arsenic	26.8	
A-S20	3.0-3.45	Arsenic	23.0	
A-S24	$3.0-3.45$	Arsenic	27.7	
A-SG10	4.5-4.95	Arsenic	27.3	

5.1.1 Additional Soil Sampling and Testing

In order to further ascertain the extent of contamination at these 5 locations, 3 additional boreholes near each of the 5 contaminated boreholes were drilled (i.e. total 15 additional boreholes were drilled) from 26 January 2010 to 1 February 2010 for additional soil sampling and testing. The locations of the additional boreholes were chosen roughly mid-way between the contaminated boreholes and their respective adjacent boreholes, as shown in Figure 5.2 and depicted in Figures 5.2.1 to 5.2.5
The same soil sampling strategy was adopted, in which three U-100 undisturbed soil samples were collected from each additional borehole at the depths of $1.5 \mathrm{~m}(1.5-1.95 \mathrm{mbgl})$, $3.0 \mathrm{~m}(3.0-3.45 \mathrm{mbgl})$ and 4.5 m ($4.5-$ $4.95 \mathrm{mbgl})$. The soil samples collected from the additional boreholes were tested for metals in order to further define the extent of arsenic contamination. The laboratory testing results of the additional soil samples show compliance with the RBRG for Rural Residential (i.e. the stringent set of RBRGs). The testing results of the additional soil samples are detailed in Appendix E, and the laboratory testing reports are given in Appendix I.

The estimation of the quantity of contaminated soils is given in Section 6. It is Government policy that soils containing contaminants in exceedance of the RBRGs should be remediated. Details of the soil remediation method and the disposal criteria of the contaminated soils are described in Section 7.

5.2 Groundwater Contamination

Groundwater samples were taken from 10 boreholes as shown in Figure 3.1. The testing results indicated that none of the groundwater samples exceeded the RBRG levels for Rural Residential land use (i.e. the stringent set of RBRGs). Chlorinated Pesticides were not detected in the groundwater samples. The analytical results of all groundwater samples are presented in Appendix F. The laboratory testing reports are given in Appendix H.

5.3 Elutriate Test

The objective of Elutriate Test is to assess any potential release of contaminants from the filled mud during excavation, if required, in Area A.
Elutriate test was conducted for the deepest soil samples (i.e. 4.5 mbgl) collected from 10 boreholes of groundwater sampling as shown in Figure 3.1. The testing results indicated that the potential of contaminants releasing from the filled mud during excavation was insignificant as only non-detected levels of contaminants were recorded in all 10 soil samples. The analytical results of all elutriate soil samples are presented in Appendix G. The laboratory testing reports are given in Appendix H.

6 Possible Soil Contamination Extent

6.1 Estimation of Possible Soil Contamination Extent

The possible extent of contamination was estimated based on the results from the SI works. The estimation made the best use of available information to delineate the possible vertical and horizontal extents of soil contamination present at the site and would be used for preliminarily appraising any soil remediation needed in connection with the development of the Loop. Nevertheless, the deduced volume based on the possible vertical and horizontal extents should only be seen as a first estimation to indicate a conservative order of quantity for reference. The actual extent of contamination requiring remediation would be subject to confirmation by further environmental investigation boreholes before the commencement of remediation works on site.

6.1.1 Estimation of the Horizontal Extent of Contamination

 With reference to Figures 5.2.1 to 5.2.5, the areas of horizontal contamination extent is estimated by the curvilinear area formed by taking the contaminated borehole at the centre and the boundary joining the adjacent additional boreholes (i.e. which reveal no contamination), or along site boundary (i.e. Shenzhen meander). A software called "MicroStation" (i.e. common graphical software similar to "AutoCad") was used to draw the curvilinear plan area in which the horizontal extent of contamination lies. The areas so automatically computed by the software present a first estimation on the conservative side. It should be noted that the plan areas in which the horizontal contamination extents lie are subject to further investigation before commencing remediation works on site.It should be noted that the 5 contaminated boreholes only marginally exceeded the RBRG (i.e. testing results of arsenic $22.2-27.7 \mathrm{mg} / \mathrm{L}$ against the respective Rural Residential RBRG $21.8 \mathrm{mg} / \mathrm{L}$), and this estimation is considered conservative. As the estimated quantity of contaminated soil is highly sensitive to how the plan area (in which the actual horizontal extent of contamination lies) is estimated in the preceding paragraph, the Project Proponent should conduct further investigation to confirm the actual horizontal extent of contamination prior to the commencement of remediation works on site in order to avoid over-remediation (Refer to Section 6.2.2 for details).

6.1.2 Estimation of Vertical Extent of Contamination

For such sample with contaminated laboratory testing results, the full depth of soil sampling is taken as contaminated. Besides, a depth of 0.5 m above and below that sampling depth respectively will be taken as contaminated as a conservative estimate. For example, for the sampling depth of $3.0-$ 3.5 mgbl with contaminated laboratory testing finding, the vertical extent of contamination will be estimated from 2.5 mgbl (i.e. $3 \mathrm{mbgl}-0.5 \mathrm{~m}$) to 4 mbgl (i.e. $3.5 \mathrm{mbgl}+0.5 \mathrm{~m}$), and the vertical extent of contamination is therefore estimated as 1.5 m .
6.1.3 Conservative Estimation of Contaminated Soil Quantity

Based on the above conservative approach, an estimate of the quantity order of contaminated soil is summarized in Tables 6.1. The extents of 5 estimated plan areas in which the contaminated zones lie are depicted in Figure 6.1 and Figures 6.1.1 to 6.1.5. It should be noted that this first estimation of a conservative order of contaminated soil quantity is subject to variation after the completion of further investigation to confirm the horizontal extent of contamination before commencing the remediation works on site.

Table 6.1 Estimation of the order of quantity of contaminated soil by conservative approach

Contaminated Borehole (Contaminated Zone ID)	Additional Borehole ID	Distance from Contaminated Borehole to the Additional Borehole (m)	Estimated Vertical Extent of Contamination (m)	Estimated Plan Area in which Contaminated Area Lies (m^{2}) (1)	Estimated of Order of Quantity of Contaminated Materials (m^{3})
A-S01	A-S01a A-S01b A-S01c	$\begin{aligned} & 90 \\ & 69 \\ & 87 \end{aligned}$	3.0 (2.5m-5.5m)	18,519	55,557
A-S03	$\begin{aligned} & \text { A-S03a } \\ & \text { A-S03b } \\ & \text { A-S03c } \end{aligned}$	$\begin{gathered} \hline 91 \\ 54 \\ 102 \end{gathered}$	1.5 (2.5m-4.0m)	12,684	19,026
A-S20	$\begin{aligned} & \text { A-S20a } \\ & \text { A-S20b } \\ & \text { A-S20c } \end{aligned}$	$\begin{gathered} 96 \\ 112 \\ 82 \end{gathered}$	1.5 (2.5m-4.0m)	26,131	39,197
A-S24	$\begin{aligned} & \text { A-S24a } \\ & \text { A-S24b } \\ & \text { A-S24c } \end{aligned}$	$\begin{aligned} & 63 \\ & 92 \\ & 68 \end{aligned}$	1.5 (2.5m-4.0m)	14,361	21,542
A-SG10	$\begin{aligned} & \text { A-SG10a } \\ & \text { A-SG10b } \\ & \text { A-SG10c } \end{aligned}$	$\begin{aligned} & 62 \\ & 86 \\ & 67 \end{aligned}$	1.5 (4.0m-5.5m)	12,749	19,124
			Total (2):	84,444	154,446

Note (1) The "Estimated Plan Area in which the Horizontal Contaminated Area (m^{2}) Lies" was computed by a software call "MicroStation". (i.e. common graphical software similar to "AutoCad")
(2) The data presented based on the conservative approach are subject to variation after the completion of further investigation to confirm the actual horizontal extent of contamination (Refer to Sections 6.1.1, 6.1.3 and 6.2.2 for details).

6.2 Remediation Strategy

6.2.1 Proposed Remediation

The planning study for the future land uses of Area A is ongoing. However, based on the most updated planning information (i.e. the Preliminary Outline Development Plan, PODP), the 5 contaminated zones are either within the land uses of "Public Park" or "Industrial" under RBRGs as summarized in Table 6.2 though such planned land uses may still need to be confirmed after the present assessment.
Table 6.2 Possible future land uses of the contaminated zones

Contaminated Zone	Proposed Future Land Uses	Corresponding RBRGs	Exceed the Corresponding RBRGs
A-S01	- Public Transport Interchange \bullet Commercial Building	- Industrial - Public Park	No
A-S03	- Sewage Treatment Works	- Industrial	No
A-S20	- Flood Retention Ponds - Reedbed Compensation Area	- Public Park \bullet Public Park	No

Contaminated Zone	Proposed Future Land Uses	Corresponding RBRGs	Exceed the Corresponding RBRGs
A-S24	- District Cooling System	- Industrial	No
A-SG10	- Flood Retention Ponds - Reedbed Compensation Area	- Public Park - Public Park	No

Although the testing results do not exceed the corresponding RBRGs based on the proposed land uses in the current PODP, excavation is not unexpected at the 5 contaminated zones for the proposed future land uses during the construction stage. The chance of construction workers and other site staff having contact with the contaminated soil cannot be ruled out. In view of the safety concerns about human contact with the contaminated soil, it is recommended to remediate all the contaminated soil within the confirmed horizontal extent as determined in Section 6.2.2 below. The proposed remediation allows higher flexibility in proposed land uses as an added advantage.

Details of the soil remediation method of the contaminated soils are described in Section 7. As the remediated soil would be fully reused within Area A and off-site disposal or reuse of the remediated soil is not allowed (i.e. refer to Section 7 for details), the full scale remediation would not increase the disposal loading of the landfill sites or other disposal sites.

6.2.2 Further Investigation in Horizontal Extent of Contamination

As mentioned in Section 6.1.1, the deduced quantity of contaminated soil highly depends on how the horizontal contamination extent is assumed with limited test results. Therefore, the Project Proponent should conduct further investigation to confirm the horizontal extent of contamination prior to the commencement of remediation work so as to minimize the over-remediation of uncontaminated soil.

The further investigation should include the drilling of new boreholes at such locations between the contaminated boreholes and their respective adjacent additional uncontaminated boreholes within the possible plan area conservatively identified in Section 6.1.1 so as to confirm the horizontal extent of contamination. Soil samples should be collected in the new boreholes at the respective depths of contamination detected in the 5 contaminated boreholes, and tested for Arsenic. The further investigation should be conducted strictly in compliance with the technical procedures in the approved Contamination Assessment Plan (CAP for Area A) such as dry drilling of boreholes, decontamination requirements, soil sampling procedures and the analytical methodologies etc.

The quantity of contaminated soil should be comprehensively updated based on the further investigation results which should be submitted to EPD for approval/agreement prior to the commencement of remediation work.
号

7 Remediation Action Plan

7.1 Objective

This section presents possible remediation proposals and recommends appropriate remediation actions for the contaminated areas found.
The objectives of the Remediation Action Plan (RAP) are as follows:

- To propose remediation method(s) for the soil contamination;
- To propose a mean to confirm completed excavation of contaminated soil; and
- To provide guidelines regarding the handling and/or disposal of contaminated soil.

7.2 Potential Remediation Methods

7.2.1 Selection Criteria

Soil remediation options applicable to the contaminated areas in Area A were addressed based on the followings:

- Technical and cost effectiveness;
- Technology development status;
- Environmental benefits and disbenefits;
- Commercial availability;
- Experience; and
- Expertise requirement.

7.2.2 Available Soil Remediation Methods

A number of soil remediation technologies considered suitable for the nature of contaminant (i.e. metal "arsenic") found in Area A are selected for detailed examination. The applicability and limitations of the candidate treatment technologies are detail in Table 7.1.
In assisting the formulation of appropriate remedial measures, the following factors suggested in the Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repair/Dismantling Workshops issued by EPD would also be taken into consideration when evaluating different available remediation methods:

- Degree and extent of the contamination;
- Anticipated future use of the site;
- Nature of the contaminants;
- Soil characteristics; and
- Time available for remediation.

Remediation Option	Descriptions	Applicability I Environmental Benefits	Limitations/ Environmental Disbenefits
Solidification / Stabilization	Ex-situ immobilization technique treating contaminated soil by mixing soil with binding agents, e.g. cement so as to physically bind contaminants into stable mass.	- Applicable to clean-up inorganic contaminants such as heavy metals. - Solidification/stabilization are used on certain contaminated sites in Hong Kong and successfully demonstrated treatment method for inorganic contaminated soil, e.g. decontamination works at the Cheoy Lee Shipyard at Penny's Bay, reclamation works at North Tsing Yi Shipyard site and few isolated sites identified in the Deep Bay Link project.	- The effectiveness reduces with the presence of organic contaminants - Large boulders may hinder the mixing process. Soil sorting is necessary prior to the treatment taken place.
Soil Washing	An Ex-situ soil separation method primarily based on mineral processing techniques. A water-based process for scrubbing soils ex-situ to remove contaminants.	- Applicable to clean inorganic contaminants such as heavy metals from coarse-grained soils.	- Effectiveness of treatment dependent on soil coarseness. Fine soil particles may require addition of polymer for removal of contaminant by the washing fluid. - Complex waste mixtures make formulating washing fluid difficult. - Further treatment and disposal for residuals required.
Electrokinetic Separation	This in-situ method uses electrochemical and electrokinetic processes to desorb and remove metals and polar organics from soil. Low intensity direct current is applied to the soil to mobilize the charged species.	- Applicable to treat soil with low permeability and heavily contaminated with metals.	- Effectiveness dependent on moisture content of soil and decreases with moisture content less than 10\%. - Require further treatment for removal of desorbed contaminants and thus increase cost of remediation. - Variability of electrical conductivity in soil may be induced by presence of anomalies such as large gravels and insulating material. This may reduce treatment effectiveness.
Excavation and Landfill Disposal	Ex-situ method whereby contaminants are removed by excavation of the contaminated soil and direct disposal to landfill	- Most simple and quickest way to dispose of large volume of contaminated soil - Contamination is removed definitely - Higher certainty of success - Wide experience in Hong Kong - Applicable to all waste or mixture that meet land disposal restriction treatment standards. - Common practice for shallow, highly-contaminated soils.	- Pre-freatment may be required for contaminated soil to meet landfill disposal criteria - Landfill space limited and valuable. - Indirect costs to the landfill management on monitoring and maintenance. - Potential long-term liabilities to landfill - Need large volume of clean backfill materials - No access to the working site until completion of backilling - Least desirable management option.

7.3 Nature of Arsenic

Arsenic is a naturally occurring element that is widely distributed in the Earth's crust. Arsenic is classified chemically as a metalloid, having both properties of a metal and a nonmetal; however, it is frequently referred to as a metal. Elemental arsenic (sometimes referred to as metallic arsenic) is a steel grey solid material. However, arsenic is usually found in the environment combined with other elements such as oxygen, chlorine, and sulfur. Arsenic combined with these elements is called inorganic arsenic. Arsenic combined with carbon and hydrogen is referred to as organic arsenic.

Most inorganic and organic arsenic compounds are white or colorless powders that do not evaporate. They have no smell, and most have no special taste. Many arsenic compounds sorb strongly to soils and are therefore transported only over short distance in groundwater and surface water.

In the past, inorganic arsenic compounds were predominantly used as pesticides. Nevertheless, Inorganic arsenic compounds can no longer be used in agriculture. Organic arsenic compounds are still used as pesticides. Some organic arsenic compounds are also used as additives in animal feed. Small quantities of elemental arsenic are added to other metals to form metal mixtures or alloys with improved properties. The greatest use of arsenic in alloys is in lead-acid batteries for automobiles. Another important use of arsenic compounds is in semiconductors and light-emitting diodes.
Arsenic was also widely used as a preservative for wood to make it resistant to rotting and decay. The preservative is copper chromated arsenate (CCA) and the treated wood is referred to as "pressure-treated." Nevertheless, this preservative had been phased out in many developed countries, such as U.S. in year 2003.

7.4 Proposed Remediation Method

Considering the cost effectiveness and applicability of different remediation methods listed in Table 7.1, "Excavation" followed by "Solidification/Stabilization" are regarded as the most practical and costeffective method to remediate the arsenic contaminated soil.

7.4.1 Solidification/Stabilization

Solidification/Stabilization (S/S) is an immobilisation technique applicable to the treatment of soil contaminated with inorganic contaminants such as metals. By mixing contaminated soil with binders such as Portland cement or lime, the metal contaminants in soil become physically bound within a stable mass. The solid monolithic block is extremely resistant to the leaching of inorganic contaminants. Additives such as phosphate or sulfur reagents could also be added not only to reduce the setting or curing time and leachability of contaminants, but also to assist in chemically binding the contaminants in a matrix that typically shows unconfined compressive strengths similar to a soil-cement mix.
Beside several local successful case studies as listed in Table 7.1, other overseas case studies, as stipulated in "Solidification/Stabilization Use at

Superfund Sites" published by U.S. Environmental Protection Agency's Technology Innovation Office under EPA Contract Number 68-W-99-003 (http://www.clu-in.org/s.focus/c/pub/i/611), also reveals that inorganic contaminants in USEPA superfund remedial sites could be successfully treated by S/S method.

Another technical document "Arsenic Treatment Technologies for Soil, Waste, and Water" published by U.S. Environmental Protection Agency's Technology Innovation Office under EPA Contract Numbers 68-W-99-003 and 68-W-02-034"
(http://www.clu-in.org/download/remed/542r02004/arsenic report.pdf) also indicates that S/S method has been widely applied for treating the arseniccontaminated soil and was the most common remediation method for arsenic-contaminated soil.

The recommended remediation method as discussed above is summarized in Table 7.2. The design and operation of the recommended remediation method is presented in the outline process in the following sections.

Table 7.2 Recommended remediation method for arsenic-contaminated soil

Soil Contaminant	Remediation Method	Justification
		- Well developed technology with operation experience in Hong Kong
		Excavation followed by Arsenic
	Sligher certainty of success Solidification/Stabilization.	
		Simple eperation without necessity of further treatment
	Cost effective	
- Treated soil is acceptable to be reused as backfill		

7.5 Outline Process and Operation of Remediation

7.5.1 Excavation

Detailed design drawings for planned excavations in the indicated areas should be prepared by the Remediation Contractor. Factors such as excavation areas and depths, engineering properties and stability of the soils should be considered for safe working conditions. The excavations should be designed in accordance with the geotechnical properties of the soils and appropriate safety factors as determined by the Engineer. The excavated areas should be set out by an appropriate qualified and licensed land surveyor. Proposed contaminated zones requiring excavation are shown in Figures 6.1 .1 to 6.1 .5 respectively. It should be noted that the horizontal extent of contaminated zones within the estimated plan areas is subject to further investigation as detailed in Sections 6.1.1 and 6.2.2.
The excavation sequence would be as follows:

- At each location as set out by the surveyor, the clean top soil above the identified contamination depth would be excavated and transferred to a designated area for stockpiling.
- After the clean top soil is removed, the contaminated soil at the identified contamination depth would be excavated and transferred to a designated
area for treatment. The contaminated soil should be on heavy-duty impermeable sheeting within the soil treatment area.
- Both the stockpiles of clean top soil and contaminated soil should be fully covered by impermeable sheeting to prevent dust emission and runoff.
- Any free product (if encountered) during excavation should be recovered and drummed properly and collected by licensed chemical waste collector for proper handling and treatment.
- Closure Assessment (i.e. refer to Section 8.5.2) should be undertaken to confirm the closure/completion for the excavation work.
- Backfill the excavation with suitable imported or reworked site materials.

7.5.2 Closure Assessment

The objective of closure assessment is to determine if all contaminated soil has been excavated before backfilling takes place.
Following excavation and prior to the backfilling, confirmatory sampling and analysis should be carried out at the limits/sidewalls and base of the excavations to confirm that all the contaminated soil has been excavated.
As the contaminated areas are relatively large (i.e. over $1,000 \mathrm{~m}^{2}$ in size), confirmation samples should be collected from sidewalls of the excavation with a lateral spacing of not more than 15 m . The depth of sidewall samples should be at the depth where the contamination was identified. Confirmation samples from the bottom of excavation areas should be collected on grid spacing not larger than $15 \mathrm{~m} \times 15 \mathrm{~m}$ (i.e. one sample per approximately every $225 \mathrm{~m}^{2}$).
The collected confirmation soil samples should be analysed for the defined contaminant (arsenic). If the analytical results exceed the Rural Residential RBRG, additional soil samples should be excavated in 0.5 m increments vertically and 7.5 m in horizontal increments depending on whether the exceeding confirmation sample is collected from a sidewall or excavation base. Additional samples should be collected and analysed until all confirmation samples are below the Rural Residential RBRG. If the analytical results are below the Rural Residential RBRG, removal of contaminated soil should be considered complete and the open excavations then backfilled with suitable imported or reworked site materials.

All construction activities should be carried out by persons appropriately trained in health and safety and appropriated personal protective equipment should be used by the person engaged in decontamination activities. The following guidelines of health and safety should be strictly followed by all site personal working on the contaminated areas at all times:

- Temporary fencing or warning ribbons should be provided to the boundary of excavation, slope crest and temporarily stockpiled areas. Where necessary, the exposed areas should be temporarily covered with impermeable sheeting during heavy rainstorm.
- Workers are required to wear appropriate protective clothing and safety equipment.
- Smoking, eating and drinking are strictly prohibited.
- Relevant occupational health and safety regulations and guidelines during excavation should be observed.

The excavation and confirmatory sampling works should be supervised by a qualified Land Contamination Specialist. Subsequent construction activities could only be carried out after closure assessment or remediation at the subject site is completed as agreed by the Land Contamination Specialist.

7.5.3 Solidification/Stabilization (S/S)

A treatment area should be confined for carrying out the S/S mixing and temporary soil stockpile. Prior to solidification, the contaminated soils should be screened to segregate soil from debris, rock fragments and other materials and to break soil clumps into sizes allow effective mixing solidifying agents.
During the S / S process, Ordinary Portland Cement (OPC) (or other equivalent), water and/or other additive(s) (such as fly ash, lime and soluble silicates etc) should be added to the contaminated soils to form a solid matrix. Uniform mixing of contaminated soils, cement, water and other additives(s) should be undertaken within a pugmill, lorry mixer or equivalent at the designated treatment area to minimise the potential leaching during solidification process. Detail S/S method statements, include but not limit to the proposed solidify agents and additives, mixing ratio, mixing equipment, and mixing trial test proposal etc should be prepared by the Remediation Contractor and verified and approved by the Land Contamination Specialist prior to the commencement of S / S treatment.
The total volume of the concrete blocks could be increased by up to 10% from the original soil volume. The solidified blocks should be of suitable size to allow easy handling and transporting, and large blocks should be broken up into smaller size for transportation.

The soil mixture in the concrete blocks would be solidified within about 1 week. After setting, the samples of the blocks should be collected for testing to confirm if the contaminated materials meet the:
(i) Toxicity Characteristic Leaching Procedure (TCLP) Test; and
(ii) Unconfined Compressive Strength (UCS) Test.
which indicate the achievement of the stabilization targets.

7.5.4 Toxicity Characteristic Leaching Procedure (TCLP) Test

The sampling frequency for the TCLP test should be 1 TCLP sample per $100 \mathrm{~m}^{3}$ of broken up hardened mixture after S/S treatment. Each TCLP sample should be a composite sample collected at 5 locations throughout the $100 \mathrm{~m}^{3}$ broken up hardened mixture. Same volume of sample should be collected at each of the 5 locations in order to facilitate unbiased sample compositing.

Any hardened samples to be submitted to laboratory for TCLP analysis should be broken up to small pieces with maximum diameter of 10 cm . The sample preparation method of USEPA Method 1311 will be followed for the

TCLP analysis. It is specified in USEPA Method 1311 that the maximum grain size of samples to be analysed is 1 cm . As such, the samples should be further broken up in the laboratory prior to TCLP analysis.
TCLP tests should be conducted in accordance with USEPA Method 1311 and USEPA Method 6020 for metal arsenic. The EPD's TCLP limits as specified in EPD's Guidance Notes for Investigation and Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repairing/Dismantling Workshops are standard leachability test standards. However, this set of standards is only applicable to disposal to landfill. For on-site reuse, these standards are not applicable.
"Universal Treatment Standards" (UTS) could be used for interpretation of the TCLP testing results in this Study. The UTS were derived from the performance of the Best Demonstrated Available Technologies (BDAT) for treating most prohibited hazardous wastes and were adopted in pervious local land contamination studies e.g. decontamination works at the Cheoy Lee Shipyard at Penny's Bay and reclamation works at North Tsing Yi Shipyard site. The UTS for the metal arsenic is given in Table 7.3.

Table 7.3 Universal Treatment Standards (UTS) for metal arsenic

Parameter	Universal Treatment Standard (1)
Arsenic	$5 \mathrm{mg} / \mathrm{L}$ as TCLP

Note: (1) Reference to Universal Treatment Standards (UTS) of U.S. Resource Conservation and Recovery Act (RCRA) in Title 40 of the Codes of Federal Regulations (CFR) Parts 268.

Any pile of broken up solidified mixture that does not meet the UTS of arsenic should be crushed and re-treated by S/S. The re-treated pile should be tested again for TCLP to confirm if it could be reused on site.

7.5.5 Unconfined Compressive Strength (UCS)

The treated material should be allowed to set to achieve the Unconfined Compressive Strength (UCS) of not less than 1 mPa with reference to the USEPA guideline (1986) - Handbook of Stabilization / Solidification of Hazardous Wastes, EPA/540/2-86-00. The test procedure of UCS test should be based on BS 1377 - Methods of test for soils for civil engineering purposes.

7.5.6 Handling of Treated Material

Upon completion of the leachability testing and meeting the UTS and the UCS requirements, the solidified materials should be fully reused on site as backfilling or stockpiled for future reuse. As the maximum grain size of filling material is 250 mm (i.e. according to the general practice), the solidified soil should be broken down to below this size before being used as filling materials. The solidified material for reuse as filling materials should be put below at least 1 m of clean fill layer. Off-site disposal or reuse of the solidified material is not allowed.

7.6 Mitigation Measures and Safety Measures

7.6.1 Environmental Mitigation Measure

In order to minimise the potentially environmental impacts arising from the handling of contaminated materials, the following environmental mitigation measures are recommended during the course of the site remediation:

Excavation and Transportation

- Excavation profiles must be properly designed and executed with attention to the relevant requirements for environment, health and safety;
- In case the soil to be excavated is situated beneath the groundwater table, it may be necessary to lower the groundwater table by installing well points or similar means;
- Excavation should be carried out during dry season as far as possible to minimise contaminated runoff from contaminated soils;
- Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be properly covered by impermeable sheeting to reduce dust emission during dry season or contaminated run-off during rainy season. Watering should be avoided on stockpiles of contaminated soil to minimise contaminated runoff;
- Supply of suitable clean backfill material after excavation, if require;
- Vehicles containing any excavated materials should be suitably covered to limit potential dust emissions or contaminated run-off, and truck bodies and tailgates should be sealed to prevent any discharge during transport or during wet season;
- Speed control for the trucks carrying contaminated materials should be enforced; and
- Vehicle wheel washing facilities at the site's exit points should be established and used.

Solidification / Stabilization

- The loading, unloading, handling, transfer or storage of cement should be carried out in an enclosed system;
- Mixing process and other associated material handling activities should be properly scheduled to minimise potential noise impact and dust emission;
- The mixing facilities should be sited as far apart as practicable from the nearby noise sensitive receivers;
- Mixing of contaminated soil and cement / water / other additive(s) should be undertaken at a solidification plant to minimise the potential for leaching;
- Runoff from the solidification / stabilization area should be prevented by constructing a concrete bund along the perimeter of the solidification / stabilization area;
- If stockpile of treated soil is required, the stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should be properly covered by impermeable sheeting to reduce dust emission during dry season or site run-off during rainy season; and
- If necessary, there should be clear and separated areas for stockpiling of untreated and treated materials.

7.6.2 Safety Measures

In order to minimize the potential adverse effects on health and safety of construction workers during the course of site remediation, the Occupation Safety and Health Ordinance (OSHO) (Charter 509) and its subsidiary Regulations should be followed by all site personnel working on the site at all times. In addition, basic health and safety measures should be implemented, including but not limited to the followings:

- Set up a list of safety measures for site workers;
- Provide written information and training on safety for site workers;
- Keep a log-book and plan showing the contaminated zones and clean zones;
- Maintain a hygienic working environment;
- Avoid dust generation;
- Provide face and respiratory protection gear to site workers if necessary;
- Provide personal protective clothing (e.g. chemical resistant jackboot, liquid tight gloves) to site workers if necessary;
- Provide first aid training and materials to site worker;
- Bulk earth moving equipment should be utilized as much as possible to minimize workers' handling and contact of the contaminated materials; and
- Eating, drinking and smoking should not be allowed in contaminated areas to avoid inadvertent ingestion of contaminant.

7.7 Remediation Report

Remediation Report (RR) for identified contaminated zones upon completion of remediation should be prepared by the Land Contamination Specialist to report the remediation process and demonstrate that contaminated soil are all removed, properly handled, decontaminated and reinstated. All relevant information, including details of closure assessment and photographical records, should be included in the RR. The RR should be submitted to EPD for record and agreement prior to the commencement of any construction works.

8 Conclusion and Recommendation

Site investigation works involving sampling and testing of soil and groundwater were conducted from 25 November 2009 to 1 February 2010 with reference to the CAP for Area A that EPD indicated no further comment in October 2009. This CAR/RAP presents the findings together with necessary remediation actions.
A total of 105 soil samples were collected from 35 boreholes (i.e. 3 soil samples per borehole) from 25 November 2009 to 23 December 2009. 6 soil samples collected from 5 boreholes, in which the concentration of the metal "Arsenic (As)" marginally exceeded the Rural Residential RBRG.

3 additional boreholes near each of the 5 contaminated boreholes were drilled (i.e. total 15 additional boreholes were drilled) from 26 January 2010 to 1 February 2010 for additional soil sampling and testing. The soil samples collected from the additional boreholes were tested for metals in order to define the extent of arsenic contamination. The testing results of the additional soil samples showed compliance with the RBRG for Rural Residential (i.e. the stringent set of RBRGs). Based on the entire plan are in which the horizontal extent of contamination lies, the quantity of arseniccontaminated soil was estimated to be approximately $154,446 \mathrm{~m}^{3}$ representing only a conservative order of quantity for reference at this stage. It should be noted that further investigation to ascertain the horizontal extent of contamination should be conducted prior to the commencement of remediation work in order to minimize over-remediation of uncontaminated soil.

10 groundwater samples were collected and tested. The testing results indicated that none of the groundwater samples exceeded the RBRGs levels for Rural Residential land use. Chlorinated Pesticides were not detected in the groundwater samples. Remediation of groundwater is not required.
Elutriate test was conducted for the deepest soil samples (i.e. 4.5 mbgl) collected from 10 boreholes of groundwater sampling The testing results indicated that the potential of contaminants releasing from the filled mud during excavation was insignificant as only non-detected levels of contaminants were recorded in all 10 soil samples.
After review of various remediation methods, "Solidification/Stabilization" (S/S) treatment method was proposed for the remediation of arseniccontaminated soil. Toxicity Characteristic Leaching Procedure (TCLP) test should be undertaken after S/S in order to ensure that the contaminant will not leach to the environment. Unconfined Compressive Strength (UCS) test should be conducted, and not less than 1 mPa should be met prior to the backfilling or stockpiled for future reuse within the study area. Off-site disposal or reuse of the solidified material is not allowed.
For complete removal of contaminated soil, a closure assessment in the form of confirmatory test should be conducted after excavation to confirm complete clean-up of the contaminated zones/concerned areas. A Remediation Report (RR) should be submitted to EPD for agreement upon completion of all remediation works.

Appropriate environmental mitigation measures have been proposed to minimize the potential environmental impacts of the remediation activities. Health and safety measures should be followed to minimize safety hazard posed to site workers.

Figures

＊өy	UMOUS sy		2100	บogatusso	ueld eerv Kpmis	uo Kpms 6upəou！ 6 й pue 6uluueld 	dกUV	INBMLY甘VIGaONINNY7d量傐衦		
L．L O．Jn6！d	$15_{\text {panoidor }}$		60／30	Insil ISIIT						
	$60 / 90{ }^{\text {\％10a }}$	${ }^{17}$								

	の $\infty \infty \infty$ 	
	 N	サ స్ ద్ న
Type of Borehole		

Soil Sampling Only
4

	厤 Tu	Qid Mo
\bigcirc		

									Wive
	응	$\frac{\stackrel{N}{2}}{\substack{8}}$	$\begin{aligned} & \text { M } \\ & \vdots \\ & \dot{C} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{n}{2} \\ & \hline \end{aligned}$		$\stackrel{\infty}{\substack{\infty}}$	$\begin{aligned} & \text { 荅 } \\ & \text { p} \\ & \hline \end{aligned}$	\%	$\begin{aligned} & \text { OOO } \\ & \text { O} \\ & \text { < } \end{aligned}$

[^0]

[^1]

Figure 5.2.4
高

Figure 6.1.1

Figure 6.1.4
\square 吅

Appendix A
Strata Log Records of Boreholes

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

F76-061125

Appendix B
RBRGs Criteria

Risk-Based Remediation Goals (RBRGs) for Soil \& Soil Saturation Limit

Chemical	Risk-Based Remediation Goals (RBRGs) for Soil				Soil Saturation Limit ($C_{\text {sat }}$) ($\mathrm{mg} / \mathrm{kg}$)
	Urban Residential ($\mathrm{mg} / \mathrm{kg}$)	Rural Residential ($\mathrm{mg} / \mathrm{kg}$)	Industrial ($\mathrm{mg} / \mathrm{kg}$)	Public Park ($\mathrm{mg} / \mathrm{kg}$)	
Vocs ${ }^{\text {ckuk }}$					
Acetone	9,590	4,260	10,000	10,000	***
Benzene	0.704	0.279	9.21	42.2	336
Bromodichloromethane	0.317	0.129	2.85	13.40	1,030
2-Butanone	10,000	10,000	10,000	10,000	***
Chiloroform	0.132	0.0529	1.54	253	1,100
Ethylbenzene	709	298	8,240	10,000	138
Methyl tert-Butyl Ether	6.88	2.80	70.1	505	2,380
Methylene Chloride	1.30	0.529	13.9	128	921
Styrene	3,220	1,540	10,000	10,000	497
Tetrachloroethene	0.101	0.0444	0.78	1.84	97.1
Toluene	1,440	705	10,000	10.000	235
Trichloroethene	0.523	0.211	5.68	69.4	488
Xylenes (Total)	95.0	36.8	1,230	10,000	150
SVOcs					
Acenaphthene	3,510	3.280	10,000	10,000	60.2
Acenaphthylene	2,340	1.510	10,000	10,000	19.8
Anthracene	10,000	10,000	10,000	10,000	2.56
Benzo(a)anthracene	12.0	11.4	91.8	38.3	
Benzo(a)pyrene	1,20	1.14	9.18	3.83	
Benzo(b)fluoranthene	9.88	10.1	17.8	20.4	
Benzo(g.h,i)perylene	1.800	1.710	10.000	5,740	
Benzo(k)fluoranthene	120	114	918	383	
Bis-(2-Ethylhexyl)phthalate	30.0	28.0	91.8	94.2	
Chrysene	871	919	1,140	1,540	
Dibenzo(a, h$)$ anthracene	1.20	1.14	9.18	3.83	
Fluoranthene	2,400	2,270	10.000	7,620	
Fluorene	2,380	2,250	10,000	7,450	54.7
Hexachlorobenzene	0.243	0.220	0.582	0.713	
Indeno(1,2,3-cd)pyrene	12.0	11.4	91.8	38.3	
Naphthalene	182	85.6	453	914	125
Phenanthrene	10,000	10,000	10.000	10,000	28.0
Phenol	10,000	10,000	10.000	10,000	7,260
Pyrene	1,800	1,710	10,000	5,720	
Metas					
Antimony	29.5	29.1	261	97.9	
Arsenic	22.1	21.8	196	73.5	
Barium	10,000	10,000	10,000	10,000	
Cadmium	73.8	72.8	653	245	
Chromium 11	10,000	10,000	10,000	10.000	
Chromium VI	221	218	1,960	735	
Cobal:	1.480	1,460	10,000	4,900	
Copper	2,950	2.910	10.000	9,790	
Lead	258	255	2,290	857	
Manganese	10,000	10,000	10,000	10,000	
Mercury	11.0	6.52	38.4	45.6	
Molybdenum	369	364	3,260	1,220	
Nickel	1,480	1.460	10,000	4,900	
Tin	10,000	10,000	10,000	10,000	
Zinc	10,000	10,000	10,000	10,000	
Dioxins (I-TEQ)	0.001	0.001	0.005	0.001	
PCBs	0.236	0.223	0.748	0.756	
Patroloum Carnon Fangos					
C6-C8	1,410	545	10,000	10,000	1,000
C9-C16	2,240	1,330	10,000	10,000	3,000
C17-C35	10,000	10,000	10,000	10,000	5,000
Othe lnorganle Componnds					
Cyanide, free	1,480	1,460	10,000	4,900	
Crganometalles					
TBTO	22.1	21.8	196	73.5	

(1) For Dioxins, the cleanup levels in USEPA Office of Solid Waste and Emergency Response (OSWER) Directive of 1998 have been adopted. The OSWER Directive value of 1 ppb for residential use has been applied to the scenarios of "Urban Residential", "Rural Residential", and "Public Parks", while the low end of the range of values for industrial, 5 ppb , has been applied to the scenario of "industrial".
(2) Soil saturation limits for petroleum carbon ranges taken from the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, CCME 2000.
(3) * indicates a 'ceiling limit' concentration.
(4) ${ }^{* * *}$ indicates that the $\mathrm{C}_{\text {sat }}$ value exceeds the 'ceiling limit' therefore the RBRG applies.

Risk-Based Remediation Goals (RBRGs) for Groundwater and Solubility Limit

Chemical	Risk-Based Remediation Goals (RBRGs) for Groundwater			Solubility Limit (mg/L)
	Urban Residential (mg / L)	Rural Residential (mg/L)	Industrial (mg/L)	
Vocs				
Acetone	9,590	4,260	10,000	***
Benzene	0.704	0.279	9.21	336
Bromodichloromethane	0.317	0.129	2.85	1,030
2-Butanone	10,000	10,000	10,000	***
Chloroform	0.132	0.0529	1.54	1,100
Ethylbenzene	709	298	8,240	138
Methyl tert-Butyl Ether	6.88	2.80	70.1	2,380
Methylene Chloride	1.30	0.529	13.9	921
Styrene	3,220	1,540	10,000	497
Tetrachloroethene	0.101	0.0444	0.78	97.1
Toluene	1,440	705	10,000	235
Trichloroethene	0.523	0.211	5.68	488
Xylenes (Total)	95.0	36.8	1,230	150
SVOCs				
Acenaphthene	10,000	7,090	10,000	4.24
Acenaphthylene	1,410	542	10,000	3.93
Anthracene	10,000	10,000	10,000	0.0434
Benzo(a)anthracene				
Benzo(a)pyrene				
Benzo(b)fluoranthene	0.539	0.203	7.53	0.0015
Benzo(g,h,i)perylene				
Benzo(k)fluoranthene				
Bis-(2-Ethylhexyl)phthalate				
Chrysene	58.1	21.9	812	0.0016
Dibenzo(a, h) anthracene				
Fluoranthene	10,000	10,000	10,000	0.206
Fluorene	10,000	10,000	10,000	1.98
Hexachlorobenzene	0.0589	0.0234	0.695	6.20
Indeno(1,2,3-cd)pyrene				
Naphthalene	61.7	23.7	862	31.0
Phenanthrene	10,000	10,000	10,000	1.00
Phenol				
Pyrene	10,000	10,000	10,000	0.135
Metals				
Antimony				
Arsenic				
Barium				
Cadmium				
Chromium Ill				
Chromium VI				
Cobalt				
Copper				
Lead				
Manganese				
Mercury	0.486	0.184	6.79	
Molybdenum				
Nickel				
Tin				
Zinc				
PCES				
Dioxins (I-TEQ)				
PCBs	0.433	0.171	5.11	0.031
Potroleum Carbon Ranges				
C6-C8	1,410	545	10,000	1,000
C9-C16	2,240	1,330	10,000	3,000
C17-C35	10,000	10,000	10,000	5,000
Other Inorganic Compounds				
Cyanide, free				
Organometallics				
TBTO				

Notes:
(1) Blank indicates that RBRG could not be calculated because the toxicity or physical/chemical values were unavailable, or the condition of Henry's Law Constant >0.00005 was not met for the inhalation pathway.
(2) Where solubilities for Petroleum Carbon Range aliphatic C9-C16 and greater than C16 generally are considered to be effectively zero and therefore the aromatic solubility for C9-C16 is used.
(3) * indicates a 'ceiling limit' concentration.
(4) *** indicates that the solubility limit exceeds the 'ceiling limit' therefore the RBRG applies.

Appendix C
Intervention Value downloaded from the website of Ministry of Housing, Spatial
Planning and
Environment,
Netherland

Table 1a: Target values and soil remediation intervention values and background concentrations soil/sediment and groundwater for metals. Values for soil/sediment have been expressed as the concentration in a standard soil (10% organic matter and 25% clay).

	EARTHISEDIMENT(mg/kg dry matter)			GROUNDWATER ($\mu \mathrm{g} / \mathrm{I}$ in solution)			
	national background concentration (BC)	target value (incl. BC)	intervention	target value shallow	national background concentratio n deep (BC)	target value deep (incl. BC)	intervention value
1 Metals							
antimony	3	3	15		0.09	0.15	20
arsenic	29	29	55	10	7	7.2	60
barium	160	160	625	50	200	200	625
cadmium	0.8	0.8	12	0.4	0.06	0.06	6
chromium	100	100	380	1	2.4	2.5	30
cobalt	9	9	240	20	0.6	0.7	100
copper	36	36	190	15	1.3	1.3	75
mercury	0.3	0.3	10	0.05		0.01	0.3
lead	85	85	530	15	1.6	1.7	75
molybdenum	0.5	3	200	5	0.7	3.6	300
nickel	35	35	210	15	2.1	2.1	75
zinc	140	140	720	65	24	24	800

Table 1b: Target values and intervention values for soil remediation soilsediment and groundwater for inorganic compounds, aromatic compounds, PAH, chlorinated hydrocarbons, pesticides and other contaminants. Values for soil/sediment have been expressed as the concentration in a standard soil (10% organic matter and $\mathbf{2 5 \%}$ clay).

	EARTH/SEDIMENT(mg/kg dry matter)		GROUNDWATER($\mu \mathrm{g} / \mathrm{h}$ in solution)	
	target value	intervention value	target value	intervention value
Il Inorganic compounds				
cyanides-free	1	20	5	1500
cyanides-complex ($\mathrm{pH}<5)^{1}$	5	650	10	1500
cyanides-complex ($\mathrm{pH} \geq 5$)	5	50	10	1500
thiocyanates (sum)	1	20		1500
bromide (mg Bril)	20		$0.3 \mathrm{mgh}{ }^{2}$	
chloride ($\mathrm{mg} \mathrm{Cl} / 7$)			$100 \mathrm{mg} /{ }^{2}$	
fluoride (mg FIl)	500^{3}		$0.5 \mathrm{mg} /{ }^{2}$	
III Aromatic compounds				
benzene	0.01	- 1	0.2	30
ethyl benzene	0.03	50	4	150
toluene	0.01	130	,	1000
xylenes	0.1	25	0.2	70
styrene (vinyl benzene)	0.3	100	6	300
phenol	0.05	40	0.2	2000
cresols (sum)	0.05	5	0.2	200
catechol(o-dihydroxybenzene)	0.05	20	0.2	1250
resorcinol(m-dihydroxybenzene)	0.05	10	0.2	600
hydroquinone(p-dihydroxybenzene)	0.05	10	0.2	800
IV Polycyclic aromatic hydrocarbons (PAH)				
PAH (sum 10) ${ }^{\text {4,14 }}$	1	40	-	
naphthalene			0.01	70
anthracene			0.0007*	5
phenatrene			0.003*	5
fluoranthene			0.003	- 1
benzo(a) anthracene			$0.0001 *$	0.5
chrysene			0.003^{*}	0.2
benzo(a)pyrene			0.0005^{*}	0.05
benzo(ghi)perylene			0.0003	0.05
benzo(k)fluoranthene			0.0004^{*}	0.05
indeno(1,2,3-cd)pyrene			0.0004^{*}	0.05

Table 1 b (continued): Target values and intervention values for soil remediation soil/sediment and groundwater for inorganic compounds, aromatic compounds, PAH, chlorinated hydrocarbons, pesticides and other contaminants. Values for soil/sediment have been expressed as the concentration in a standard soil (10% organic matter and 25% clay).

	EARTH/SEDIMENT(mg/kg dry matter)		GROUNDWATER ($\mu \mathrm{g} / \mathrm{I}$ in solution)	
	target value	intervention value	target value	intervention value
V Chlorinated hydrocarbons				
vinyl chioride	0.01	0.1	0.01	5
dichloromethane	0.4	10	0.01	1000
1,1-dichloroethane	0.02	15	7	900
1,2-dichloroethane	0.02	4	7	400
1,1-dichloroethene	0.1	0.3	0.01	10
1,2-dichloroethene (cis and trans)??	0.2	1	0.01	20
dichloropropane	0.002\#	2	0.8	80
trichloromethane (chloroform)	0.02	10	6	400
1,1,1-trichloroethane	0.07	15	0.01	300
1,1,2-trichloroethane	0.4	10	0.01	130
trichloroethene (Tri)	0.1	60	24	500
tetrachloromethane (Tetra)	0.4	1	0.01	10
tetrachloroethene (Per)	0.002	4	0.01	40
chlorobenzenes (sum) ${ }^{\text {5,14 }}$	0.03	30		
monochlorobenzene			7	180
dichlorabenzenes			3	50
trichlorobenzenes			0.01	10
tetrachlorobenzenes			0.01	2.5
pentachlorobenzene			0.003	1
hexachlorobenzene			$0.00009 *$	0.5
chlorophenols (sum) ${ }^{\text {b,14 }}$	0.01	10		
monochlorophenols (sum)			0.3	100
dichlorophenols			0.2	30
trichlorophenols			$0.03{ }^{*}$	10
tetrachlorophenols			$0.01{ }^{*}$	10
pentachlorophenol			$0.04{ }^{*}$	3
chloronaphthalene		10		6
monochloroaniline	0.005	50		30
polychlorobiphenyls (sum 7)	0.02	1	$0.01{ }^{*}$	0.01
EOX	0.3		-	

Table 1b(continued): Target values and intervention values for soil remediation soil/sediment and groundwater for inorganic compounds, aromatic compounds, PAH, chlorinated hydrocarbons, pesticides and other contaminants. Values for soil/sediment have been expressed as the concentration in a standard soil (10% organic matter and 25% clay).

	EARTH/SEDIMENT(mg/kg dry matter)		GROUNDWATER($\mu \mathrm{g} / \mathrm{l}$ in solution)	
	farget value	intervention value	target value	intervention value
VI Pesticides				
DDT/DDE/DDD ${ }^{8}$	0.01	4	$0.004 \mathrm{ng} / \mathrm{*}$	0.01
drins ${ }^{9}$	0.005	4		0.1
aldrin	0.00006		$0.009 \mathrm{ng} /{ }^{\text {a }}$	
dieldrin	0.0005		$0.1 \mathrm{ng} / \mathrm{l}$	
endrin	0.00004		$0.04 \mathrm{ng} / 1$	
HCH-compounds ${ }^{10}$	$0.01 \times$	2	$0.05{ }^{\prime}$	1
$\alpha-\mathrm{HCH}$	0.003		33 ng f	
$\beta-\mathrm{HCH}$	0.009		$8 \mathrm{ng/l}$	
$\gamma-\mathrm{HCH}$	0.00005		$9 \mathrm{ng} /$	
atrazine	0.0002	6	29 ngll	150
carbaryl	0.00003	5	$2 \mathrm{ng} / \mathrm{f}^{\text {t }}$	50
carbofuran	0.00002	2	$9 \mathrm{ng} /$	100
chlorodane	0.00003	4	$0.02 \mathrm{ng} / \mathrm{l}^{+}$	0.2
endosulfan	0.00001	4	$0.2 \mathrm{ng} / \mathrm{m}^{\text {a }}$	5
heptachloro	0.0007	4	$0.005 \mathrm{ng} /{ }^{\text {a }}$	0.3
heptachloro-epoxide	0.0000002	4	$0.005 \mathrm{ng} /{ }^{\text {* }}$	3
maneb	0.002	35	$0.05 \mathrm{ng} /{ }^{\text {t }}$	0.1
MCPA	$0.00005 \#$	4	0.02	50
organotin compounds ${ }^{11}$	0.001	2.5	$0.05^{*}-16 \mathrm{ng} / \mathrm{l}$	0.7
VII Other contaminants				
cyclohexanone	0.1	45	0.5	15000
phthalates (sum) ${ }^{12}$	0.1	60	0.5	5
mineral oil $^{1{ }^{13}}$	50	5000	50	600
pyridine	0.1	0.5	0.5	30
tetrahydrofuran	0.1	2	0.5	300
tetrahydrothiophene	0.1	90	0.5	5000
tribromomethane		75	-	630

Notes to table 1 :

1. Acidity: $\left.\mathrm{pH}(0.01 \mathrm{M} \mathrm{CaCl})_{2}\right)$. In order to determine whether pH is greater than or equal to 5 , or less than 5 , the 90 percentile of the measured values is taken.
2. In areas subject to marine influence higher values occur naturally (salt and brackish water).
3. Differentiation by clay content: $(F)=175=13 L$ ($L=\%$ clay $)$.
4. PAH (sum of 10) here means the total of anthracene, benzo(a)anthracene, benzo(k)fluoroanthene, benzo(a)pyrene, chrysene, phenantrene, fluoroanthene, indeno(1,2,3-cd)pyrene, naphthalene and benzo(ghi)perylene.
5. 'Chlorobenzenes (sum)' here means the total of all chlorobenzenes mono-, di-, tri, tetra-, penta- and hexachlorobenzene).
6. 'Chlorophenols (sum)' here means the total of all chlorophenols (mono-, di-, tri', tetra- and pentachlorophenol)
7. In the case of the intervention value, 'polychlorobiphenyls (sum)' means the total of PCB 28, 52, 101, 118, 138, 153 and 180 . For the target value it refers to the fotal excluding PCB 118.
8. 'DDT/DDD/DDE' above means the sum of DDT, DDD and DDE.
9. 'Drins' above means the sum of aldrin, dieldrin and endrin.
10. 'HCH compounds' above means the sum of á $-\mathrm{HCH}, \mathrm{a}-\mathrm{HCH}, \mathrm{a}-\mathrm{HCH}$ and $\bar{a}-\mathrm{HCH}$.
11. The intervention value applies to the sum of the concentrations of organotin compounds encountered.
12. 'Phthalates (sum)' above means the total of all phthalates.
13. 'Mineral oil' is defined in the analysis standard. Where the contamination is due to mixtures (e.g. gasoline or domestic heating oil), then not only the alkane content but also the content of aromatic and/or polycyclic aromatic hydrocarbons must be determined. This aggregate parameter has been adopted for practical reasons. Further toxicological and chemical disaggregation is under study.
14. The values for the sum of polycyclic aromatic hydrocarbons, the sum of chlorophenots and the sum of chlorobenzenes in earth/sediment apply to the total concentration of the compounds belonging to the relevant category. If the contamination is due to only one compound of a category, the value used is the value for that compound. Where there are two or more compounds the value for the total of these compounds applies, etc. For earth/sediment, effects are directly additive (i.e. 1 mg of substance A has the same effect as 1 mg of substance B) and can be tested against an aggregate standard by summing the concentrations of the substances involved. In the case of groundwater, effects are indirectly additive and are expressed as a fraction of the individual intervention values (li.e. 0.5 of the intervention value of substance A has the same effect as 0.5 of the intervention value of substance B). This means that an addition formula must be used to determine whether an intervention value is exceeded. The intervention value for the sum of a group of substances is exceeded if:
$\left(\alpha \dot{c}(j) / l_{1} \geq 1\right.$,
where: $\quad C_{i}=$ measured concentration of a substance in the group of substances in question
$h=$ intervention value for the group.
*numeric value below the detection level/quantification level or measurement method is lacking
\# These target values have not been tested in HANS. All the other values have been tested in HANS.
${ }^{\wedge}$ The individual standards in INS are given in the Fourth Policy Document on Water Management along with the sum standards marked ^.

Table 2a: Target values, indicative levels for serious soil contamination and background concentrations soil/sediment and groundwater for metals. . Values for soil/sediment have been expressed as the concentration in a standard soil ($\mathbf{1 0 \%}$ organic matter and $\mathbf{2 5 \%}$ clay).

	EARTH/SEDIMENT(mg/kg dry matter)			GROUNDWATER$(\mu \mathrm{g} / \mathrm{l}$ in solution $)$			
	national background concentratio n (BC)	target values (incl. BC)	indicative level serious contamination	target values shallow	national background concentratio n deep (BC)	target values deep (incl. BC)	indicative level serious contaminatfion
1 Metals							
beryllium	1.1	1.1	30		$0.05{ }^{*}$	$0.05 *$	15
selenium	0.7	0.7	100		0.02	0.07	160
tellurium		-	600				70
thallium	1	1	15		<2*	2^{*}	7
tin	19		900		<2*	2.2^{*}	50
vanadium	42	42	250		1.2	1.2	70
silver			15				40

Appendix D
Analytical Results of Soil Samples

chemical	$\begin{gathered} \text { Reporting } \\ \text { Limit } \\ (\mathrm{mg} / \mathrm{kg}) \\ \hline \end{gathered}$	Risk-Based Remediation Goals (R8RGs) for Soil					A.s01			A.502			$\begin{gathered} \text { Drillhole No. } \\ \hline \text { A-S03 } \\ \hline \end{gathered}$			A. 504			A. 905																									
							Samping Date and Depth (m)			Samping Date and Depth (m)			Samping Date and Dopth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)																									
		Resididential	${ }_{\text {Residenal }}^{\text {Real }}$	Industrial	Public Park		14.0e. 099	14.0ec.09	15.Dec.09	18.0ec.09	18.Dec. 99	18.Dec.09	22-Dec-09	22-Dec-09	23-Dec-09	15.Doc.09	15.Doc.09	15.0ec.09	17-Dec.09	17-0ec.09	17-Dec.09																							
Acenaghtylyene	0.5	2.340	${ }_{1.510}$	10.000	10,000	${ }_{19.8}$	${ }^{0} 0.5$	${ }_{80.5}$	${ }_{80.5} 0.5$	${ }_{60.5} 0.5$	${ }^{20.5}$	${ }_{60.5}$	${ }_{<0.5}$	${ }_{<0.5}^{20.5}$	${ }_{80.5}^{20.5}$	${ }_{<0.5}^{20.5}$	${ }_{<0.5}^{20.5}$	${ }_{<0.5}^{20.5}$	${ }_{<0.5}^{0.5}$	${ }_{<0.5}^{20.5}$	${ }_{<0.5}^{0.5}$																							
Antracene	0.5	10.000	10.000	10.000	2.56	2.56	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5																							
Benro(e)analtracene	0.5	12.	11.4	91.8	${ }_{38,}$		0.5	80.5	80.5	80.5	80.5	80.5	<0.5	60.5	80.5	0.5	80.5	<0.5	<0.5	<0.5	<0.5																							
Benzo(a)pryene	0.5	1.20	1.14	9.18	${ }^{3.83}$		80.5	80.5	80.5	80.5	80.5	80.5	<0.5	80.5	80.5	0.5	80.5	<0.5	<0.5	80.5	<0.5																							
Benzo()flucorantene	0.5	9.88	10.1	17.8	20.4		80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	<0.5	<0.5	<0.5	80.5	<0.5																							
Benzo(G., i.peeveliene	0.5	1.800	1,710	10,000	5.740		<0.5	80.5	80.5	80.5	80.5	80.5	<0.5	80.5	<0.5	<0.5	<0.5	<0.5	<0.5	80.5	80.5																							
Benoroffluorantene	0.5	120	114	918	383		80.5	80.5	80.5	<0.5	80.5	80.5	60.5	80.5	<0.5	<0.5	80.5	<0.5	80.5	80.5	<0.5																							
Bis-(2:EEIHymexy)Phthalate	2.0	30.0	28.0	91.8	94.2		<2.	<2.	<2.0	<20	82.	<2.0	<20	<2.	<2.	<2.	<2.0	<2.0	<20	<2.	<2.0																							
chysene	0.5	871	919	1.140	1.540		<0.5	80.5	<0.5	80.5	<0.5	<0.5	80.5	80.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5																							
Oibenzola, ., mantracene	0.5	1.20	1.14	9.18	3.83		80.5	80.5	<0.5	80.5	<0.5	80.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5																							
Fluranthene	0.5	2.400	2,270	10.000	7.820		80.5	<0.5	<0.5	80.5	<0.5	80.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5																							
Fworene	0.5	2.380	2.250	10.000	7.450	54.7	<0.5	80.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	80.5																							
Hexachlocobenzene	0.05	0.243	0.220	0.582	0.773		6.05	<0.05	<0.05	<0.05	<0.05	<0.05	80.05	${ }^{2} .0 .05$	<0.05	${ }^{2} .0 .05$	${ }_{60} 0.05$	${ }_{60.05}$	${ }_{60.05}$	${ }_{60.05}$	<0.05																							
Indeno(1.2.3.coleprene	0.5	12.	11.4	91.8	38.3		80.5	0.5	0.5	80.5	80.5	80.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	60.5	<0.5	<0.5																							
Naphthalene	0.5	182	85.6	453	914	125	<0.5	80.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	80.5	<0.5	<0.5	80.5	<0.5	80.5																							
${ }^{\text {Pheneatatrene }}$	0.5	10,000	10,000	10,000	10.000	28.0	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	co.5	80.5	80.5	80.5	80.5																							
${ }^{\text {Phenol }}$ Prene	0.5 0	10.000	10.000	10.000	10.000 5780	7,260	<0.5	80.5	<0.5	-0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5																							
Assenic	0.5	22.1	21.8	196	73.5		4.3	22		1.0	0.8	8.4	5.4		17.0	11.0	7.0	16.0	7.9	9.0	6.3																							
Batum	0.05	10,000	10,00	10,000	10.000		28.7	55.	67.1	<0.05	<0.05	<0.05	46.7	77.3	57.8	51.5	45.8	43.1	26.3	47.7	22.																							
Casmium	0.02	${ }^{73.8}$	${ }^{72.8}$	653	245		0.11	0.11	0.21	<0.02	0.02	0.4	0.05	0.18	0.12	0.07	0.06	0.04	0.07	0.13	0.06																							
chromium III	0.5	10.000	10,000	10,000	10,000		13.9	42.4	43.9	0.5	60.5	27.	16.5	33.1	41.3	25.6	23.7	28.0	17.0	21.0	13.0																							
chromium VI	0.5	221	218	1.960	735		<0.5	80.5	80.5	80.5	60.5	<0.5	0.5	<0.5	80.5	<0.5	80.5	<0.5	8.5	<0.5	<0.5																							
Cobat	0.5	1.480	1,460	10.000	4.900		3.6	14.5	13.7	<0.5	<0.5	<0.5	2.8	9.3	13.7	5.0	5.6	3.6	2.1	6.2	6.6																							
Copeer	0.05	2.950	2,970	10.000	9,790		9.93	21.2	22.	1.93	3.35	38.4	11.1	40.3	21.8	10.8	11.5	10.6	7.09	18.5	22.2																							
Lead	0.05	258	255	2,230	857		24.8	50.9	62.1	4	4	62	25.8	57.3	53.6	25.8	27.0	32.1	23.1	31.7	13.5																							
Maragase	0.5	10.000	10,000	10.000	10.000		${ }^{136}$	446	693	<0.5	<0.5	<0.5	118	617	1250	201	164	92.0	48.4	123	44.9																							
Mercury	0.02	${ }^{11.0}$	6.52	38.4	45.6		0.02	0.08	0.11	<0.02	<0.02	0.10	0.06	0.06	0.09	0.06	0.05	0.03	0.06	0.06	0.05																							
Moybderum	${ }^{0.05}$	$\begin{array}{r}369 \\ \hline 180\end{array}$	$\begin{array}{r}364 \\ 1040 \\ \hline\end{array}$	${ }^{3.260}$	1.220		0.727	${ }^{3.61}$	${ }^{231}$	<0.05	<0.05	<0.05	1.10	1.93	1.95	1.62	2.48	247																										
${ }^{\text {Nockel }}$	${ }_{0}^{0.05}$	1.880 10000	1,460 10.000	$\begin{array}{r}10.000 \\ 10000 \\ \hline\end{array}$	4.900		7.27	${ }^{25.1}$	20.8	2	$\stackrel{3}{8}$	$\stackrel{20}{20.05}$	5.72	18.9	${ }^{235}$	${ }^{934}$	10.7	10.4	4.87	10.1	10.4																							
${ }_{\text {Inco }}^{\text {Tin }}$		10.000 10.000	10,000 10,000	10.000 10.000	10.000 10.000		1.66 392	${ }_{358}^{4.57}$	4.8 108	${ }_{39}{ }^{20.05}$	${ }_{10.05}^{<0.4}$	${ }_{10.05}^{<0.05}$	265 45.2	7.87 148	${ }_{95.5}^{4.9}$	${ }_{45.1}^{237}$	2.41 52.3	225 520	${ }_{74.3}^{207}$	3.00 106	${ }_{85,7}^{1.58}$																							
Dioxins PCPs,																																												
Dioxins (I-TEQ) * PCB	5.01 p/9	0.001	0.001	0.005	0.007		6.73	10.99	14.32	5.84	6.40	10.37	8.17	15.05	13.57	6.77	9.34	9.21	7.35	8.64	6.69																							
Other Inorganic Compounds 1							<0.10	<0.10	<0.10		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10																							
Cyanide, free	1	1.480	1,460	10.000	4.900		<1	<1	<1	<1	<1	<1	$<$	<1	<1	4	4	<1	4	<1	<1																							
chlornated Pesticides																																												
bealabic	0.05	$4 *$					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05																							
gamma. Brc $^{\text {a }}$	0.05						<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05																							
della BHC	0.05						<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05																							
PR.DOE	${ }_{0}^{0.05}$	$2{ }^{\text {- }}$					${ }_{<0.05}$	${ }_{<0.05}$	${ }_{<0.05}$	<0.05	${ }_{<0.05}$	${ }_{<0.05}$	<0.05	${ }_{<0.05}$	${ }^{<0.05}$	${ }_{<0.05}$	${ }_{<0.05}$	<0.05	${ }_{60.05}$	<0.05	${ }_{8} 0.005$																							
P.PDODT	0.05						<0.05	<0.05	<0.05	<0.05	-0.05	${ }_{<0.2}$	<0.05	${ }_{<0.25}$	${ }_{<0.25}$	<0.05 <0.2	0.05 <0.2	<0.05	${ }_{<0.05}^{<0.05}$	${ }_{<0.05}^{<0.2}$	${ }_{<0.05}^{<0.2}$																							
Total Organic Cartoon																																												
Sit (8)	1\%						${ }^{24}$	15	49	2	3	58	${ }^{28}$	57	${ }^{41}$	29	${ }^{34}$	55	25	31	11																							
${ }^{\text {sand (\%) }}$	1\%						43	49	4	${ }^{69}$	${ }^{68}$	3	${ }^{38}$	14	1	39	42	15	${ }^{43}$	${ }^{38}$	59																							
							12	19	0	26	${ }^{27}$	0	11	0	0	12	3	2	3	6	17																							
Moistur Content (\%)	0.1\%			licable			14.8	30.9	34.5	12.0	8.9	${ }^{32.1}$	17.5	30.6	38.5	16.5	17.0	24.6	15.3	19.5	15.9																							

$1 \mathrm{pg} 9=0.000001 \mathrm{mgkg}$

\begin{tabular}{|c|}
\hline \multirow{4}{*}{Chemical} \& \multirow[b]{4}{*}{\[
\begin{gathered}
\text { Reporting } \\
\text { Limit } \\
(\mathrm{mg} / \mathrm{kg}) \\
\hline
\end{gathered}
\]} \& \multicolumn{5}{|c|}{\multirow[t]{2}{*}{Risk-Based Remediaition Goals (r8RGs) for soil}} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Sampling Date and Depth (m)}} \& \multicolumn{3}{|l|}{} \& \multicolumn{3}{|c|}{\[
\begin{gathered}
\hline \text { Drillhole No. } \\
\hline \text { A-S08 } \\
\hline
\end{gathered}
\]} \& \multicolumn{3}{|c|}{A. 509} \& \multicolumn{3}{|c|}{A. 310} \\
\hline \& \& \& \& \& \& \& \& \& \& \multicolumn{3}{|c|}{Sampling Date and Depth (\(m\))} \& \multicolumn{3}{|c|}{Sampling Oate and Depth (\(m\))} \& \multicolumn{3}{|c|}{Sampling Date and Depht (\(m\))} \& \multicolumn{3}{|c|}{Samping Date and Depth (m)} \\
\hline \& \& \({ }_{\text {Residential }}^{\text {Uran }}\) \& \({ }_{\text {Residential }}^{\text {Real }}\) \& Industral \& Public Park \& \& 23-Dec.09 \& \({ }^{23-\text { Pec.09 }}\) \& 23.0ec.09 \& 11-Dec-09 \& 11-Dec.09 \& 11-0ec.09 \& 19.0ec-09 \& 19-Dec.09 \& 19-Dec-09 \& 21-Doc.09 \& 21-Dec.09 \& 22-Dec-09 \& 21-Dec-09 \& 21-Doc.09 \& 21-Dec-.09 \\
\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \& \\
\hline Acenophtryvene \& 0.5 \& \({ }_{2} .340\) \& \({ }^{1.510}\) \& 10.000 \& 10,000 \& \({ }_{19.8}\) \& \({ }_{<0.5}^{0.5}\) \& \({ }_{60.5}\) \& \({ }_{<0.5} 0.5\) \& \({ }_{80.5}^{0.5}\) \& \& \({ }_{<0.5}^{0.5}\) \& \({ }_{<0.5}^{0.5}\) \& \& \({ }_{<0.5}^{80.5}\) \& \({ }_{<0.5} 0.5\) \& \({ }_{<0.5} 0.5\) \& \({ }_{<0.5} 0.5\) \& \({ }_{<0.5} 0.5\) \& \({ }_{60.5} 0.5\) \& \({ }_{<0.5} 0.5\) \\
\hline Antracene \& 0.5 \& 10.000 \& 10.000 \& 10.000 \& 256 \& 2.56 \& <0.5 \& <0.5 \& 6.5 \& 80.5 \& <0.5 \& \(<0.5\) \& \(<0.5\) \& \(<0.5\) \& \(<0.5\) \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \\
\hline Senzofantracene \& 0.5
0.5 \& 12.0
1.20 \& 11.4
1.14 \& 99.8
9.18 \& \begin{tabular}{l}
38.3 \\
3.83 \\
\hline
\end{tabular} \& \& 0.5
0.5 \& 0.5
0.5
0.5 \& \({ }_{<0.5}^{0.5}\) \& -0.5 \& -0.5 \& -0.5 \& \begin{tabular}{l}
0.5 \\
0.5 \\
\hline 0.5
\end{tabular} \& -0.5 \& -0.5 \& -0.5 \& 0.5
\(<0.5\) \& -0.5 \& -0.5 \& -0.5 \& -0.5 \\
\hline Bencolipy \({ }^{\text {enene }}\) \& 0.5
0.5 \& \(\begin{array}{r}1.20 \\ .88 \\ \hline 98\end{array}\) \& \begin{tabular}{l}
1.14 \\
10.1 \\
\hline
\end{tabular} \& 9.178
178 \& 3.83

204 \& \& \begin{tabular}{l}
20.5

00.5

\hline

 \& -0.5 \& -0.5 \&

20.5

<0.5

\hline
\end{tabular} \& -0.5 \& -0.5 \& 20.5 \& -0.5 \& -0.5 \& -0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Benzo(g, i.jopervene \& 0.5 \& 1.800 \& 1,710 \& 10.000 \& 5.740 \& \& <0.5 \& <0.5 \& 6.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& -0.5 \& <0.5

\hline Berzoskfluorantene \& 0.5 \& 120 \& 114 \& 918 \& ${ }^{33}$ \& \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& ${ }_{80.5}^{20.5}$ \& ${ }_{<0.5}^{0.5}$ \& ${ }_{60.5}^{0.5}$ \& ${ }_{<0.5}^{0.5}$ \& ${ }_{<0.5}^{0.5}$ \& ${ }_{60.5}^{20.5}$ \& ${ }^{20.5}$ \& ${ }_{60.5}$ \& ${ }^{20.5}$ \& ${ }_{<0.5}$ \& ${ }^{20.5}$

\hline Bis-2.EEIHymexy) Phthalate \& 2.0 \& 30.0 \& 28.0 \& 91.8 \& 94.2 \& \& <2. \& <2. \& <2.0 \& <2. \& <2.0 \& <2.0 \& <2.0 \& <2. \& <2.0 \& 5.8 \& <0.5 \& <2.0 \& <2. \& <20 \& <2.0

\hline chnsene \& 0.5 \& 871 \& 919 \& 1.140 \& 1.540 \& \& <0.5 \& 80.5 \& <0.5 \& 80.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Oibenzza(a,) mantracene \& 0.5 \& 1.20 \& 1.14 \& 9.18 \& 3.83 \& \& 80.5 \& 60.5 \& 80.5 \& 80.5 \& <0.5 \& 80.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& 80.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5

\hline Fluorantene \& 0.5 \& 2.400 \& 2,270 \& 10.000 \& 7.820 \& \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 8.5 \& <0.5 \& 80.5 \& <0.5 \& 80.5 \& <0.5 \& 80.5 \& <0.5 \& 60.5 \& <0.5

\hline Fluorene \& 0.5 \& 2.380 \& 2.250 \& 10.000 \& 7.450 \& 54.7 \& 80.5 \& 60.5 \& 8.5 \& 80.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& 8.5 \& <0.5 \& <0.5 \& <0.5

\hline Hexachloroberzene \& 0.05 \& 0.243 \& 0.220 \& 0.582 \& 0.713 \& \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& 80.05 \& <0.05 \& <0.05 \& 80.05 \& <0.05 \& 80.05 \& <0.05 \& 80.05

\hline Indeno(1.2.3.copevere \& 0.5 \& 12.0 \& 11.4 \& 91.8 \& 38.3 \& \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 60.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Nophtraene \& 0.5 \& 182 \& 85.6 \& 453 \& 914 \& 125 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 60.5 \& 60.5 \& <0.5 \& <0.5

\hline Phenenatreene \& 0.5 \& 10.000 \& 10.000 \& 10.000 \& 10.000 \& 28.0 \& <0.5 \& <0.5 \& <0.5 \& 60.5 \& <0.5 \& <0.5 \& <0.5 \& ${ }_{6} 0.5$ \& <0.5 \& <0.5 \& 60.5 \& 60.5 \& 60.5 \& <0.5 \& 60.5

\hline Phenol \& 0.5 \& 10.000 \& 10.000 \& 10.000 \& 10.000 \& 7, 280 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5

\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}}

\hline \&

\hline Assenic \& 0.5 \& 22.1 \& ${ }_{21,8}$ \& 196 \& 73.5 \& \& 0.7 \& 0.9 \& 14.0 \& <0.5 \& 7.0 \& 13.4 \& 7.0 \& 9.1 \& \& 19.7 \& 18.9 \& 9.3 \& 15.4 \& \& 3.0

\hline Batum \& 0.05 \& 10.000 \& 10,000 \& 10,000 \& 10.000 \& \& 125 \& 9.16 \& 132 \& 6.08 \& 223 \& 52. \& 36.3 \& 71.4 \& 42.6 \& 183 \& 68.0 \& 58.6 \& 34.1 \& 13.0 \& 9.71

\hline cadmum \& 0.02 \& 73.8 \& 72.8 \& 653 \& 245 \& \& <0.02 \& 0.06 \& 0.44 \& <0.02 \& 0.05 \& 0.04 \& 0.35 \& 0.04 \& 0.11 \& 0.67 \& 0.11 \& 0.03 \& 0.11 \& 0.03 \& 0.02

\hline chromium III \& 0.5 \& 10.000 \& 10,000 \& 10.000 \& 10,000 \& \& 1.7 \& ${ }^{3} 3$ \& 53.0 \& 1.7 \& 15.3 \& 28.0 \& 21.2 \& 26.9 \& 28.0 \& 76.0 \& 38.9 \& 34.8 \& 23.0 \& 5.4 \& 7.2

\hline chomium VI \& 0.5 \& 221 \& 218 \& 1.950 \& 735 \& \& 80.5 \& 80.5 \& <0.5 \& 80.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 60.5 \& <0.5 \& 80.5 \& <0.5 \& 80.5

\hline \& 0.5 \& (1.880 \& 1,460
R,90 \& 10.000 \& 4.900 \& \& 0.6 \& 0.9 \& ${ }^{9} .6$ \& ${ }^{0.5}$ \& 4.1 \& 5.4 \& ${ }^{6.6}$ \& 8.6 \& ${ }^{9.8}$ \& 12.9 \& 9.5 \& 5.7 \& 9.5 \& 1.8 \& 1.5

\hline Copear \& ${ }_{0}^{0.05}$ \& 2,950 \& ${ }_{2}^{2,95}$ \& 10.000 \& 9,790 \& \& 1.93 \& 7.96 \& 108 \& 220 \& 14.4 \& 23.9 \& 11.2 \& 24.1 \& 14.6 \& 142 \& 22.1 \& 15.0 \& 11.6 \& 5.99 \& 4.37

\hline Manganese \& 0.5 \& 10.000 \& 10,000 \& ${ }^{12000}$ \& 10,000 \& \& ${ }_{2} 22.5$ \& | 5.94 |
| :--- |
| 22.3 | \& ${ }_{311}^{61.3}$ \& 4.49

7.9 \& ${ }_{79.1}^{222}$ \& 43.2
122 \& 38.0
156 \& ${ }^{3221}$ \& 328
178 \& 86.1
340 \& 104
100 \& 47.8
118 \& 398.4
386 \& 9.99
56.9 \& 8.54
61.9

\hline Mercury \& 0.02 \& 11.0 \& 6.52 \& 38.4 \& 45.6 \& \& <0.02 \& <0.02 \& 0.23 \& <0.02 \& 0.02 \& 0.04 \& 0.07 \& 0.04 \& 0.03 \& 0.25 \& 0.05 \& 0.10 \& 0.04 \& 0.02 \& <0.02

\hline Molvedenum \& 0.05 \& 369 \& 364 \& 3.260 \& 1.220 \& \& 0.10 \& 0.17 \& 215 \& 0.24 \& 0.92 \& 3.61 \& 1.48 \& 276 \& 269 \& 3.11 \& 3.34 \& 2.48 \& 1.18 \& 0.31 \& 0.35

\hline Nickel \& 0.05 \& 1.480 \& 1,460 \& 10.000 \& 4.900 \& \& 1.05 \& 274 \& 36.0 \& 0.90 \& 6.81 \& 12.5 \& 978 \& 13.4 \& 16.2 \& 43.8 \& 16.3 \& 13.9 \& 11.4 \& 3.11 \& 252

\hline Tin \& 0.05 \& 10,000 \& 10,000 \& 10.000 \& 10.000 \& \& 0.43 \& 0.88 \& 6.68 \& 0.28 \& 1.58 \& ${ }^{3} 4$ \& 2.51 \& 2.99 \& 2.30 \& 10.4 \& 4.73 \& 4.88 \& 283 \& 0.98 \& 0.84

\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}}

\hline \&

\hline Pioxis (1-TEO). \& 5.01 peg \& 0.001 \& 0.001 \& 0.005 \& 0.001 \& \& 6.55 \& 8.42 \& 5.51 \& 7.79 \& 5.96 \& 11.84 \& 10.82 \& 9.41 \& 7.87 \& 23.65 \& 11.48 \& 1241 \& 10.88 \& 6.26 \& 5.87

\hline \& 0.10 \& 0.236 \& 0.223 \& 0.748 \& 0.756 \& \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10

\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}}

\hline \&

\hline bela \& 0.05 \& \multicolumn{5}{|c|}{\multirow{3}{*}{4^{*}}} \& c0.05 \& co.05 \& ¢0.05 \& ¢0.05 \& ¢005 \& ¢0005 \& <0.05 \& <0.05 \& ${ }^{<0.05}$ \& ${ }^{0.005}$ \& ${ }_{60.05}$ \& ${ }_{<0} 0.05$ \& ${ }^{80.05}$ \& ${ }_{\text {coic }} \times 0.05$ \& ${ }_{\substack{<0.05 \\ \text { <.05 }}}$

\hline gamma.BHC \& 0.05 \& \& \& \& \& \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05

\hline delat BH H \& 0.05 \& \& \& \& \& \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& 8.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05

\hline P.P.DDE \& 0.05 \& \multicolumn{5}{|c|}{\multirow[t]{2}{*}{$2{ }^{\text {- }}$}} \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05

\hline \multicolumn{22}{|l|}{\multirow[b]{2}{*}{}}

\hline \&

\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{(1).0.05\%}}

\hline \&

\hline ${ }^{\text {char (\%) }}$ (\%) \& ${ }_{1 \%}^{1 \%}$ \& \multicolumn{5}{|c|}{\multirow[b]{2}{*}{Not Applicalie}} \& $\stackrel{2}{1}$ \& ${ }_{3}$ \& ${ }^{18}$ \& ${ }_{3}$ \& ${ }_{33}^{22}$ \& ${ }^{34}$ \& 26
30 \& ${ }_{44}^{13}$ \& 39
54 \& ${ }_{4}^{50}$ \& ${ }_{51}^{41}$ \& ${ }_{56}^{40}$ \& ${ }_{37}^{19}$ \& ${ }_{6}$ \& ${ }_{13}^{15}$

\hline Sand (\%) \& 1\% \& \& \& \& \& \& 87 \& ${ }^{87}$ \& 56 \& 71 \& ${ }_{6}$ \& ${ }^{33}$ \& ${ }^{38}$ \& ${ }^{30}$ \& 5 \& 1 \& 5 \& 4 \& 40 \& 80 \& 65

\hline \multicolumn{22}{|l|}{(1\%}

\hline Mostrue Content (\%) \& 0.1\% \& \& \& Not Applicable \& \& \& 9.7 \& 11.9 \& 33.1 \& 14.4 \& 22.0 \& 329 \& 14.7 \& 20.8 \& 25.7 \& 41.9 \& 30.7 \& 28.1 \& 34.5 \& 11.0 \& 16.1

\hline \multicolumn{22}{|l|}{- $1 \mathrm{pg} / \mathrm{s}=0.000001$ mgkg}

\hline
\end{tabular}

chemical	$\underset{\substack{\text { Reporing } \\ \text { Limit } \\ \text { (makg }}}{\text { mat }}$	Risk-Based Remediation Goas ((RBRGs) for Soil					A. 511			A.S12			Drillhole No			A.ST4			A.S15								
							Sampling Date and Depth (m)			Sampling Date and Depept (m)			Sampling Date and Depth (m)			Sampling Oate and Dopht (m)			Sampling Date and Depph (m)								
		Residiential	${ }_{\text {Residental }}^{\text {Ranal }}$	Industrial	Public Par	Limit ($\mathrm{C}_{\text {sat }}$)	10.0ec.09	10-Dec.-99	10.Dec.09	10.0ec.09	10.Jec.09	10.0ec.09	21-Doc.09	21-Dec.09	21-Doc.09	07.-Dec.09	07-Dec.09	07-Dec.09	09.0ec.09	09.pec.09	09.0ec.09						
Acempanhene	0.5	${ }^{3.350}$	${ }^{3.5050}$	10.0000	10.0000	${ }_{19.8}$	${ }_{60.5}^{20.5}$	${ }_{<0.5}^{20.5}$	${ }_{<0.5} 0.5$	${ }_{<0.5}^{20.5}$	${ }_{<0.5}^{20.5}$	${ }_{<0.5}$	${ }_{<0.5}$	${ }_{<0.5}^{0.5}$	${ }_{<0.5}$	${ }_{<0.5}$	${ }_{80.5}$	${ }_{<0.5}$	${ }_{0} 0.5$	${ }^{0.0 .5}$	${ }_{<0.5}$						
Antracene	0.5	10.000	10.000	10.000	2.56	2.56	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	60.5	<0.5	<0.5	60.5	<0.5	60.5	<0.5	<0.5	<0.5						
Benzo(e)antracene	0.5	12.0	11.4	91.8	38.3		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.5	60.5	<0.5	80.5	<0.5						
Benzo(a)yrene	0.5	1.20	1.14	9.18	3.83		<0.5	80.5	80.5	80.5	60.5	0.5	<0.5	60.5	80.5	80.5	8.5	60.5	<0.5	<0.5	<0.5						
Benzo(t)lumarantene	0.5	9.88	10.1	17.8	20.4		80.5	80.5	80.5	80.5	80.5	<0.5	80.5	80.5	<0.5	80.5	80.5	80.5	80.5	80.5	<0.5						
Benzo(g.t.j) Peeylene	0.5	1.800	1,710	10.000	5.740		<0.5	<0.5	<0.5	<0.5	80.5	<0.5	<0.5	<0.5	<0.5	<0,	80.5	<0.5	<0.5	<0,	<0.5						
Benzokflutuarathene	0.5	120	114	918	${ }_{3} 38$		80.5	80.5	80.5	80.5	<0.5	60.5	<0.5	80.5	<0.5	80.5	8.5	8.5	80.5	<0.5	80.5						
	2.0	30.0	28.0	91.8	94.2		<2.	<2.0	<2.0	<2.0	<2.0	<2.	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<20	<2.0	<2.0						
chnsene	0.5	871	919	1.140	1.540		80.5	<0.5	<0.5	80.5	<0.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5	80.5						
Dibenzo(a, i, mantra	0.5	1.20	1.14	9.18	3.83		<0.5	80.5	60.5	<0.5	<0.5	80.5	80.5	80.5	<0.5	80.5	80.5	80.5	<0.5	80.5	80.5						
Fuwaratlene	0.5	2.400	2,270	10,000	7.820		<0.5	80.5	80.5	80.5	<0.5	0.5	<0.5	60.5	80.	<0.5	<0.5	<0.5	80.5	60.5	<0.5						
Fworene	0.5	2,380	2.250	10,000	7.450	54.7	80.5	80.5	<0.5	80.5	0.5	80.5	80.5	0.5	80.5	0.5	<0.5	80.5	<0.5	<0.5	80.5						
Hexachlorobenzene	0.05	0.243	0.220	0.582	0.713		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
Indeno(1.2.3.0.c)pyrene	0.5	12.0	11.4	91.8	38.3		60.5	80.5	80.5	80.5	80.5	80.5	80.5	0.5	80.5	<0.5	<0.5	<0.5	80.5	0.5	<0.5						
Naphthalene	0.5	182	85.6	453	914	125	80.5	80.5	<0.5	80.5	80.5	80.5	<0.5	<0.5	<0.5	80.5	<0.5	<0.5	<0.5	80.5	<0.5						
Phenantreene	0.5	10.000	10,000	10,000	10.000	28.0	60.5	<0.5	80.5	80.5	80.5	<0.5	80.5	80.5	<0.5	80.5	0.5	80.5	60.5	80.5	<0.5						
Phenol	0.5	10,000	10.000	10.000	10.000	7,260	80.5	<0.5	<0.5	80.5	80.5	80.5	<0.5	80.5	<0.5	<0.5	<0.5	80.5	<0.5	<0.5	80.5						
Pyene	0.5	1.800	1,710	10.000	5.720		<0.5	60.5	0.5	<0.5	6.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5						
Meats																											
Antimony	0.05	29.5	29.1	261	97.9		1.01	0.31	0.26	0.32	0.43	0.64	0.38	0.38	0.36	0.13	0.48	0.75	0.26	1.81	0.47						
	0.5	${ }^{22.1}$	${ }^{21.8}$	196	73.5		9.9	8.3	5.5	8.7	6.3	13.0	16.2	9.3	8.1	1.3	14.7	18.5	7.4	7.0	20.0						
	0.05 0.02	10.000 738	${ }^{10,000}$	10,000	10.000		48.6	45.0	41.2	48.5	${ }^{33.1}$	${ }^{67.1}$	34.5	33.2	47.6	15.8	48.20	57.80	27.8	53.2	52.8						
Chromium III	0.5	10,000	10,000	10.000	- 10.000		2.15	20.1.	${ }_{22.9}$	${ }_{22.1}$	${ }_{10.4}^{0.09}$	${ }_{356}^{0.35}$	${ }^{20.06}$	17.0	${ }_{30.3}$	${ }_{0.0} 0.03$	${ }_{33,15}^{0.15}$	${ }_{36.8}$	${ }_{0}^{0.12}$	${ }_{23.9}$	3,169 7.9						
chromium V1	0.5	221	${ }^{218}$	1.980	735		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5						
Cobat	0.5	1.480	1,460	10.000	4.900		3.4	${ }_{6} .4$	2.6	4.1	4.0	7.8	2.6	4.7	8.8	1.1	11.6	9.9	4.3	5.3	14.3						
Copper	0.05	2,950	2,910	10,000	9.790		44.6	12.3	6.48	13.7	8.38	61.1	15.5	30.6	13.4	5.76	17.	23.3	6.76	15.9	17.3						
Lead	0.05	258	255	2230	857		18.5	26.4	13.2	25.9	21.0	47.1	30.9	27.8	45.6	9.03	43.9	56.5	18.9	26.5	43.6						
Manganese	0.5	10,000	10,000	10,000	10,000		141	161	106	111	108	113	134	131	178	33.9	427	142	175	214	231						
Mercury	0.02	11.0	6.52	38.4	45.6		0.03	0.07	0.07	0.04	0.03	0.05	0.07	0.07	0.03	<0.02	0.04	0.08	<0.02	0.04	0.05						
Notyberum	${ }_{0}^{0.05}$	369 1.480	${ }_{\substack{364 \\ 1.460}}$	3.260 10000	1.20 4.200		1.21	0.89	1.15 1.85	297	220	4.50	${ }^{1.88}$	${ }^{1.34}$	${ }^{2} 76$	0.31	275	4.78	1.03	1.43	1.89						
${ }^{\text {Nickel }}$	${ }^{0.05}$	1,4800	1,50 10000	10.000	4.900		${ }_{7} 7.48$	${ }^{110}$	786 24	9.900	9.97	182 184	5.75 298	${ }_{2} 28$	16,2 388	${ }^{1.89}$	19.1	18.8	5.47	${ }^{11.3}$	22.6 25						
${ }_{\text {zinc }}^{\text {zin }}$	0.05	10.000	10,000	10.0000	10.0000		4.60 101	${ }_{528}^{238}$	${ }_{68.4}^{2.4}$	${ }_{304}^{251}$	${ }_{3}^{1.74}$	${ }_{2}^{4.74}$	${ }_{36.4}^{2.98}$	${ }_{522}^{268}$	3.89 76.4	$\underset{\substack{0.58 \\ 55.0}}{ }$	${ }_{\substack{3.11 \\ 155}}$	${ }_{3}^{4.32}$	1.45 464	2.56 206	3.52 133						
Pioxins / PCEBs.																											
Dioxis (1TEQ) -	5.01 peg	0.001	0.001	0.005	0.001		7.49	10.03	6.97	10.86	22.97	93.14	7.34	7.64	12.53	16.75	11.87	13.22	6.70	8.12	10.96						
PCBs	0.10	0.236	0.223	0.748	0.756		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10						
Other inoranaic Compounds																											
Chlorinated Pesticicies																											
aphas:BC	0.05	$4^{* *}$					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
betarabic	0.05						<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	80.05	<0.05	<0.05	<0.05	<0.05	<0.05	60.05	60.05	<0.05						
gamma BHC	0.05						<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
della PH HC	0.05						<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
P.PDDE	0.05	2*					<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05						
P.PPOD	0.05						<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-0.05	<0.05	¢0.05	<0.05	<0.05	<0.05	<0.05						
Popodo									80.2	80.2	80.2	802	60.2					80.2	80.2	20.2							
(10.05\%																											
Sill (\%)	1\%	Not Applicale					26	45	${ }_{11}^{20}$	32	${ }_{35}$	28	24	${ }_{29} 9$	56	5	41	${ }_{38}$	5	17	29						
Sand (\%)	1\%						46	14	60	41	39	45	${ }^{37}$	${ }^{33}$	5	${ }^{84}$	${ }^{29}$	7	${ }^{84}$	60	${ }_{4}$						
(${ }^{\text {a }}$							14	4	1	6	3	6	8	14	0	8	0	0	8	10	3						
							12.9	18.7	323	${ }^{24.4}$	23.9	27.7	17.0	16.3	31.2	12.	35.5	35.6	21.8	19.6	36.4						

\begin{tabular}{|c|}
\hline \multirow{4}{*}{chemical} \& \multirow[b]{4}{*}{$$
\begin{aligned}
& \text { Reporting } \\
& \text { Limit } \\
& (\mathrm{mg} / \mathrm{kg}) \\
& \hline
\end{aligned}
$$} \& \multicolumn{5}{|c|}{\multirow[t]{2}{*}{Risk-Gased Remeediation Goals (R8RGs) for Soil}} \& \multicolumn{3}{|c|}{A.s16} \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{}} \& \multicolumn{3}{|c|}{Dinllale ${ }_{\text {Asi }}$} \& \multicolumn{3}{|c|}{A. 519} \& \multicolumn{3}{|c|}{A. 520}

\hline \& \& \& \& \& \& \& \multicolumn{3}{|c|}{Sampling Date and Depht (m)} \& Samping Date and Depth (m) \& \& \& \multicolumn{3}{|c|}{Sampling Date and Depth (m)} \& \multicolumn{3}{|c|}{Sampling Date and Depth (m)} \& \multicolumn{3}{|c|}{Samping Date and Dopth (m)}

\hline \& \& Resisidential \& $\underset{\text { Residential }}{\text { Rural }}$ \& Industrial \& Public Park \& \& 12.Dec.09 \& 14-Dec.09 \& 14.Dec-09 \& 19.0ec.09 \& 19-Doc.09 \& 19.0ec-09 \& 04-Dec.09 \& 04.Dec.09 \& 04.Dec.09 \& 01-1-0c-09 \& 01-Doc.09 \& 01-0ec.09 \& 10.0ec.09 \& 10.0ec-09 \& 11-Dec.09

\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}}

\hline \&

\hline Acenaphtryene \& 0.5 \& 2.340 \& ${ }_{1.510}$ \& 10.000 \& 10,000 \& 19.8 \& 60.5 \& <0.5 \& 0.5 \& 20.5 \& <0.5 \& <0.5 \& 8.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Antracene \& 0.5 \& 10.000 \& 10.000 \& 10.000 \& 2.56 \& 2.56 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& 80.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Benzo(a)antrac \& 0.5 \& 12. \& 11.4 \& 91.8 \& 38.3 \& \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Benzo(a)prene \& 0.5 \& 1.20 \& 1.14 \& 9.18 \& 3.83 \& \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& 80.5 \& 80.5 \& 80.5 \& 80.5 \& 80.5 \& 80.5 \& 0.5 \& 80.5 \& 80.5 \& 80.5 \& <0.5

\hline Benzo(t)fucorantene \& 0.5 \& 9.88 \& 10.1 \& 17.8 \& 20.4 \& \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Benrzag.i.jopentene \& 0.5 \& 1.800 \& 1,710 \& 10.000 \& 5.740 \& \& 80.5 \& 80.5 \& 0.5 \& 80.5 \& <0.5 \& <0.5 \& 80.5 \& <0.5 \& 8.5 \& 80.5 \& 80.5 \& 80.5 \& 80.5 \& 80.5 \& 80.5

\hline Benrof(f)luoranhene \& 0.5 \& 120 \& 114 \& 918 \& 383 \& \& 80.5 \& 80.5 \& 80.5 \& <0.5 \& <0.5 \& 60.5 \& 80.5 \& 80.5 \& <0.5 \& 80.5 \& 80.5 \& 80.5 \& 80.5 \& <0.5 \& 80.5

\hline \& 2.0 \& 30. \& 28.0 \& 91.8 \& 94. \& \& <2. \& <20 \& 7.4 \& <20 \& <2. \& <20 \& <20 \& <2.0 \& <20 \& <2. \& <2. \& <2.0 \& <20 \& 24 \& <2.0

\hline chnsene \& 0.5 \& 871 \& 919 \& 1.140 \& 1.540 \& \& 80.5 \& 80.5 \& 80.5 \& 80.5 \& 60.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Oibenzo(a,), antracene \& 0.5 \& 1.20 \& 1.14 \& 9.18 \& 3.83 \& \& 80.5 \& 8.5 \& <0.5 \& 8.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Flurantene \& 0.5 \& 2.400 \& 2,270 \& 10,000 \& 7.820 \& \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& 80.5 \& <0.5 \& 60.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Furoene \& 0.5 \& 2,380 \& 2.250 \& 10.000 \& 7.450 \& 54.7 \& <0.5 \& <0.5 \& 60.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 8.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& <0.5 \& 80.5 \& <0.5

\hline Hexachloroberzene \& 0.05 \& 0.243 \& 0.220 \& 0.582 \& 0.713 \& \& <0.05 \& <0.05 \& 60.05 \& <0.05 \& <0.05 \& <0.05 \& 60.05 \& ${ }^{2} .0 .05$ \& ${ }_{6} 0.05$ \& ${ }_{60.05}$ \& <0.05 \& ${ }_{60} 0.05$ \& ${ }_{60.05}$ \& <0.05 \& ${ }_{60.05}$

\hline Indeno(1.2.3.c.a)pyene \& 0.5 \& 12.0 \& 11.4 \& 91.8 \& 38.3 \& \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& ${ }^{2} 0.5$ \& 60.5 \& <0.5 \& <0.5 \& 60.5 \& 60.5 \& <0.5

\hline Naphthalene \& 0.5 \& 182 \& 85.6 \& 453 \& 914 \& 125 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Phenanatrene \& 0.5 \& 10.000 \& 10.000 \& 10,000 \& 10.000 \& 28.0 \& <0.5 \& 6.5 \& <0.5 \& <0.5 \& <0.5 \& co. \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& 8.5 \& 60.5 \& 80.5 \& <0.5

\hline Phenol \& 0.5 \& 10.000 \& 10.000 \& 10.000 \& 10.000 \& 7,260 \& 80.5 \& 80.5 \& <0.5 \& 80.5 \& <0.5 \& 80.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& 80.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline \multicolumn{20}{|l|}{\multirow[t]{2}{*}{}} \& \&

\hline \& \& 29.5 \& 29.1 \& 261 \& 97.9 \& \& 0.53 \& 0.66 \& 3.39 \& 0.19 \& 0.22 \& 0.54 \& 0.36 \& 0.52 \& 0.57 \& 0.07 \& 0.08 \& 0.09 \& 0.53 \& 126 \& 0.52

\hline Assenic \& 0.5 \& 22.1 \& 21.8 \& 196 \& 73.5 \& \& 18.4 \& 1.3 \& 8.4 \& 1.4 \& 8.3 \& 19.0 \& 8.7 \& 18.6 \& 14.2 \& 1.1 \& 20 \& 2.5 \& 13.9 \& \& 20.1

\hline Batum \& 0.05 \& 10,000 \& 10,000 \& 10,000 \& 10.000 \& \& 46.5 \& 72. \& ${ }_{366}$ \& 12.5 \& 28.8 \& 60.8 \& 429 \& 42.1 \& 52.3 \& 7.75 \& 6.69 \& ${ }_{9.26}$ \& 37.2 \& 49.9 \& 61.0

\hline Caadium \& 0.02 \& ${ }^{7} 3.8$ \& 72.8 \& 653 \& 245 \& \& 0.16 \& 0.25 \& 2.52 \& 0.04 \& 0.08 \& 0.12 \& 0.03 \& <0.02 \& 0.09 \& <020 \& <0.02 \& 0.02 \& 0.14 \& 0.25 \& 0.16

\hline chromium III \& 0.5 \& 10.000 \& 10,000 \& 10,000 \& 10,000 \& \& 32.3 \& 64.3 \& 64.7 \& 5.1 \& 17.7 \& 39.9 \& 20.5 \& 32.6 \& 30.2 \& 25 \& 2.9 \& 5.1 \& 24.9 \& 67.5 \& 39.7

\hline Chromium VI \& 0.5 \& 221 \& 278 \& 1.980 \& 735 \& \& <0.5 \& <0.5 \& 0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& 60.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5 \& <0.5

\hline Cobat \& 0.5 \& 1.880 \& 1,480 \& 10,000 \& 4.900 \& \& 10.7 \& 3.6 \& 15.5 \& 27 \& ${ }_{6} .3$ \& 14.6 \& 3.7 \& 3.7 \& 7.4 \& 0.5 \& 0.8 \& 1.3 \& 6.6 \& 13.9 \& 13.8

\hline Copper \& ${ }^{0.05}$ \& ${ }_{2}^{2,550}$ \& 2,970 \& ${ }^{10.000}$ \& 9,990 \& \& ${ }^{20.8}$ \& 47.6 \& 436 \& ${ }^{3.36}$ \& 10.9 \& 19.1 \& 11.40 \& 13.4 \& 17.4 \& 8.01 \& 3.48 \& 5.03 \& 15.9 \& 57. \& 19.0

\hline Lead \& 0.05 \& ${ }^{258}$ \& ${ }^{255}$ \& 2.230 \& 857 \& \& 48.3 \& 17.4 \& 90.0 \& 8.01 \& 25.4 \& 53.9 \& 28.1 \& ${ }^{35}$. \& 36.2 \& 5.45 \& 28.4 \& 6.82 \& 33.9 \& 67.3 \& 59.9

\hline Marganese \& 0.5 \& 10.000 \& 10,000 \& 10.000 \& 10,000 \& \& 458 \& 154 \& 474 \& 43.6 \& 186 \& 251 \& 94.7 \& 77.4 \& 154 \& 15.4 \& 19.7 \& 51.6 \& ${ }^{370}$ \& 494 \& 325

\hline Mercury \& 0.02 \& ${ }^{11.0}$ \& 6.52 \& 38.4 \& 45.6 \& \& 0.06 \& 0.05 \& 0.25 \& <0.02 \& 0.04 \& 0.04 \& 0.02 \& <0.02 \& 0.05 \& <0.02 \& <0.02 \& <0.02 \& 0.05 \& 0.08 \& 0.06

\hline Molsdenum \& ${ }^{0.05}$ \& 369 \& 364
1460 \& ${ }_{3}^{3.260}$ \& ${ }_{1}^{1,220}$ \& \& 1.4 \& ${ }_{2}^{1.04}$ \& ${ }^{3.31}$ \& ${ }^{0.32}$ \& 1.55 \& 1.73 \& 1.08 \& ${ }^{1.33}$ \& 3.29 \& 0.33 \& 0.36 \& 0.45 \& 1.16 \& 237 \& 1.69

\hline ${ }^{\text {Nickel }}$ \& ${ }_{0}^{0.05}$ \& 1.480 \& 1.450 \& ${ }^{10.000}$ \& 4.900 \& \& 18.6 \& 28.4 \& ${ }_{4}^{4.8}$ \& 281 \& 9.73 \& ${ }^{24}$ \& 8.21 \& 10.3 \& ${ }^{13.8}$ \& 0.83 \& 1.05 \& 2.17 \& 11.0 \& 18.8 \& 22.7

\hline ${ }_{\text {Inc }}^{\text {Tin }}$ \& \& ${ }^{10,000} 10.000$ \& 10,000
10,000 \& 10,000
10,000 \& 10.000
10.000 \& \& 3.59
478 \& 5.28
350 \& $\stackrel{4.3}{6.1}$ \& 0.40
9.3 \& $\stackrel{1.59}{59.4}$ \& 4.90
120 \& ${ }_{59.5}^{227}$ \& ${ }_{93,0}^{28.0}$ \& 3.99

29 \& 0.43
21.4 \& 0.31
33.0 \& 0.43
315 \& ${ }_{70.7}^{2.51}$ \& 6.79
278 \& ${ }_{151}^{4.39}$

\hline \multicolumn{22}{|l|}{Dioxis/ PCBs}

\hline Pidxins (1TEO). \& 5.01 pog 9 \& 0.001 \& 0.001 \& 0.005 \& 0.001 \& \& 24.91 \& 6.37 \& 19.19 \& 5.56 \& 7.48 \& 11.75 \& 8.29 \& 25.13 \& 9.76 \& 6.97 \& 6.42 \& 6.04 \& 8.02 \& 20.19 \& 13.43

\hline ${ }_{\text {PCBs }}^{\text {Pother Inorganic Compounds }}$ \& 0.10 \& 0.236 \& 0.223 \& 0.748 \& 0.756 \& \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& 60.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10 \& <0.10

\hline \multicolumn{22}{|l|}{\multirow[t]{3}{*}{}}

\hline \&

\hline \& \& \multicolumn{5}{|c|}{\multirow{3}{*}{$4{ }^{\text {- }}$}} \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05

\hline \& | 0.05 |
| :--- |
| 0.05 | \& \& \& \& \& \& ${ }_{60.05}$ \& ${ }^{20.05}$ \& ${ }^{<0.05}$ \& ${ }^{<0.05}$ \& ${ }_{60.05}$ \& -0.05 \& ${ }_{6} 0.05$ \& <0.05 \& ${ }^{20.05}$ \& ${ }^{0.005}$ \& ${ }^{0.005}$ \& ${ }^{0.005}$ \& ${ }^{20.05}$ \& ${ }^{20.05}$ \& ${ }^{0.005}$

\hline ${ }_{\text {a }}^{\text {gamma:-BHC }}$ \& 0.05
0.05 \& \& \& \& \& \& \& <0.05 \& ${ }_{<0.05}^{<0.05}$ \& ${ }_{<0.05}$ \& ${ }_{<0.05}^{<0.05}$ \& <0.05 \& ${ }_{\substack{<0.05 \\<0.05}}$ \& ${ }_{<0.05}^{<0.05}$ \& ${ }_{<0.05}^{<0.05}$ \& -0.05 \& ${ }_{<0.05}^{<0.05}$ \& ${ }_{<0.05}$ \& ${ }_{\substack{<0.05 \\<0.05}}$ \& ${ }_{\substack{\text { <.0.05 } \\<0.05}}$ \& <0.05

\hline \& 0.05 \& \multicolumn{5}{|c|}{\multirow[b]{2}{*}{$2{ }^{\text {- }}$}} \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& ¢0.05 \& <0.05 \& <0.05 \& ${ }_{60.05}$ \& <0.05 \& <0.05

\hline PRPDOD \& ${ }_{0}^{0.05}$ \& \& \& \& \& \& <0.05 \& ¢0.05 \& -0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05 \& <0.05

\hline \multicolumn{22}{|l|}{}

\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}}

\hline \&

\hline Sill (\%) \& 1\% \& \multicolumn{5}{|c|}{\multirow{3}{*}{Not Applicale}} \& ${ }^{35}$ \& 16 \& ${ }^{43}$ \& 4 \& ${ }_{34}^{34}$ \& 50 \& 31 \& ${ }_{32}$ \& ${ }^{34}$ \& 1 \& 1 \& 6 \& ${ }^{26}$ \& 40 \& 45

\hline Sand (\%) \& 1\% \& \& \& \& \& \& ${ }_{34}^{28}$ \& ${ }_{62}^{19}$ \& 52 \& 5
6 \& ${ }_{32}^{33}$ \& ${ }_{4}^{46}$ \& ${ }_{26}^{41}$ \& ${ }_{30}^{35}$ \& ${ }_{18}^{43}$ \& ${ }_{82}^{4}$ \& ${ }_{82}^{2}$ \& $\stackrel{9}{75}$ \& ${ }_{58}^{58}$ \& 49 \& ${ }^{48}$

\hline \multicolumn{2}{|l|}{} \& \& \& \& \& \& 3 \& 3 \& 0 \& 29 \& 1 \& 0 \& 2 \& 3 \& 5 \& 13 \& 15 \& 10 \& 0 \& 0 \&

\hline Mostre content (\%) \& 0.1\% \& \& \& Not Applicable \& \& \& 41.3 \& 18.0 \& ${ }^{34} 0$ \& 17.5 \& 21.3 \& 39.5 \& 13.1 \& 19.2 \& 21.0 \& 5.1 \& 8.1 \& 14.2 \& 30.2 \& 40.4 \& 33.4

\hline
\end{tabular}

$1019=0.00001$ makg

r. Netheran

$100_{1}=0.00001$ makg

-

[^2]

Appendix E
Analytical Results of Soil Samples of 15
Additional Boreholes

Chemical		Risk-Eased Remediation Goals (RBRGs) for Soil					A.SO1a			A.5016			Ditillele No.			A.SO3a			${ }^{\text {A So3b }}$				
							$9 \mathrm{tate} \mathrm{and} \mathrm{Depth} \mathrm{(m)}$			sampling Date and Depph			ampling Date and Depth			Sampling Date eand Deptl (m)			Sampling Date and Depth (m)				
		${ }_{\text {Residental }}^{\text {Uran }}$	${ }_{\text {Residental }}^{\text {Rutal }}$	Industrial	Public Park	Soil Saturation	30-Jan-10	$30 . \mathrm{Jan}-10$	${ }^{30}$-ana-10	30, Jan-10	${ }^{\text {30,Jan-10 }}$	30-Jan-10	${ }^{30 . J a n-10}$	${ }^{30} 0 . \mathrm{an}$ an-10	01-Feb-10	${ }^{29}$.an.10	29.Jan-10	${ }^{29}$.					
Assenic	0.5	22.1	21.8	196	73.5		${ }_{4.8}$	${ }_{6.8}$	${ }_{6.2}$	9.5	10.5	${ }_{6.7}$	10.5	18.4	13.6	2.9	16.1	16.7	18.7	17.0	10.4		
Barium	0.05	10,000	10,00	10.000	10,000		16.4	63.	37.4	37.4	24.	30.6	65.2	35.5	37.0	30.0	262	59.1	75.3	75.8	49.6		
Cadnium	0.02	${ }^{2} 3.8$	72.8	653	245		0.04	0.05	0.07	0.02	0.02	0.12	0.03	0.03	0.06	0.10	1.10	0.09	0.30	0.18	0.04		
chromium III	0.5	10.000	10,00	10,000	10.000		7.9	21.6	21.2	23.4	27.0	21.2	28.4	40.7	36.8	7.7	109	39.4	45.2	39.1	28.1		
ctromium VI	0.5	221	278	1.960	735		80.5	<0.5	0.5	0.5	<0.5	0.5	80.	0.5	0.5	80.	0.5	<0.5	80.5	0.5	<0.5		
Cooat	0.5	1.880	1.450	10.000	4,900		1.7	4.6	3.4	1.9	1.3	2.2	1.7	2.1	4.8	6.0	12.	11.4	10.8	7.8	5.6		
Copper	0.05	2.950	2,910	10.000	9.790		6.32	48.2	30.	37.9	13.2	14.2	9.13	14.0	14.1	12.9	184	19.3	32.5	42.1	13.4		
Lead	0.05	258	255	2.230	857		13.2	18.7	21.2	19.0	24.2	21.3	24.6	30.8	32.5	13.8	81.2	47.6	86.9	65.4	46.8		
Manganse	0.5	10.000	10,000	10.000	10,000		62.3	154	104	46.6	29.6	29.9	47.2	67.2	274	74.7	352	765	461	168	108		
Merary	0.02	11.0	0.52	38.4	45.6		0.02	<0.02	0.04	0.05	0.04	0.09	0.05	0.06	0.04	0.03	0.57	0.04	0.11	0.11	0.06		
Molyderum	0.05	369	364	3,260	1.220		0.92	1.72	1.87	1.82	1.92	1.18	1.46	235	1.63	0.54	5.16	1.61	243	3.19	3.10		
Nickel	${ }_{0}^{0.05}$	+1.880	$\xrightarrow{1,450}$	$\xrightarrow{10.000}$	4.9000		3.50	7.7	6.91	4.43	5.54	6.24	5.79	6.48	11.3	9.30	80.9	21.2	20.2	20.4	12.8		
${ }_{\text {In }}^{\text {Ince }}$	$\stackrel{0.05}{1}$	10.000 10.000	10,000 10,000	10.000 10.000	10.000 10.000		1.58 428	${ }_{76.5}^{274}$	${ }_{89.5}^{2.55}$	$\stackrel{2.71}{197}$	239 298	$\underset{688}{2.42}$	225 170	${ }_{4}^{278}$	3.12 467	1.02 151	$\begin{array}{r}159 \\ 1480 \\ \hline 1\end{array}$	4.70 330	5.00 245	${ }_{2}^{4.47}$	3.30 728		
Mositure Conter																							

chemical	$\begin{gathered} \text { Reporing } \\ \substack{\text { Liming } \\ \text { (makg }} \end{gathered}$	Risk-Based Remediation Goals (r8RGs) for Soil					A.sosc			A.s20a			Drillhole No A-S20			A.520c			${ }^{\text {A }}$ 24a			
							Sampling Date and Dopht (m)			Sampling Date and Depht (m)			Sampling Date and Depth (m)			Sampling Date and Depph (m)			Sampling Date and Depth (m)			
		Residiantial	${ }_{\text {Residential }}^{\text {Ream }}$	Industrial	Public Park	Soil sauration	29, Jan-10	29, Jan-10	${ }^{29}$ Jan-10	${ }^{28}$-ana-10	20, Jan-10	$28 . \mathrm{Jan} 10$	27JJan-10	${ }^{27}$ Janar-10	27Jan-10	${ }^{26}$-Jan-10	26 Jan-10	${ }^{26}$ Jan-10	27 J an-10	${ }^{27}$ Jan-10	${ }^{27}$ Jan-10	
Antimony																						
Assenic	0.5	${ }_{22,1}$	${ }_{21,8}$	196	73.5		${ }_{1.3}$	${ }_{8,3}$	17.7	${ }_{18,3}$	20.4	17.1	16.7	4.3	11.5	20.4	18.2	1.125	10.0	15.7	18.9	
Barum	0.05	10.000	10,000	10.000	10.000		${ }^{22,7}$	142	214	327	83.6	57.9	44.5	10.4	51.6	76.7	68.9	99.6	${ }_{22} 2$	${ }_{26.7}$	${ }_{57.5}$	
Casmium	0.02	${ }^{2} 3.8$	${ }^{72.8}$	653	245		0.03	0.63	1.33	0.16	0.34	0.17	0.17	0.03	0.19	0.24	0.21	1.05	0.08	0.14		
Chromium III	0.5	10.000	10,00	10.000	10.000		11.0	53.1	99.3	22.6	60.7	42.1	29.4	6.7	30.0	48.0	423	47.0	13.6	17.7	${ }_{35} 3$	
Chromium V1	0.5	221	278	1.980			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	20.5	<0.5	20.5	<0.5	60.5	<0.5	
cooat	0.5	1.480	1,460	10.000	4,900		27	7.0	15.2	6.9	15.7	19.9	8.4	2.3	7.1	12.7	11.5	12.7	4.4	5.8	10.9	
Copper	0.05	2.950	2,910	10.000	9,790		5.90	101	209	16.6	44.6	183	18.1	3.63	30.7	31.4	249	69.4	6.78	9.67	476	
Lead	0.05	258	255	2.230	${ }_{85} 8$		19.6	54.0	90.6	${ }_{38,7}$	82.5	51.6	40.3	${ }_{8.51}$	40.1	60.5	56.2	61.5	${ }^{22.7}$	27.7	49.0	
Manganse	0.5	10.000	10,000	10.000	10.000		67.1	210	${ }_{34}^{34}$	410	${ }_{826}$	${ }^{321}$	${ }^{412}$	108	330	555	536	342.0	174	${ }^{223}$	270	
Meral	0.02	11.0	6.52	38.4	45.6		<0.02	${ }_{0} .34$	0.56	0.05	0.10	0.04	0.06	<0.02	0.07	0.07	0.08	0.12	0.02	0.04	0.06	
Moybeerum	0.05	${ }_{369}$	364	3.280	1.220		0.55	279	9.71	1.29	${ }^{2,13}$	5.43	1.41	0.36	${ }_{1}^{1.32}$	1.62	1.41	2.74	1.25	208	243	
Nickel	0.05	1.480	1,480	10.000	4.900		6.84	4.3	88.4	10.4	328	27.7	15.0	2.75	15.2	24.9	21.5	22.8	${ }_{6.83}$	8.54	19.5	
Tin	0.05	10.000	10,000	10.000	10.000		1.75	8.15	18.8	3.01	6.51	3.88	3.16	0.63	3.24	${ }_{5.33}$	${ }_{4.58}$	10.6	1.33 1.8	${ }_{1}{ }^{1.70}$	4.02	
		10.000	10,000	10.000	10.000		${ }^{37}$	454	${ }_{89}$	86.6	213	139	110	47.2	140	158	161	296	99.7	${ }^{2} 28$	142	
Mositre Content	0.1\%			Not Aoplicabl			137	320	489	320	52	3	4	24	35		132					

chemical		Risk-Based Remeediation Goals (R8RGs) for Soil					$A^{\text {a } 246}$			A.S24c			${ }_{\text {a }}$ Ascoila			A.SG10b			A.SG10c		
							Samping Date and Depph (m)			Samping Date and Depth (m)			Samping Date and Depth (m)			Sampling Date and Dopth (m)			Sampling Date and Deppt (m)		
		Residential	${ }_{\text {Residental }}^{\text {Real }}$	Industrial	Public Park	Soll Satration	${ }^{27}$ Jan-10	${ }^{27}$ Jan-10	${ }^{27}$ Jan-10	${ }^{26}$-Jan-10	26 -an-10	26, Jan-10	${ }^{29}$, Jan-10	${ }^{29} \mathrm{~J}$ an-10	${ }^{29} \mathrm{Jan}$-10	${ }^{28}$ - Jan-10	${ }^{28} \mathrm{~J}^{\text {ana }}$-10	${ }^{28} \mathrm{~J}$ an-10	${ }^{29}$ Jan-10	${ }^{29}$ - an a -10	${ }^{29}$ Jan-10
Antimony	0.05	29.5	29.1	261	97.9		0.63	0.32	0.44	0.50	0.44	0.40	0.45	0.56	0.35	0.50	0.56	0.10	0.16	0.26	0.86
Assenic	0.5	22.1	21.8	196	73.5		18.1	18.0	18.3	18.2	17.1	14.7	14.4	10.7	9.6	17.8	17.6	5.3	3.1	5.3	13.8
Batium	0.05	$\begin{array}{r}10.000 \\ \hline 738\end{array}$	10,000	10,000	10.000		54.7	37.4	${ }^{61,3}$	36.7	4.14	59.6	54.0	50.4	37.4	${ }_{56.3}$	55.8	${ }^{13.8}$	18.8	33.9	77.0
Chromium III	0.5	10.000	10,000	10.000	10.000		33.1	23.5	${ }_{32} 8$	39.7	28.5	38.2	37.3	${ }_{34}$.	${ }_{228}$	${ }_{41,4}$	3.0	${ }^{2} .7 .7$	${ }_{0.7} 0.7$	15.6	${ }_{40,2}$
chromium VI	0.5	221	278	1.950	735		<0.5	<0.5	<0.5	<0.5	80.5	<0.5	60.5	<0.5	60.5	<0.5	60.5	<0.5	<0.5	60.5	<0.5
Cobat	0.5	1.880	1,480	10,000	4.900		10.4	7.4	10.3	8.4	10.1	11.9	10.5	10.0	6.8	123	15.3	28	3.2	4.5	9.4
copper	0.05	2.950	2,910	10,000	9,790		20.7	11.0	15.4	18.3	13.3	15.8	20.5	18.5	11.0	18.8	21.0	3.57	5.87	11.5	39.5
	0.05	258	255	2.290	857		47.0	32.8	49.1	53.1	37.7	45.1	51.8	47.2	33.1	49.3	50.	12.1	12.5	18.1	69.5
Marganese	0.5	10.000	10,000	10.000	10.000		309	191	298	283	194	424	380	362	546	${ }_{425}$	272	47.9	105	146	290
Mercury	0.02	11.0	6.52	38.4	45.6		0.04	0.03	0.05	0.05	0.04	0.04	0.05	0.05	0.04	0.04	0.05	<0.02	<0.02	0.24	0.10
Molvodenum	0.05	369	364	3.280	1.220		2.65	1.54	1.74	208	1.98	1.47	2.16	1.15	1.07	249	5.34	0.43	0.58	0.92	221
Nckel	0.05	1.480	1,480	10.000	4.900		19.0	12.1	17.5	19.7	15.4	20.4	18.3	18.6	11.9	22.4	25.5	4.05	4.62	6.49	20.7
Tin	0.05	10.000	10,000	10.000	10.000		3.86	${ }^{288}$	3.72	3.98	3.10	3.87	3.76	423	277	${ }^{3.53}$	3.86	0.79	0.94	1.55	5.24
	1	10.000	10,000	10.000	10.000		168	66.2	${ }^{83}$.	755	${ }^{138}$	129	${ }^{123}$	97.	67.3	355	207	22.	35.2	67.	164
Mositure Content	0.1\%			Not Applicabi			33.5	28.8	36.6	38.2	32.6	${ }^{37.3}$	40.9	39.0	33.2	41.0	36.0	20.0	11.5	15.6	${ }^{34.1}$

Appendix F

Analytical Results of
Groundwater Samples
Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation Land Contamination Assessment for Area A
Groundwater Samples: Boreholes A-SG01 to A-SG10

Chemical	Reporting Limit		Risk-Based Remediation Goals (RBRGs) for Groundwater				Boreholes No. / Sampling Date																											
			A-S02	A-S07	A-S09	A-S14	AS16	A-S24	A-SG01	A-SG03	A-SG06	A-SG08																						
			UrbanResidential$(\mathrm{mg} / \mathrm{L})$	RuralResidential$(\mathrm{mg} / \mathrm{L})$	Industrial (mg/L)	Solubility Limit (mg/L)	19-Dec-09	12-Dec-09	23-Dec-09	09-Dec-09	15-Dec-09	02-Dec-09	12-Dec-09	23-Dec-09	21-Dec-09																			
	($\mu \mathrm{g}$ /)	(mgl)														08-Dec-09																		
pH							6.32	6.25	6.34	6.79	6.73	7.18	6.91	66.7	6.82	6.78																		
Acenaphthene	1.0	0.001	10.000	7,090	10,000	4.24	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
Acenaphthylene	1.0	0.001	1.410	542	10,000	3.93	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
Anthracene	1.0	0.001	10,000	10,000	10,000	0.0434	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
Benzo(b)fluoranthene	1.0	0.001	0.539	0.203	7.53	0.0015	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
Chrysene	1.0	0.001	58.1	21.9	812	0.0016	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0																		
Fluoranthene	1.0	0.001	10,000	10,000	10,000	0.206	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
Fluorene	1.0	0.001	10,000	10,000	10,000	1.98	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
Hexachlorobenzene	0.5	0.001	0.0589	0.0234	0.695	6.20	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5																		
Naphthalene	1.0	0.001	61.7	23.7	862	31.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
Phenanthrene	1.0	0.001	10,000	10,000	10,000	1.00	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
Pyrene	1.0	0.001	10,000	10,000	10,000	0.135	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0																		
PCBs	1	0.001	0.433	0.171	5.11	0.031	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1																		
alpha-BHC		0.0005	The "Reporting Limit" is adopted as prelimnary screening goals.				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005																		
beta-BHC \& gamma-BHC		0.0010					<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010																		
delta-BHC		0.0005					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005																		
P. ${ }^{\text {P }}$ - DDE $^{\text {d }}$		0.0005					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005																		
		0.0005					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005																		
TOC		1		Not Ap			<1	20	17	7	29	<1	7	15	<1	3																		

Appendix G
Analytical Results of Elutriate Samples
Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation Land Contamination Assessment for Area A
Elutriate Samples: Boreholes A-S02, A-S07, A-S09, A-S14 \& A-S16

Chemical	Reporting Limit		Boreholes No. / Sampling Date																
			A-S02			A-S07			A-S09			A-S14			A-S16				
			18-Dec-09			11-Dec-09			22-Dec-09			08-Dec-09			14-Dec-09				
	(Hg /L)	(mglL)	Blank Test	$\begin{gathered} \hline \text { Elutriate } \\ \text { Test } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { Elutriate } \\ \text { Potential (\%) } \\ \hline \end{array}$	Blank Test	$\begin{gathered} \text { Elutriate } \\ \text { Test } \\ \hline \end{gathered}$	$\begin{gathered} \text { Elutriate } \\ \text { Potential (\%) } \end{gathered}$	Blank Test	$\begin{gathered} \text { Elutriate } \\ \text { Test } \end{gathered}$	$\begin{gathered} \hline \text { Elutriate } \\ \text { Potential (\%) } \\ \hline \end{gathered}$	Blank Test	$\begin{gathered} \text { Elutriate } \\ \text { Test } \end{gathered}$	$\begin{gathered} \text { Elutriate } \\ \text { Potential (\%) } \end{gathered}$	Blank Test	$\begin{gathered} \hline \text { Elutriate } \\ \text { Test } \\ \hline \end{gathered}$	Elutriate Potential (\%)		
In-situ measurement																			
pH			6.53	-	-	6.02	-	-	6.70	-	-	6.25	-	-	6.84	-	-		
Temp (${ }^{\circ} \mathrm{C}$)			21.4	-	-	23.6	-	-	21.6	-	-	19.8	-	-	23.9	-	--		
svocs - 2																			
Acenaphthene	1.0	0.001	<1.0	<1.0	Nil														
Acenaphthylene	1.0	0.001	<1.0	<1.0	Nil														
Anthracene	1.0	0.001	<1.0	<1.0	Nil														
Benzo(b)fluoranthene	1.0	0.001	<1.0	<1.0	Nil														
Chrysene	1.0	0.001	<1.0	<1.0	Nil														
Fluoranthene	1.0	0.001	<1.0	<1.0	Nil														
Fluorene	1.0	0.001	<1.0	<1.0	Nil	<1.0	<1.0	Nil											
Hexachlorobenzene	0.5	0.0005	<0.5	<0.5	Nil														
Naphthalene	1.0	0.001	<1.0	<1.0	Nil														
Phenanthrene	1.0	0.001	<1.0	<1.0	Nil														
Pyrene	1.0	0.001	<1.0	<1.0	Nil	<1.0	<1.0	Nil											
Mercury		0.0005	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil		
PCBs																			
alpha-BHC		0.0005	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil		
beta-BHC \& gamma-BHC		0.0010	<0.0010	<0.0010	Nil	<0.0010	<0.0010	Nil											
delta-BHC		0.0005	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil		
p, ${ }^{\prime}$ '-DDE		0.0005	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nii		
P. P^{\prime} 'DDD		0.0005	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil		
p, p'-DDT		0.002	<0.0020	<0.0020	Nil	<0.0020	<0.0020	Nil	<0.0020	<0.0020	Nil	<0.0020	<0.0020	Nil	<0.0020	<0.0020	Nil		

Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation
Eland Contamination Assessment for Area A
Elutriate Samples: Boreholes A-S24, A-SG01, A-SG03, A-SG06 \& A-SG08

Chemical	Reporting Limit		Boreholes No. / Sampling Date																
			A-S24			A-SG01			A-SG03			A-SG06			A-S608				
			01-Dec-09			11-Dec-09			22-Dec-09			21-Dec-09			07-Dec-09				
	(Hg / L)	(mgh)	Blank Test	$\begin{gathered} \text { Elutriate } \\ \text { Test } \\ \hline \end{gathered}$	$\begin{gathered} \text { Elutriate } \\ \text { Potential (\%) } \\ \hline \end{gathered}$	Blank Test	$\begin{gathered} \text { Elutriate } \\ \text { Test } \\ \hline \end{gathered}$	$\begin{gathered} \text { Elutriate } \\ \text { Potential (\%) } \\ \hline \end{gathered}$	Blank Test	$\begin{gathered} \text { Elutriate } \\ \text { Test } \end{gathered}$	$\begin{gathered} \text { Elutriate } \\ \text { Potential (\%) } \\ \hline \end{gathered}$	Blank Test	$\begin{gathered} \text { Elutriate } \\ \text { Test } \\ \hline \end{gathered}$	Elutriate Potential (\%)	Blank Test	$\begin{gathered} \text { Elutriate } \\ \text { Test } \end{gathered}$	Elutriate Potential (\%)		
In-situ measurement																			
pH			6.96	-	-	6.79	-	-	5.92	-	-	6.75	-	-	6.61	-	-		
Temp (${ }^{\circ} \mathrm{C}$)			22.9	-	-	24.0	--	-	21.7	-	--	20.4	-	-	22.7	-	-		
SVOCs																			
Acenaphthene	1.0	0.001	<1.0	<1.0	Nil														
Acenaphthylene	1.0	0.001	<1.0	<1.0	Nil														
Anthracene	1.0	0.001	<1.0	<1.0	Nil														
Benzo(b)fluoranthene	1.0	0.001	<1.0	<1.0	Nil														
Chrysene	1.0	0.001	<1.0	<1.0	Nil														
Fluoranthene	1.0	0.001	<1.0	<1.0	Nil														
Fluorene	1.0	0.001	<1.0	<1.0	Nil														
Hexachlorobenzene	0.5	0.001	<0.5	<0.5	Nil														
Naphthalene	1.0	0.001	<1.0	<1.0	Nii	<1.0	<1.0	Nil											
Phenanthrene	1.0	0.001	<1.0	<1.0	Nil														
Pyrene	1.0	0.001	<1.0	<1.0	Nil	<1.0	<1.0	Nil	<1.0	<1.0	Nil	<1.0	<1.0	Nil	<1.0	<1.0	Nil		
Metals																			
PCBs	1	0.001	<1	<1	Nil	<1	<1	Nil											
Chlorinated Pesticides																			
alpha-BHC		0.0005	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil		
beta-BHC \& gamma-BHC		0.0010	<0.0010	<0.0010	Nil	<0.0010	<0.0010	Nil	<0.0010	<0.0010	Nil	<0.0010	<0.0010	Nil	<0.0010	<0.0010	Nil		
della-BHC		0.0005	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil		
p.p'-DDE		0.0005	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil	<0.0005	<0.0005	Nil		
P. ${ }^{\text {P }}$ '-DDD		0.0005	<0.0005	<0.0005	Nii	<0.0005	<0.0005	Nil											
p.p.-DDT		0.0020	<0.0020	<0.0020	Nil	<0.0020	<0.0020	Nil	<0.0020	<0.0020	Nil	<0.0020	<0.0020	Nil	<0.0020	<0.0020	Nil		

Appendix H
Laboratory Testing
Reports of Soil
Samples, Groundwter
Samples and Elutriate
Samples

Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation Land Contamination Assessment for Area A Laboratory Testing Report No.

Report No.	Lab Works Order No.
1	HK0925295
2	HK0925301
3	HK0925302
4	HK0925303
5	HK0926115
6	HK0926309
7	HK0926317
8	HK0926336
9	HK0926383
10	HK0926386
11	HK0926533
12	HK0926548
13	HK0926564
14	HK0926566
15	HK0926568
16	HK0926571
17	HK0926669
18	HK0926670
19	HK0926740
20	HK0926774
21	HK0926802
22	HK0926826
23	HK0927313
24	HK0927322
25	HK0927342
26	HK0927346
27	HK0927362
28	HK0927374
29	HK0927379
30	HK0927388
31	HK0927390
32	HK0927397
33	HK0927405
34	HK0927407

Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation
Land Contamination Assessment for Area A L Lborataor Testing Report No .
Soll Sanples: BorecholesA.So1 to A. 15

Chemical	Drillhole No.														
	A. 501			A. ${ }^{\text {O2 }}$			A. 503			A. 504			A.S05		
	Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	14-Dec-09	14-Dec-09	15-Dec-09	18.-Dec-09	18-Dec-09	18-Dec-09	22-Dec-09	22-Dec-09	23-Dec-09	15-Dec-09	15-Dec-09	15-Dec-09	17-Dec-09	17-Dec-09	17-Dec-09
	1.50 - 1.95	$3.00-3.95$	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	$3.00-3.95$	4.50-4.95
Metals	Report No. 20 (HK0926774)		Report No. 22 (HK0926806)	Report No. 24 (HK0927322)			Report No.32 (HK0927397)		Report No. 34 (HK0927407)	Report No. 22 (HK0926826)			Report No. 23 (HK0927313)		
Cyanide, tree															
Total Organic Carbon															
Mositure Content															
Sulphite ($\mathrm{SO}_{2}{ }^{2}$)															
Sulphate (SO_{2})															
Sulphide (S^{3})															
Avs															
svocs															
pCBs															
Chlorinated Pesticlices															
Sulphur (Total S)															
Dioxins															
Grain Size															

Chemical	Drillthole No.														
	A. 506				A. 507			A. ${ }^{\text {O }} 8$			A. 509		A.S10		
	Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	23-Dec-09	23-Dec-09	23-Dec-09	11-Dec-09	11-Dec-09	11-Dec-09	19-Dec-09	19-Dec-09	19-Dec-09	21-Dec-09	21-Dec-09	22-Dec-09	21-Dec-09	21-Dec-09	21-Dec-09
	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	$4.50-4.95$	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95
Metals	Report No. 34 (HK0927407)			Report No. 16 (HK0926571)			Report No. 27 (HK0927362)			Report No. 28 (HK0927374)		Report No. 32 (HK0927397)	Report No. 28 (HK0927374)		
cyanide, tree															
Total Organic Carbon															
Mositure Content															
Sulphite ($\mathrm{SO}_{2}{ }^{2}$)															
Sulphate (SO_{4}) ${ }^{\text {a }}$															
Sulphide (S^{3})															
Avs															
svocs															
PCBS															
Chlorinated Pesticlides															
Sulphur (Total S) Dioxins															
Grain Size															

Chemical	Drilltole No.														
	A.S11			$\frac{\text { AS12 }}{\text { Sampling Date and Depth (m) }}$				A.S13			A.S14		A.S15		
	Sampling Date and Depth (m)						Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	10-Dec-09	10-Dec-09	10-Dec-09	10-Dec-09	10-Dec-09	10-Dec-09	21-Dec-09	21-Dec-09	21-Dec-09	07-Dec-09	07-Dec-09	07-Dec-09	09-Dec-09	09-Dec-09	09-Doc-09
	1.50-1.95	$3.00-3.95$	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95
Metals	Report No. 10 (HK0926386)			Report No. 10 (HK0926386)			Report No. 28 (HK0927374)			Report No. 12 (HK0926548)			Report No. 9 (HK0926383)		
Cyanide, free															
Total Organic Carbon															
Mositure Content															
Sulphite ($\mathrm{SO}_{2}{ }^{2}$)															
Sulphate (SO_{2} ¢)															
Sulphide (S^{2})															
avs															
svocs															
pcbs															
Chiorinated Pesticides															
Sulphur (rotal S)															
Dloxins															
Grain Size															

Agreement No. CE $53 / 2008$ (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation
Land Contamination Assessment for Area A Land Contamination Assessmen
Laboratory Testing Report No.
Soil Samples : Boreholes A-S16 to A-S25

Chemical	Drillhole No.														
	A-S16			A.S17			A.S18			A.S19			A-S20		
	Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	12-Dec-09	14-Dec-09	14-Dec-09	19-Dec-09	19-Dec-09	19-Dec-09	04-Dec-09	04-Dec-09	04-Dec-09	01-Dec-09	01-Dec-09	01-Dec-09	10-Dec-09	10-Dec-09	11-Dec-09
	Reprt No. 19 (HK0926740)	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95
Metals		Report No. 20 (HK0926774)		Report No. 27 (HK0927362)			Report No. 7 (HK0926317)			Report No. 11 (HK0926533)			Report 0.10 (HK0926386)		Report No. 16 (HK0926571)
Cyanide, free															
Total Organic Carbon															
Mositure Content															
Sulphate ($\mathrm{SO}_{4}{ }^{2}$)															
Sulphide (S^{2}) AVS															
svocs															
Chlorinated Pesticides															
Sulphur (Total S)															
Dioxins															
Grain Size															

Chemical	Drillhole No.														
	A-S21			A. 22			A. 233			A. 24			A. 225		
	Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	27-Nov-09	27-Nov-09	28-Nov-09	25-Nov-09	25-Nov-09	25-Nov-09	26-Nov-09	27-Nov-09	27-Nov-09	01-Dec-09	01-Dec-09	01-Dec-09	07-Dec-09	08-Dec.09	08-Dec-09
	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95
	Report No. 3 (HK0925302)		Report No. 4 (HK0925303)	Report No. 1 (HK0925295)			Report No. 2 (HK0925301)	Report No. 3 (HK0925302)		Report No. 11 (HK0926533)			Report No. 12 (HK0926548)	Report No. 14 (HK0926566)	
Cyanide, free															
Total Organic Carbon															
Mositure Content															
Sulphite ($\mathrm{SO}_{2}{ }^{2}$)															
Sulphate ($\mathrm{SO}_{\text {a }}{ }^{2}$)															
Sulphide (S^{2}) AVS															
Avocs															
PCBS															
Chlorinated Pesticides															
Sulphur (Total S)															
Dioxins															
Grain Size															

Agreement No. CE $53 / 2008$ (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation
Land Contamination Assessment for Area A
Land Contamination Assessmen
Soil Samples : Boreholes A-SG01 to A-SG10

Chemical	Drillhole No.														
	A.SG06			A.SG07			A.SG08			A.S609			ASG10		
	Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	19-Dec-09	19-Dec-09	21-Dec-09	07-Dec-09	07-Dec-09	07-Dec-09	05-Dec-09	05-Dec-09	07-Dec-09	28-Nov-09	28-Nov-09	28-Nov-09	09-Dec-09	09-Dec-09	09-Dec-09
	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95
	Report No.26 (HK0927346)		Report No. 28 (HK0927374)	Report No. 12 (HK0926548)			Report No. 8 (HK0926336)		Report No. 12 (HK0926548)	Report No. 4 (HK0925303)			Report No. 9 (HK0926383)		
Cyanide, free															
Total Organic Carbon															
Mositure Content															
Sulphite ($\mathrm{SO}_{3}{ }^{2}$)															
Sulphate (SO_{4}^{2})															
Sulphide ($\mathbf{5}^{2}$)															
AVs															
svocs															
PCBs															
Chlorinated Pesticicides															
Sulphur (Total S)															
Dioxins															
Grain Size															

Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation Land Contamination Assessment for Area A
Laboratory Testing Report No.
Groundwater Samples : Boreholes A-S02, A-S07, A-S09, A-S14, A-S16, A-S24, A-SG01, A-SG03, A-SG06 \& A-SG08

Chemical	Boreholes No. / Sampling Date									
	A-S02	A-S07	A-S09	A-S14	A-S16	A-S24	A-SG01	A-SG03	A-SG06	A-SG08
	19-Dec-09	12-Dec-09	23-Dec-09	09-Dec-09	15-Dec-09	02-Dec-09	12-Dec-09	23-Dec-09	21-Dec-09	08-Dec-09
svocs	Report No. 27(HK0927362)	$\begin{gathered} \text { Report No. } 19 \\ \text { (HK0926740) } \\ \& \\ \text { Report No. } 27 \\ \text { (HK0927362) } \end{gathered}$	$\begin{aligned} & \text { Report No. } 34 \\ & \text { (HK0927407) } \end{aligned}$	Report No. 9(HK0926383)	Report No. 22(HK0926826)	$\begin{aligned} & \text { Report No. } 6 \\ & \text { (HK0926309) } \end{aligned}$	Report No. 19 (HK0926740)	Report No. 34(HK0927407)	Report No. 28(HK0927374)	Report No. 14 (HK0926566)
Mercury										
PCBs										
Chlorinated Pesticides Total Organic Carbon										
Sulphur (Total S)										
Sulphite ($\mathrm{SO}_{3}{ }^{2}$)										
Sulphate $\left(\mathrm{SO}_{4}{ }^{2}\right)$										
Sulphide (S^{2})										

Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation Land Contamination Assessment for Area A
Laboratory Testing Report No.
Laboratory Testing Report No.
Elutriate Samples : Boreholes A
Elutriate Samples: Boreholes A-S02, A-S07, A-S09, A-S14, A-S16, A-S24, A-SG01, A-SG03, A-SG06 \& A-SG08

Chemical	Boreholes No. / Sampling Date									
	A-S02		A-S07		A-S09		A-S14		A-S16	
	18-Dec-09		11-Dec-09		22-Dec-09		08-Dec-09		14-Dec-09	
	Blank Test	Elutriate Test								
SVOCs	Report No. 25 (HK0927342)		Report No. 18 (HK0926670)		Report No. 33 (HK0927405)		Report No. 15 (HK0926568)		Report No. 21 (HK0926802)	
Mercury										
PCBs										
Chlorinated Pesticides										

Chemical	Boreholes No. I Sampling Date									
	A-S24		A-SG01		A-SG03		A-SG06		A-SG08	
	01-Dec-09		11-Dec-09		22-Dec-09		21-Dec-09		07-Dec-09	
	Blank Test	Elutriate Test								
SVOCs	Report No. 5 (HK0926115)		Report No. 17 (HK0926669)		Report No. 31 (HK0927390)		Report No. 29 (HK0927379)		Report No. 13 (HK0926564)	
Mercury										
PCBs										
Chlorinated Pesticides										

Appendix I
Laboratory Testing
Reports of Soil
Samples of 15
Additional Boreholes

Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation Land Contamination Assessment for Area A
Laboratory Testing Report No. (Additional Boreholes)

Report No.	Lab Works Order No.
A	HK1002030
B	HK1002074
C	HK1002122
D	HK1002220
E	HK1002332
F	HK1002333

Agreement No. CE $53 / 2008$ (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation
Laboratory Testing Report No.
Soil Samples: 15 Additional Boreholes

Chemical	Drillhole No.														
	A-S01a			A-S01b			A-S01c			A-S03a			A-S03b		
	Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	30-Jan-10	01-Feb-10	29-Jan-10	29-Jan-10	29-Jan-10										
	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95
Metals	Report No.E (HK1002332)			Report No. E (HK1002332)			Report No. E (HK1002332)			Report No. E (HK1002332)		$\begin{aligned} & \text { Report No.F } \\ & \text { (HK1002333) } \end{aligned}$	Report No.D (HK1002220)		

Chemical	Drillhole No.														
	A-S03c			A-S20a			A-S20b			A-S20c			A-S24a		
	Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	29-Jan-10	29-Jan-10	29-Jan-10	28-Jan-10	28-Jan-10	28-Jan-10	27-Jan-10	27-Jan-10	27-Jan-10	26-Jan-10	26-Jan-10	26-Jan-10	27-Jan-10	27-Jan-10	27-Jan-10
	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95
Metals	Report No.D (HK1002220)			Report No.C (HK1002122)			Report No. B (HK1002074)			Report No.A (HK1002030)			Report No.B (HK1002074)		

Chemical	Drillhole No.														
	A-S24b			A-S24c			A-SG10a			A-SG10b			A-SG10c		
	Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)			Sampling Date and Depth (m)		
	27-Jan-10	27-Jan-10	27-Jan-10	26-Jan-10	26-Jan-10	26-Jan-10	29-Jan-10	29-Jan-10	29-Jan-10	28-Jan-10	28-Jan-10	28-Jan-10	29-Jan-10	29-Jan-10	29-Jan-10
	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95	1.50-1.95	3.00-3.95	4.50-4.95
Metals	Report No.B (HK1002074)			Report No.A (HK1002030)			Report No.D (HK1002220)			Report No.C (HK1002122)			Report No.D (HK1002220)		

Agreement No．CE 53／2008（CE）
PLANNING AND ENGINEERING
STUDY ON DEVELOPMENT OF

－I N V E S T I G A T I O N

Supplementary
 Contamination Assessment Report and Remediation Action Plan for Area A October 201I

Planning Department and Civil Engineering and Development Department

Agreement No. CE 53/2008 (CE) Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation

Supplementary Contamination Assessment Report and Remediation Action Plan for Area A

Draft 2 | October 2011

Document Verification
ARUP

Contents

Page
1 Introduction 1
1.1 Background 1
1.2 Contamination Assessment Report and Remediation Action Plan for Area A 1
1.3 Objective 3
1.4 Statutory Legislation and Evaluation Criteria 3
2 Site Investigation Works 4
2.1 Further Investigation into the Extent of Contamination 4
2.2 Soil Sampling 4
2.3 Analytical Parameters \& Assessment Criteria 5
2.4 HOKLAS Accredited Laboratory 6
2.5 Strata Logging 6
3 Interpretation of Laboratory Testing Results 7
3.1 Soil Contamination 7
4 Possible Soil Contamination Extent 8
4.1 Update on the Possible Soil Contamination Extent 8
4.2 Remediation Method 10
5 Conclusion and Recommendation 11

Figures

Figure 2.1 Locations of As-built Sampling Boreholes in Area A
Figure 4.1 Locations of Contaminated Zones
Figure 4.1.1 Location of Contaminated Zone at A-S01
Figure 4.1.2 Location of Contaminated Zone at A-S03
Figure 4.1.2a Location of Contaminated Zone at A-S03a1
Figure 4.1.2b Location of Contaminated Zone at A-S03c1
Figure 4.13 Location of Contaminated Zone at A-S20
Figure 4.1.4 Location of Contaminated Zone at A-S24
Figure 4.1.5 Location of Contaminated Zone at A-SG10

Appendices

Appendix A Figures Extracted from Contamination Assessment Report and Remediation Action Plan for Area A July 2010

Appendix B Strata Log Records
Appendix C Laboratory Analytical Results
Appendix D Laboratory Testing Reports
Appendix E Responses to Comments

1 Introduction

1.1 Background

On 26 May 2009, Planning Department (PlanD) in association with Civil Engineering and Development Department (CEDD) commissioned Ove Arup \& Partners Hong Kong Limited (Arup) as the Consultant for undertaking the "Planning and Engineering Study on Development of Lok Ma Chau Loop Investigation" (the Study).

Section 3.4.9.4 of the EIA Study Brief No.: ESB-201/2008 for the LMC Loop Development project dated January 2009 issued by the EPD specified that a land contamination assessment shall be undertaken and that a Contamination Assessment Plan (CAP) shall be submitted to the EPD prior to conducting the assessment.

The CAP for Area A has been prepared and submitted to EPD in July 2009. EPD indicated no further comments on the CAP for Area A in October 2009. Environmental site investigation (SI) works were carried out between 25 November 2009 and 1 February 2010.

1.2 Contamination Assessment Report and Remediation Action Plan for Area A

A Contamination Assessment Report (CAR) and Remediation Action Plan (RAP) for Area A was submitted to and endorsed by EPD in July 2010 summarising the analytical results of the SI works and providing recommendations on the appropriate remediation actions for the contaminated areas found.

According to the testing results, out of the 105 soil samples collected, 6 soil samples from 5 of the boreholes (A-S01, A-S03, A-S20, A-S24, and A-SG10 as shown in Figure 5.1 in Appendix A) contain concentrations of Arsenic that marginally exceeded the RBRGs of Rural Residential and Urban Residential land uses. The laboratory results exceeding the RBRGs are given in Table 1.1.

Table 1.1 Summary of soil samples exceeding RBRGs

Borehole No.	Depth of Soil Sampling (mbgl)	Contaminant	Concentration (mg/kg dry soil)	RBRGs of Arsenic (mg/kg dry soil)
A-S01	3.0-3.45	Arsenic	22.2	Rural Residential RBRG: 21.8 Urban Residential RBRG: $\mathbf{2 2 . 1}$ Public Parks RBRG : 73.5 Industrial RBRG: 196
	4.5-4.95	Arsenic	24.0	
A-S03	$3.0-3.45$	Arsenic	26.8	
A-S20	3.0-3.45	Arsenic	23.0	
A-S24	$3.0-3.45$	Arsenic	27.7	
A-SG10	$4.5-4.95$	Arsenic	27.3	

In order to further ascertain the extent of contamination at these 5 locations, 3 additional boreholes near each of the 5 contaminated boreholes were drilled (i.e. a total of 15 additional boreholes were drilled) for additional soil sampling and testing. The locations of the additional boreholes were roughly mid-way between the contaminated boreholes and their respective adjacent boreholes, as shown in Figure 5.2 and Figures 5.2.1 to 5.2.5 in Appendix A. The laboratory testing results of the additional soil samples show compliance with the RBRG for Rural Residential (i.e. the most stringent set of RBRGs).

Based on the results from the SI works, an estimate of the quantity order of contaminated soil is summarised in Table 1.2. The extents of 5 estimated plan areas in which the contaminated zones lie are depicted in Figure 6.1 and Figures 6.1.1 to 6.1.5 in Appendix A.

Table 1.2 Estimation of the order of quantity of contaminated soil by conservative approach

Contaminated Borehole (Contaminated Zone ID)	Additional Borehole ID	Distance from Contaminated Borehole to the Additional Borehole (m)	Estimated Vertical Extent of Contamination (m)	Estimated Plan Area in which Contaminated Area Lies (m^{2}) (1)	Estimated of Order of Quantity of Contaminated Materials (m^{3})
A-S01	$\begin{aligned} & \text { A-S01a } \\ & \text { A-S01b } \\ & \text { A-S01c } \end{aligned}$	$\begin{aligned} & 90 \\ & 69 \\ & 87 \end{aligned}$	$\begin{gathered} 3.0 \\ (2.5 \mathrm{~m}-5.5 \mathrm{~m}) \end{gathered}$	18,519	55,557
A-S03	$\begin{aligned} & \text { A-S03a } \\ & \text { A-S03b } \\ & \text { A-S03c } \end{aligned}$	91 54 102	$\begin{gathered} 1.5 \\ (2.5 \mathrm{~m}-4.0 \mathrm{~m}) \end{gathered}$	12,684	19,026
A-S20	$\begin{aligned} & \text { A-S20a } \\ & \text { A-S20b } \\ & \text { A-S20c } \end{aligned}$	$\begin{gathered} 96 \\ 112 \\ 82 \end{gathered}$	$\begin{gathered} 1.5 \\ (2.5 \mathrm{~m}-4.0 \mathrm{~m}) \end{gathered}$	26,131	39,197
A-S24	$\begin{aligned} & \text { A-S24a } \\ & \text { A-S24b } \\ & \text { A-S24c } \end{aligned}$	$\begin{aligned} & 63 \\ & 92 \\ & 68 \end{aligned}$	$\begin{gathered} 1.5 \\ (2.5 \mathrm{~m}-4.0 \mathrm{~m}) \end{gathered}$	14,361	21,542
A-SG10	$\begin{aligned} & \text { A-SG10a } \\ & \text { A-SG10b } \\ & \text { A-SG10c } \end{aligned}$	$\begin{aligned} & 62 \\ & 86 \\ & 67 \end{aligned}$	$\begin{gathered} 1.5 \\ (4.0 \mathrm{~m}-5.5 \mathrm{~m}) \end{gathered}$	12,749	19,124
			Total ${ }^{(2)}$:	84,444	154,446

Note:
(1) The "Estimated Plan Area in which the Horizontal Contaminated Area (m^{2}) Lies" was computed by a software call "MicroStation". (i.e. common graphical software similar to "AutoCad")
(2) The data presented based on the conservative approach are subject to variation after the completion of further investigation to confirm the actual horizontal extent of contamination.

Since the 5 contaminated boreholes only marginally exceeded the RBRG, the estimation of the horizontal extent of contamination is considered conservative. As the estimated quantity of contaminated soil is highly sensitive to how the plan area (in which the actual horizontal extent of contaminated lies) is estimated,
further SI is carried out to further ascertain the horizontal extent of contamination prior to the commencement of remediation works on site in order to avoid overremediation.

For easy reference, the initial SI work conducted between 25 November 2009 and 1 February 2010 will be referred as "Stage 1 SI"; whereas the further SI work will be referred as "Stage 2 SI ".

1.3 Objective

This Supplementary Contamination Assessment Report (CAR) for Area A is prepared to present findings of the investigation and provide an update on the estimation of the quantity of contaminated soil based on the results of the Stage 2 SI to seek approval/agreement by EPD prior to the commencement of remediation work. This Supplementary CAR shall be read in conjunction with the endorsed CAR/RAP for Area A.

1.4 Statutory Legislation and Evaluation Criteria

This Supplementary CAR is prepared in accordance with the following Technical Memorandum and Guidance Notes:

- Annex 19 of the Technical Memorandum on Environmental Impact Assessment Process (TM-EIA), Guidelines for Assessment of Impact On Sites of Cultural Heritage and Other Impacts (Section 3: Potential Contaminated Land Issues);
- Guidance Notes for Investigation Remediation of Contaminated Sites of Petrol Filling Stations, Boatyards, and Car Repairing/Dismantling Workshops, EPD, 1999;
- Guidance Notes for Contaminated Land Assessment and Remediation; and
- Guidance Manual for Use of Risk-Based Remediation Goals (RBRGs) for Contaminated Land Management, EPD, 2007.

2 Site Investigation Works

2.1 Further Investigation into the Extent of Contamination

According to Section 6.2.2 of the endorsed CAR/RAP for Area A, the Stage 2 SI should include the drilling of new boreholes at such locations between the contaminated boreholes and their respective adjacent additional uncontaminated boreholes within the possible plan area conservatively estimated (as shown in Figures 6.1.1 to 6.1.5 in Appendix A) so as to confirm the horizontal extent of contamination. In the endorsed CAR/RAP for Area A, it was recommended that soil samples should be collected in the new boreholes at the respective depths of contamination detected in the 5 contaminated boreholes (as summarised in Table 1.1), and tested for Arsenic. But in order to also confirm the vertical extent of Arsenic contamination, it was later decided that soil samples should be collected at the same depth intervals as in Stage 1 SI i.e. $1.5-1.95 \mathrm{mbgl}, 3.0-3.45 \mathrm{mbgl}$ and $4.5-4.95 \mathrm{mbgl}$.

2.2 Soil Sampling

2.2.1 Borehole locations

The Stage 2 SI was conducted strictly in compliance with the technical procedures in the approved CAP/RAP for Area A such as dry drilling of boreholes, decontamination requirements, soil sampling procedures and the analytical methodologies etc.

The Stage 2 SI works were carried out by Fugro Geotechnical Services (HK) Ltd. between 27 May and 2 July 2011. 15 boreholes were drilled for the soil sampling. The borehole locations and depth for soil sampling are summarised in Table 2.1 and are shown in Figure 2.1. The entire SI programme was supervised by the onsite Land Contamination Specialist.

Table 2.1 Sampling locations and drilling depths

BoreholeID	Proposed Borehole Locations		Actual Borehole Locations		Termination Level of Sampling (mbgl)	Ground Level (mPD)
	Easting	Northing	Easting	Northing		
A-S01a1	826258	842958	826258	842957	5	$+6.23$
A-S01b1	826287	842902	826287	842902		+5.97
A-S01c1	826337	842918	826338	842918		+5.68
A-S03a1	826585	842816	826587	842815		+5.94
A-S03b1	826618	842775	826618	842774		+5.59
A-S03c1	826655	842757	826655	842757		+4.86
A-S20a1	826301	842008	826321	842024		+5.26
A-S20b1	826295	842067	826304	842069		+4.90
A-S20c1	826370	842064	826370	842064		+4.63
A-S24a1	825798	841907	825798	841907		+3.91

Borehole ID	Proposed Borehole Locations		Actual Borehole Locations		Termination Level of Sampling $(m b g l)$	Ground Level (mPD)	
	Easting	Northing	Easting	Northing	(mbgl		
A-S24b1	825851	841923	825851	841923		+3.62	
A-S24c1	825841	841858	825841	841857		5	+4.44
A-SG10a1	826036	841816	826037	841813		+3.75	
A-SG10b1	825048	841851	825048	841852		+3.46	
A-SG10c1	826089	841838	826088	841837		3.64	

Boreholes A-S20b1 and A-S20c1 have been shifted from the original proposed locations due to the actual site situation and constrain e.g. to avoid damage of reedbed. Deviation from the original proposed boreholes locations are summarised in Table 2.2.

Table 2.2 Change of borehole locations due to site constraints

Borehole ID	Deviation from Original Location	Justification
A-S20a1	26 m north-east of the original location	To avoid damage of vegetation owned by a villager
A-S20b1	10 m north-east of the original location	Avoid damage to reedbed

2.2.1 Soil Sampling

Inspection pits from ground surface to 1.5 meter below ground level (mbgl) were excavated at each borehole location before drilling in order to determine the thickness of the top soil (i.e. Area A was capped by a layer of clean top soil after the disposal of dredged mud from Shenzhen River). Three U-100 undisturbed soil samples were then collected from each borehole at the depths of 1.5 m (1.5$1.95 \mathrm{mbgl}), 3.0 \mathrm{~m}(3.0-3.45 \mathrm{mbgl})$ and $4.5 \mathrm{~m}(4.5-4.95 \mathrm{mbgl})$.

2.2.2 Decontamination procedures

Before drilling / excavation, the sampler and all equipment in contact with the ground were thoroughly decontaminated by phosphate-free detergent between each sampling event to minimize potential cross contamination. All drilling machines were decontaminated by phosphate-free detergent and high pressure hot water jet before mobilization to site. During sampling and decontamination activities, disposable latex gloves were worn to prevent the transfer of contaminants from other sources.

Moreover, dry drilling method was adopted for the entire environmental SI in order to prevent any influence of flushing medium to the soil testing results.

2.3 Analytical Parameters \& Assessment Criteria

The soil samples collected were analysed for Arsenic. The RBRGs for Arsenic found in soil are given in Table 2.3. Similar to the endorsed CAR/RAP for Area A, "Rural Residential" RBRG was adopted for the interpretation of the soil testing results.

Table 2.3 Risk-Based Remediation Goals (RBRGs) of Arsenic

Chemical	Risk-Based Remediation Goals (RBRGs) for soil			
	Urban Residential $(\mathbf{m g} / \mathbf{k g})$	Rural Residential $(\mathbf{m g} / \mathbf{k g})$	Industrial $(\mathbf{m g} / \mathrm{kg})$	Public Park $(\mathrm{mg} / \mathrm{kg})$
Arsenic	22.1	$\mathbf{2 1 . 8}$	196	73.5

2.4 HOKLAS Accredited Laboratory

A testing laboratory "ALS Technichem (HK) Pty Ltd", accredited under Hong Kong Laboratory Accreditation Scheme (HOKLAS) was appointed to conduct chemical testing for the soil samples. The laboratory testing method was accredited by the HOKLAS.

2.5 Strata Logging

Strata logging for boreholes was undertaken during the course of drilling and sampling by qualified geologist. The logs included the general stratigraphic descriptions, depth of soil sampling, and sample notation etc. The strata logs of boreholes are given in Appendix B.

3 Interpretation of Laboratory Testing Results

3.1 Soil Contamination

A total of 45 soil samples were collected from the 15 boreholes between 27 May 2011 and 2 July 2011. At the sampling depths where Arsenic contamination was detected previously in Stage I SI (refer to Table 1.1), no Arsenic exceedances were found according to the laboratory testing results. However, among the depths where Arsenic contamination were not previously detected, marginal exceedances of the RBRG (Rural Residential) Arsenic limit were found in the samples collected at A-S03a1 ($4.5-4.95 \mathrm{mbgl}$) and A-S03c1 (1.5-1.95 mbgl). The laboratory testing results exceeding the RBRGs are given in Table 3.1. All the laboratory testing results are summarised in Appendix C. The laboratory testing reports are given in Appendix D.
Table 3.1 Summary of soil samples exceeding RBRGs

Borehole No.	Depth of Soil Sampling (mbgl)	Contaminant	Concentration (mg/kg dry soil)	RBRGs (Rural Residential) for Arsenic (mg/kg dry soil)
A-S03a1	$4.50-4.95$	Arsenic	23	21.8
A-S03c1	$1.50-1.95$		24	

4 Possible Soil Contamination Extent

4.1 Update on the Possible Soil Contamination Extent

Based on the results from the Stage 2 SI works, the possible vertical and horizontal extents of soil contamination present within Area A has been estimated using the same method as stipulated in Section 6.1.1 and 6.1.2 in the endorsed CAR/RAP for Area A which is summarised in Sections 4.1.1 and 4.1.2 below.

4.1.1 Estimation of Horizontal Extent of Contamination

The horizontal contamination extent is estimated by the curvilinear area formed by taking the contaminated borehole at the centre and the boundary joining the adjacent additional boreholes (i.e. which reveal no contamination), or along site boundary (i.e. Shenzhen meander). A software called "MicroStation" (i.e. common graphical software similar to "AutoCad") was used to draw the curvilinear plan area in which the horizontal extent of contamination lies.

4.1.2 Estimation of Vertical Extent of Contamination

For such sample with contaminated laboratory testing results, the full depth of soil sampling is taken as contaminated. Besides, a depth of 0.5 m above and below that sampling depth respectively will be taken as contaminated as a conservative estimate. For example, for the sampling depth of $3.0-3.5 \mathrm{mgbl}$ with contaminated laboratory testing finding, the vertical extent of contamination will be estimated from 2.5 mgbl (i.e. $3 \mathrm{mbgl}-0.5 \mathrm{~m}$) to 4 mbgl (i.e. $3.5 \mathrm{mbgl}+0.5 \mathrm{~m}$), and the vertical extent of contamination is therefore estimated as 1.5 m .

4.1.3 Possible Soil Contamination Extent

Based on the methodology described in Section 4.1.1, the updated extents of the 5 plan areas in which the contaminated zones lie are shown in Figure 4.1 and Figures 4.1.1 to 4.1.5.

According to the testing results, no updates on the vertical extents of soil contamination will be required except for boreholes A-S03a1 and A-S03c1 where Arsenic exceedances were detected at $4.5-4.95 \mathrm{mbgl}$ and $1.5-1.95 \mathrm{mbgl}$ respectively. The vertical extents of the soil contamination at these two boreholes have been estimated to be $4.0-5.5 \mathrm{~m}$ at A-S03a1 and $1.0-2.5 \mathrm{~m}$ at A-S03c1 with reference to the method described in Section 4.1.2. A-S03a1 and A-S03c1 have been considered as two additional contaminated boreholes and their respective estimated plan areas are shown in Figures 4.1.2a and 4.1.2b.

Based on the soil contamination extent estimated, the updated order of quantity of contaminated soil, including those from A-S03a1 (4.5-4.95 mbgl) and A-S03c1 ($1.5-1.95 \mathrm{mbgl})$ is summarised in Table 4.1.

Table 4.1 Estimation of the order of quantity of contaminated soil based on Stage 2 SI results

Contaminated Borehole/ Concerned Area ID	Borehole ID (Stage 2 SI)	Coordinates		Estimated Distance from Contaminated Borehole (m)	Estimated Vertical Extent of Contamination (m) ${ }^{[1]}$	Estimated Contaminated Area (m $\mathbf{m}^{2}{ }^{[2]}$	Estimated Quantity of Contaminated Materials (m^{3})
		Easting	Northing				
A-S01	A-S01a1	826258	842957	45	3.0 (2.5m-5.5m)	5,576	16,728
	A-S01b1	826287	842902	35			
	A-S01c1	826338	842918	44			
A-S03	A-S03a1	826587	842815	43	1.5 (2.5m-4.0m)	4,580	6,870
	A-S03b1	826618	842774	27			
	A-S03c1	826655	842757	51			
A-S20	A-S20a1	826321	842024	23	$1.5(2.5 \mathrm{~m}-4.0 \mathrm{~m})$	4,989	7,484
	A-S20b1	826304	842069	50			
	A-S20c1	826370	842064	41			
A-S24	A-S24al	825798	841907	32	$1.5(2.5 \mathrm{~m}-4.0 \mathrm{~m})$	4,001	6,002
	A-S24b1	825851	841923	46			
	A-S24c1	825841	841857	34			
A-SG10	A-SG10a1	826037	841813	31	1.5 (4.0m-5.5m)	3,520	5,280
	A-SG10b1	825048	841852	43			
	A-SG10c1	826088	841837	34			
					Sub-Total:	22,666	42,364
Estimated Quantity of Contaminated Materials at A-S03a1 \& A-S03c1							
Contaminated Borehole/	Borehole ID (Stage $1 / 2 \mathrm{SI}$)	Coordinates		Estimated Distance from Contaminated Borehole (m)	Estimated Vertical Extent of Contamination (m)	Estimated Contaminated Area (m ${ }^{2}$) ${ }^{[1]}$	Estimated Quantity of Contaminated Materials (m^{3})
Concerned Area ID		Easting	Northing				
A-S03a1	A-S03a	526526	542839	48	1.5 (4.0-5.5m)	4,452	6,678
	A-S03b1	826618	842774	51			
	A-S03	826627	842800	43			
A-S03c1	A-S03c	826683	842715	50	$1.5(1.0-2.5 \mathrm{~m})$	5,601	8,402
	A-S03b1	826618	842774	41			
	A-S03	826627	842800	51			
					Sub-Total:	10,053	15,080
					Total:		57,444

Note:

 2.5 mgbl (i.e. $3 \mathrm{mbgl}-0.5 \mathrm{~m}$) to 4 mbgl (i.e. $3.5 \mathrm{mbgl}+0.5 \mathrm{~m}$), and the vertical extent of contamination is therefore estimated as 1.5 m .
 Section 6.1.1 in the endorsed CAR/RAP for Area A

209840 | Draft 2 | 7 October 2011

4.2 Remediation Method

For the detailed remediation method for treating arsenic contaminated soil, please refer to Section 7 in the endorsed CAR/RAP for Area A.

5 Conclusion and Recommendation

To confirm the possible soil contamination extent within Area A, a Stage 2 SI were conducted between 27 May 2011 and 2 July 2011 which involved sampling and testing of soil samples from 15 boreholes at the same sampling depth intervals (i.e. $1.5 \mathrm{~m}, 3.0 \mathrm{~m}$, and 4.5 m) as in Stage 1 SI.

According to the testing results, no further Arsenic exceedances were found at the sampling depths where such contamination was detected previously in Stage I SI. However, Arsenic concentrations in the soil samples collected from A-S03a1 at $4.5-4.95 \mathrm{mbgl}$ and from $\mathrm{A}-\mathrm{S} 03 \mathrm{c} 1$ at $1.5-1.95 \mathrm{mgbl}$ have marginally exceeded the RBRGs of Rural Residential land uses. These two boreholes were considered as two additional contaminated boreholes and their respective possible contamination zones have been estimated.

Based on the Stage 2 SI results, the possible soil contamination extent within Area A have been updated and the quantity of contaminated soil was estimated to be $57,443 \mathrm{~m}^{3}$ (including those from A-S03a1 and A-S03c1). Remediation of the contaminated soil will be conducted as stipulated in the endorsed CAR/RAP for Area A.

Figures

土木工程拓展署 CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT		規劃署 PLANNING DEPARTMENT	ARUP Ove Arup \＆Partners Hong Kong Limited	Job Title Agreement No．CE 53／2008（CE）Planning and Engineering Study on Development of Lok Ma Chau Loop－Investigation	Drawing Title Locations of Contaminated Zones			
							${ }_{\text {FIRST ISSUE }}^{\text {Descriotion }}$	07／11

Contaminated Borehole/ Concerned Area ID	Borehole ID (Stage 2 SI)	Coordinates		Estimated Distance from Contaminated Borehole (m)	Estimated Vertical Extent of Contamination (m)	Estimated Contaminated Area (m^{2})	Estimated Quantity of Contaminated Materials $\left(\mathrm{m}^{3}\right)$
		Easting	Northing				
A-SG10	A-SG10a1	826037	841813	31	1.5 (4.0m-5.5m)	3,520	5,280
	A-SG10b1	825048	841852	43			
	A-SG10c1	826088	841837	34			

Appendix A

Figures Extracted from Contamination Assessment Report and Remediation Action Plan for Area A July 2010

$\widehat{C E D D}$ \pm 未工程据展署 CIVIL ENGINEERING AND DEVELO	\square	規劃署 planning DEPARTMENT	ARUP 	Agreement No．CE 53／2008（CE） Planning and Engineering Study on Development of Lok Ma Chau Loop－Investigation	Locations of Additional Boreholes		0410		$\begin{aligned} & \mathrm{LK} \\ & \hline \mathrm{TC} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Date } \quad 04 / 10 \\ & \hline \text { Approved } \\ & \hline \text { ST } \\ & \hline \end{aligned}$	Figure 5.2
				Development of Lok Ma Chau Loop－Investigation		fin mot	9，40		1：100	000 ON A3	Rev．

\square

LEGEND ：

\square Lok Ma Chau Loop（Area A）
［－－】 Study Area
－Concerned Boreholes with Arsenic Contamination
－／Respective Adjacent Boreholes
－Additional Borehole Location for Soil Sampling

A－SG08

A－S20c

Contaminated Borehole	Additional Borehole ID	Coordinates		Distance from Contaminated Borehole (m)
		Easting	Northing	

LEGEND ：

\square Lok Ma Chau Loop（Area A）
［－－】 Study Area
－Borehole Location for Soil Sampling
（Borehole Location for Soil and Groundwater Sampling Additional Borehole Location for Soil Sampling

Reedbed

Estimated Contaminated Zone（m2）

A－S15

A－SG08

－S20a

A－S23

| \square | 規 㗲 署
 PLANNING
 DEPARTMENT |
| :---: | :---: | :---: |

Appendix B

Strata Log Records

	DRILLHOLE RECORD	HOLE No.	A-S01c1		
	CONTRACT No.: GE/2010/01	SHEET:	1	of	1

Agreement No. CE 53/2008 (CE), Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation Area A (Stage 2)

Eferer	DRILLHOLE RECORD		HOLE No.	A-S20b1		
SERVICES LTD	CONTRACT No.:	GE/2010/01	SHEET:	1	of	1

PROJECT: Agreement No. CE 53/2008 (CE), Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation Area A (Stage 2)

Appendix C

Laboratory Testing Results

Soil Samples: Stage 2 SI Works (45 soil samples)

Chemical	$\begin{gathered} \text { Reporting } \\ \text { Limit } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Risk-Based Remediation Goals (RBRGs) for Soil												
						A-S01a1			A-S0161			A-S01c1		
						Sampling Date and Depth (m)								
		Urban Residential (mg/kg)	Rural Residential	$\begin{gathered} \text { Industrial } \\ \text { (mg/kg) } \end{gathered}$	Public Park (mg/kg)	04-Jun-11	07-Jun-11	07-Jun-11	04-Jun-11	07-Jun-11	07-Jun-11	01-Jun-11	01-Jun-11	02-Jun-11
			(mg/kg)			1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	$3.00-3.45$	4.50-4.95
Metals														
Arsenic	1.0	22.1	21.8	196	73.5	5	14	2	11	8	4	6	8	16
Mositure Content														
Moisture Content (\%)	0.1\%	Not Applicable				15.2	17.1	14.6	18.9	18.1	16.7	14.6	19	31.8

Chemical	Reporting Limit (mg/kg)	Risk-Based Remediation Goals (RBRGs) for Soil				Drillhole No.								
						A-S03a1			A-S03b1			A-S03c1		
						Sampling Date and Depth (m)								
		Urban Residential	$\begin{gathered} \text { Rural } \\ \text { Residential } \end{gathered}$	Industrial	Public Park	01-Jun-11	02-Jun-11	02-Jun-11	27-May-11	27-May-11	30-May-11	27-May-11	27-May-11	30-May-11
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95
Metals														
Arsenic	1.0	22.1	21.8	196	73.5	4	1	23	8	2	3	24	2	18
Mositure Content														
Moisture Content (\%)	0.1\%		Not Ap			17.8	14.5	36.8	25.0	14.0	12.0	45.4	9.5	40.6

Chemical	$\begin{gathered} \text { Reporting } \\ \text { Limit } \\ (\mathrm{mg} / \mathrm{kg}) \\ \hline \end{gathered}$	Risk-Based Remediation Goals (RBRGs) for Soil				Drillhole No.								
						A-S20a1			A-S20b1			A-S20c1		
						Sampling Date and Depth (m)								
		Urban Residential (mg/kg)	$\begin{gathered} \text { Rural } \\ \text { Residential } \\ (\mathrm{mg} / \mathrm{kg}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Industrial } \\ \text { (mg/kg) } \end{gathered}$	Public Park (mg/kg)	30-Jun-11	01-Jul-11	02-Jul-11	30-Jun-11	01-Jul-11	02-Jul-11	30-Jun-11	01-Jul-11	02-Jul-11
						1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95
Metals														
Arsenic	1.0	22.1	21.8	196	73.5	4.0	3.0	3	7	17	16.0	21	12	13.0
Mositure Content														
Moisture Content (\%)	0.1\%	Not Applicable				17.7	14.4	18.6	19.6	27.2	28.6	36.9	30.1	40.9

Chemical	Reporting Limit ($\mathrm{mg} / \mathrm{kg}$)	Risk-Based Remediation Goals (RBRGs) for Soil				Drillhole No.								
						A-S24a1			A-S24b1			A-S24c1		
						Sampling Date and Depth (m)								
		Urban Residential	Rural Residential	Industrial	Public Park	13-Jun-11	13-Jun-11	14-Jun-11	18-Jun-11	20-Jun-11	20-Jun-11	13-Jun-11	13-Jun-11	14-Jun-11
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95
Metals														
Arsenic	1.0	22.1	21.8	196	73.5	16	4	18	15	15	11	6	6	8
Mositure Content														
Moisture Content (\%)	0.1\%		Not Ap			27.0	14.7	33.9	41.7	44.5	36.0	11.8	17.2	21.4

Chemical	$\begin{gathered} \text { Reporting } \\ \text { Limit } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Risk-Based Remediation Goals (RBRGs) for Soil				Drillhole No.								
						A-SG10a1			A-SG10b1			A-SG10c1		
						Sampling Date and Depth (m)								
		Urban Residential	Rural Residential	Industrial	Public Park	21-Jun-11	22-Jun-11	22-Jun-11	21-Jun-11	22-Jun-11	22-Jun-11	18-Jun-11	18-Jun-11	20-Jun-11
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95	1.50-1.95	3.00-3.45	4.50-4.95
Metals														
Arsenic	1.0	22.1	21.8	196	73.5	18	9	14	12	17	13	15	16	17
Mositure Content														
Moisture Content (\%)	0.1\%		Not Ap			38.2	34.2	38.9	31.6	37.9	36.7	39.0	30.0	35.6

Red indicates depth of soil with Arsenic contamination detected in Stage 1 SI

Appendix D

Laboratory Testing Reports

ALS Technichem (HK) Pty Ltd

ALS Laboratorப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR SAMMY C Y Wong	Contact	Chan Kwok Fai, Godfrey	Work Order	HK1112124
Address	GEOTECHNICAL PROJECTS DIVISION, GEOTECHNICAL ENGINEERING OFFICE, 23/F., KWUN TONG VIEW, 410 KWUN TONG ROAD, KOWLOON, HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: chiyuenwong@cedd.gov.hk	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: +852 21585611	Telephone	: +852 26101044		
Facsimile	: +852 26932918	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON development of lok ma chau loop investigation	Quote number	: ---	Date Samples Received	: 27-MAY-2011
Order number	: GE/2009/16.15			Issue Date	: 03-JUN-2011
C-O-C number	: H016751			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 31-MAY-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112124

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112124

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1811262)								
HK1112112-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----\|	0.1	\%	11.6	11.7	1.4
EG: Metals and Major Cations (QC Lot: 1813135)								
HK1112112-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	22	18	17.2
HK1112183-001	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	18	18	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report										
Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1813135)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	92.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1813135)										
HK1112112-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	\# Not Determined	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratorப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR SAMMY C Y WONG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112139
Address	: GEOTECHNICAL PROJECTS DIVISION, GEOTECHNICAL ENGINEERING OFFICE, 23/F., KWUN TONG VIEW, 410 KWUN TONG ROAD, KOWLOON, HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: chiyuenwong@cedd.gov.hk	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: +852 21585611	Telephone	: +852 26101044		
Facsimile	: +852 26932918	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 27-MAY-2011
Order number	: GE/2009/16.15			Issue Date	: 03-JUN-2011
C-O-C number	: H016752			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 02-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society
Specific comments for Work Order: HK1112139
Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112139

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1813132)								
HK1112062-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	7.3	7.2	1.6
HK1112063-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)		0.1	\%	9.2	9.0	1.8
EG: Metals and Major Cations (QC Lot: 1813135)								
HK1112112-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	22	18	17.2
HK1112183-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	18	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCs	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1813135)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	92.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratorப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR SAMMY C Y WONG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112141
Address	GEOTECHNICAL PROJECTS DIVISION, GEOTECHNICAL ENGINEERING OFFICE, 23/F., KWUN TONG VIEW, 410 KWUN TONG ROAD, KOWLOON, HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: chiyuenwong@cedd.gov.hk	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: +852 21585611	Telephone	: +852 26101044		
Facsimile	: +852 26932918	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 27-MAY-2011
Order number	: GE/2009/16.15			Issue Date	: 03-JUN-2011
C-O-C number	: H016754			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 02-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society
Specific comments for Work Order: HK1112141
Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112141

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1813132)								
HK1112062-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	7.3	7.2	1.6
HK1112063-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)		0.1	\%	9.2	9.0	1.8
EG: Metals and Major Cations (QC Lot: 1813135)								
HK1112112-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	22	18	17.2
HK1112183-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	18	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCs	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1813135)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	92.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 6
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112142
Address	:	Address	11/F., Chung Shun Knitting Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 27-MAY-2011
Order number	: GE/2009/16.15			Issue Date	: 04-JUN-2011
C-O-C number	: H016753			No. of samples received	: 4
Site	: LMC LOOP AREA A			No. of samples analysed	: 4
This report may not be reproduced except with prior written approval from the testing laboratory.		This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.			
		Signatories			Authorised results for
		Fung Lim Chee, Richard		General Manager	Inorganics

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 02-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112142

Sample(s) were received in a chilled condition.
Water sample(s) analysed and reported on an as received basis.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Water sample(s) were filtered prior to dissolved metal analysis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.
: 3 of 6
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112142

Work Order

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1813132)								
HK1112062-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	7.3	7.2	1.6
HK1112063-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	9.2	9.0	1.8
EG: Metals and Major Cations (QC Lot: 1813135)								
HK1112112-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	22	18	17.2
HK1112183-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	18	0.0
Matrix: WATER				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EG: Metals and Major Cations - Filtered (QC Lot: 1813442)								
HK1112142-004	A-S03B1 FIELD BLANK	EG020: Arsenic	7440-38-2	10	$\mu \mathrm{g} / \mathrm{L}$	<10	<10	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1813135)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	92.8	----	85	115	----	----
Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 1813442)										
EG020: Arsenic 7440-38-2	10	$\mu \mathrm{g} / \mathrm{L}$	<10	$100 \mu \mathrm{~g} / \mathrm{L}$	89.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratorப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR SAMMY C Y WONG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112183
Address	GEOTECHNICAL PROJECTS DIVISION, GEOTECHNICAL ENGINEERING OFFICE, 23/F., KWUN TONG VIEW, 410 KWUN TONG ROAD, KOWLOON, HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: chiyuenwong@cedd.gov.hk	E-mail	Godfrey.Chan@alsenviro.com		
Telephone	: +852 21585611	Telephone	+852 26101044		
Facsimile	: +852 26932918	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 30-MAY-2011
Order number	: GE/2009/16.15			Issue Date	: 03-JUN-2011
C-O-C number	: H016756			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 02-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society
Specific comments for Work Order: HK1112183
Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112183

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1813132)								
HK1112062-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	7.3	7.2	1.6
HK1112063-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	9.2	9.0	1.8
EG: Metals and Major Cations (QC Lot: 1813135)								
HK1112112-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	22	18	17.2
HK1112183-001	A-S03C1 4.50M-4.95M	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	18	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCs	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1813135)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	92.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratorப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR SAMMY C Y WONG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112184
Address	: GEOTECHNICAL PROJECTS DIVISION, GEOTECHNICAL ENGINEERING OFFICE, 23/F., KWUN TONG VIEW, 410 KWUN TONG ROAD, KOWLOON, HONG KONG	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: chiyuenwong@cedd.gov.hk	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: +852 21585611	Telephone	: +852 26101044		
Facsimile	: +852 26932918	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 30-MAY-2011
Order number	: GE/2009/16.15			Issue Date	: 03-JUN-2011
C-O-C number	: H016757			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 02-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society
Specific comments for Work Order: HK1112184
Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112184

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1813132)								
HK1112062-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	7.3	7.2	1.6
HK1112063-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)		0.1	\%	9.2	9.0	1.8
EG: Metals and Major Cations (QC Lot: 1813135)								
HK1112112-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	22	18	17.2
HK1112183-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	18	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1813135)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	92.8	----	85	115	----	--

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112456
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 01-JUN-2011
Order number	GE/2009/16.15			Issue Date	: 13-JUN-2011
C-O-C number	: H016758			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 11-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112456

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112456

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1816152)								
HK1112218-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	20.5	20.2	1.4
EG: Metals and Major Cations (QC Lot: 1819699)								
HK1112316-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	42	42	0.0
HK1112556-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	34	39	14.1

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report										
Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	107	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)										
HK1112316-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	\# Not Determined	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratory Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112460
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 01-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 13-JUN-2011
C-O-C number	: H016759			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 11-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112460

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112460

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1816152)								
HK1112218-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	20.5	20.2	1.4
EG: Metals and Major Cations (QC Lot: 1819699)								
HK1112316-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	42	42	0.0
HK1112556-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	34	39	14.1

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report										
Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	107	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)										
HK1112316-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	\# Not Determined	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112461
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 01-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 13-JUN-2011
C-O-C number	: H016760			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 11-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK111246

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112461

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1816152)								
HK1112218-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	20.5	20.2	1.4
EG: Metals and Major Cations (QC Lot: 1819699)								
HK1112316-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	42	42	0.0
HK1112556-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	34	39	14.1

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report										
Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	107	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)										
HK1112316-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	\# Not Determined	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratory Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112560
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 02-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 13-JUN-2011
C-O-C number	: H016761			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 11-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112560

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112560

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1819722)								
HK1112387-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	14.1	13.4	4.9
HK1112562-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	36.8	36.1	1.7
EG: Metals and Major Cations (QC Lot: 1819699)								
HK1112316-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	42	42	0.0
HK1112556-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	34	39	14.1

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Combound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	107	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112561
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: Iouisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: --	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 02-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 13-JUN-2011
C-O-C number	: H016762			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 11-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112561

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112561

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1819722)								
HK1112387-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	14.1	13.4	4.9
HK1112562-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	36.8	36.1	1.7
EG: Metals and Major Cations (QC Lot: 1819699)								
HK1112316-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	42	42	0.0
HK1112556-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	34	39	14.1

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Combound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	107	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratory Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112562
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: Iouisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: --	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 02-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 13-JUN-2011
C-O-C number	: H016763			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 11-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112562

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112562

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT
Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1819722)								
HK1112387-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	14.1	13.4	4.9
HK1112562-001	A-S03A1 4.50M-4.95M	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	36.8	36.1	1.7
EG: Metals and Major Cations (QC Lot: 1819699)								
HK1112316-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	42	42	0.0
HK1112556-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	34	39	14.1

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1819699)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	107	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112692
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 04-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 15-JUN-2011
C-O-C number	: H016764			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 13-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112692

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112692

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1821747)								
HK1112620-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	43.4	43.3	0.0
HK1112692-001	A-S01A1 1.50M-1.95M	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	15.2	16.4	7.6
EG: Metals and Major Cations (QC Lot: 1825671)								
HK1112687-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	19	0.0
HK1112831-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	8	9	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Combound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)										
HK1112687-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	81.0	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112693
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 04-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 15-JUN-2011
C-O-C number	: H016765			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 13-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112693

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112693

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1821747)								
HK1112620-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	43.4	43.3	0.0
HK1112692-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	15.2	16.4	7.6
EG: Metals and Major Cations (QC Lot: 1825671)								
HK1112687-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	19	0.0
HK1112831-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	8	9	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)										
HK1112687-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	81.0	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112828
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 07-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 15-JUN-2011
C-O-C number	: H016769			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 13-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112828

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112828

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1825687)								
HK1112820-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	16.4	17.2	4.8
HK1112903-006	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	18.0	18.8	4.2
EG: Metals and Major Cations (QC Lot: 1825671)								
HK1112687-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	19	0.0
HK1112831-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	8	9	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)										
HK1112687-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	81.0	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratory Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112829
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 07-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 15-JUN-2011
C-O-C number	: H016768			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 13-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112829

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112829

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1825687)								
HK1112820-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	16.4	17.2	4.8
HK1112903-006	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	18.0	18.8	4.2
EG: Metals and Major Cations (QC Lot: 1825671)								
HK1112687-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	18	19	0.0
HK1112831-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	8	9	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Combound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)										
HK1112687-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	81.0	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratory Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112830
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 07-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 15-JUN-2011
C-O-C number	: H016767			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 13-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112830

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112830

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1825687)								
HK1112820-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	16.4	17.2	4.8
HK1112903-006	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	18.0	18.8	4.2
EG: Metals and Major Cations (QC Lot: 1825671)								
HK1112687-002	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	18	19	0.0
HK1112831-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	8	9	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)										
HK1112687-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	81.0	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratory Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1112831
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 07-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 15-JUN-2011
C-O-C number	: H016766			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 13-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1112831

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1112831

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1825687)								
HK1112820-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	16.4	17.2	4.8
HK1112903-006	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	18.0	18.8	4.2
EG: Metals and Major Cations (QC Lot: 1825671)								
HK1112687-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	18	19	0.0
HK1112831-001	A-S01B1 3.00M-3.45M	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	8	9	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1825671)										
HK1112687-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	81.0	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113338
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 13-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 21-JUN-2011
C-O-C number	: H016770			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 16-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113338

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113338

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1830343)								
HK1113078-003	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	14.3	13.7	4.8
HK1113339-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	11.8	12.9	8.7
EG: Metals and Major Cations (QC Lot: 1831156)								
HK1113206-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	50	58	14.3
HK1113338-001	A-S24A1 1.50M-1.95M	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCs	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1831156)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	93.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113339
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 13-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 21-JUN-2011
C-O-C number	: H016771			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 16-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113339

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113339

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1830343)								
HK1113078-003	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	14.3	13.7	4.8
HK1113339-001	A-S24C1 1.50M-1.95M	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	11.8	12.9	8.7
EG: Metals and Major Cations (QC Lot: 1831156)								
HK1113206-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	50	58	14.3
HK1113338-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCs	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1831156)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	93.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113340
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 13-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 21-JUN-2011
C-O-C number	: H016772			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 16-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113340

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113340

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1830343)								
HK1113078-003	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	14.3	13.7	4.8
HK1113339-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	11.8	12.9	8.7
EG: Metals and Major Cations (QC Lot: 1831156)								
HK1113206-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	50	58	14.3
HK1113338-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Combound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1831156)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	93.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113341
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 13-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 21-JUN-2011
C-O-C number	: H016773			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 16-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK111334

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113341

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1830343)								
HK1113078-003	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	14.3	13.7	4.8
HK1113339-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	11.8	12.9	8.7
EG: Metals and Major Cations (QC Lot: 1831156)								
HK1113206-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	50	58	14.3
HK1113338-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCs	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1831156)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	93.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113430
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: --	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 14-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 24-JUN-2011
C-O-C number	: H016774			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 22-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113430

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113430

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1834060)								
HK1113552-003	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	15.1	16.1	6.6
HK1113437-002	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	49.5	49.5	0.0
EG: Metals and Major Cations (QC Lot: 1834034)								
HK1113379-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	6	7	0.0
HK1113436-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	6	5	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1834034)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	88.9	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1834034)										
HK1113379-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.3	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113432
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 14-JUN-2011
Order number	GE/2009/16.15			Issue Date	: 24-JUN-2011
$\mathrm{C}-\mathrm{O}-\mathrm{C}$ number	: H016775			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 22-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113432

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113432

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1834060)								
HK1113552-003	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	15.1	16.1	6.6
HK1113437-002	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	49.5	49.5	0.0
EG: Metals and Major Cations (QC Lot: 1834034)								
HK1113379-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	6	7	0.0
HK1113436-002	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	6	5	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1834034)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	88.9	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1834034)										
HK1113379-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.3	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113967
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 18-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 29-JUN-2011
C-O-C number	: H016776			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 28-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113967

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1842625)								
HK1113896-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	23.0	20.7	10.6
HK1113967-001	A-SG10C1 1.50M-1.95M	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	39.0	39.6	1.3
EG: Metals and Major Cations (QC Lot: 1844617)								
HK1113898-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	14	17	18.9
HK1113971-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	11	11	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	96.4	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)										
HK1113891-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	97.4	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113968
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 18-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 29-JUN-2011
C-O-C number	: H016778			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 28-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113968

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113968

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1842625)								
HK1113896-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	23.0	20.7	10.6
HK1113967-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	39.0	39.6	1.3
EG: Metals and Major Cations (QC Lot: 1844617)								
HK1113898-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	14	17	18.9
HK1113971-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	11	11	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	96.4	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)										
HK1113891-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	97.4	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 6
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113969
Address	:	Address	11/F., Chung Shun Knitting Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: --	Telephone	: +852 26101044		
Facsimile	: ----	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 18-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 30-JUN-2011
C-O-C number	: H016777			No. of samples received	: 4
Site	: LMC LOOP AREA A			No. of samples analysed	: 4
This report may not be reproduced except with prior written approval from the testing laboratory.		This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.			
		Signatories			Authorised results for
		Fung Lim Chee, Richard		General Manager	Inorganics

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 28-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113969

Sample(s) were received in a chilled condition.
Water sample(s) analysed and reported on an as received basis.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Water sample(s) were filtered prior to dissolved metal analysis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

3 of 6
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113969

Page Number

4 of 6
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT
HK1113969 HK1113969

Work Order

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1842625)								
HK1113896-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	23.0	20.7	10.6
HK1113967-001	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	----	0.1	\%	39.0	39.6	1.3
EG: Metals and Major Cations (QC Lot: 1844617)								
HK1113898-001	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	14	17	18.9
HK1113971-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	11	11	0.0
Matrix: WATER				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EG: Metals and Major Cations - Filtered (QC Lot: 1842734)								
HK1113969-003	A-SG10C1 EQUIPMENT BLANK	EG020: Arsenic	7440-38-2	10	$\mu \mathrm{g} / \mathrm{L}$	<10	<10	0.0

Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	96.4	----	85	115	----	----
Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike			Recove	mits (\%)		(\%)
Method: Compound CAS Number	LOR	Unit	Result	Concentration	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 1842734)										
EG020: Arsenic 7440-38-2	10	$\mu \mathrm{g} / \mathrm{L}$	<10	$100 \mu \mathrm{~g} / \mathrm{L}$	90.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
HK1113891-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	97.4	----	75	125	----	----
Matrix: WATER					Matrix	S) and	ike Dup	(MSD)		
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Combound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 1842734)										
HK1113786-004	Anonymous	EG020: Arsenic	7440-38-2	$100 \mu \mathrm{~g} / \mathrm{L}$	92.4	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113971
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 20-JUN-2011
Order number	GE/2009/16.15			Issue Date	: 29-JUN-2011
C-O-C number	: H016781			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 28-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113971

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113971

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1842625)								
HK1113896-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	23.0	20.7	10.6
HK1113967-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	39.0	39.6	1.3
EG: Metals and Major Cations (QC Lot: 1844617)								
HK1113898-001	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	14	17	18.9
HK1113971-001	A-S24B1 4.50M-4.95M	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	11	11	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	96.4	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)										
HK1113891-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	97.4	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113973
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 20-JUN-2011
Order number	GE/2009/16.15			Issue Date	: 29-JUN-2011
C-O-C number	: H016780			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 28-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113973

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113973

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1842625)								
HK1113896-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	23.0	20.7	10.6
HK1113967-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	39.0	39.6	1.3
EG: Metals and Major Cations (QC Lot: 1844617)								
HK1113898-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	14	17	18.9
HK1113971-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	11	11	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	96.4	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)										
HK1113891-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	97.4	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1113976
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 20-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 29-JUN-2011
C-O-C number	: H016779			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 28-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1113976

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1113976

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1842625)								
HK1113896-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	23.0	20.7	10.6
HK1113967-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	39.0	39.6	1.3
EG: Metals and Major Cations (QC Lot: 1844617)								
HK1113898-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	14	17	18.9
HK1113971-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	11	11	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	96.4	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)										
HK1113891-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	97.4	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114027
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 21-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 29-JUN-2011
C-O-C number	: H016782			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 28-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1114027

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114027

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1842625)								
HK1113896-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	23.0	20.7	10.6
HK1113967-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	39.0	39.6	1.3
EG: Metals and Major Cations (QC Lot: 1844617)								
HK1113898-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	14	17	18.9
HK1113971-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	11	11	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	96.4	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)										
HK1113891-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	97.4	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	MR THOMAS CHAN	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114028
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: thomas.chan@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 21-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 29-JUN-2011
C-O-C number	: H016783			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 28-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1114028

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114028

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1842625)								
HK1113896-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	23.0	20.7	10.6
HK1113967-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	39.0	39.6	1.3
EG: Metals and Major Cations (QC Lot: 1844617)								
HK1113898-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	14	17	18.9
HK1113971-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	11	11	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	96.4	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1844617)										
HK1113891-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	97.4	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114170
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 22-JUN-2011
Order number	GE/2009/16.15			Issue Date	: 04-JUL-2011
C-O-C number	: H010647			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 30-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1114170

Sample(s) were received in a chilled condition
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114170

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1846857)								
HK1114167-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	22.8	23.3	2.2
HK1114174-004	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	19.8	21.1	6.5
EG: Metals and Major Cations (QC Lot: 1850829)								
HK1114171-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	13	12	0.0
HK1114550-001	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	3	3	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1850829)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.1	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1850829)										
HK1114170-001	A-SG10A1 4.50M-4.95M	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	83.8	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratory Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114171
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	----	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 22-JUN-2011
Order number	GE/2009/16.15			Issue Date	: 04-JUL-2011
C-O-C number	: H020437			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 30-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1114171

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114171

CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1846857)								
HK1114167-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	22.8	23.3	2.2
HK1114174-004	Anonymous	EA055: Moisture Content (dried @ 103 ${ }^{\circ} \mathrm{C}$)	-	0.1	\%	19.8	21.1	6.5
EG: Metals and Major Cations (QC Lot: 1850829)								
HK1114171-001	A-SG10B1 4.50M-4.95M	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	13	12	0.0
HK1114550-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	3	3	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1850829)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.1	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1850829)										
HK1114170-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	83.8	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114172
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: Iouisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: --	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 22-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 04-JUL-2011
C-O-C number	: H015189			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 30-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1114172

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114172

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1846857)								
HK1114167-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	22.8	23.3	2.2
HK1114174-004	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	19.8	21.1	6.5
EG: Metals and Major Cations (QC Lot: 1850829)								
HK1114171-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	13	12	0.0
HK1114550-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	3	3	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1850829)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.1	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1850829)										
HK1114170-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	83.8	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Group
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114173
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: Iouisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	: --	Facsimile	: +852 26102021		
Project	: PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	: ----	Date Samples Received	: 22-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 04-JUL-2011
C-O-C number	: H010648			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 30-JUN-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society Specific comments for Work Order: HK1114173

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

2 of 3
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114173

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1846857)								
HK1114167-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	22.8	23.3	2.2
HK1114174-004	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	19.8	21.1	6.5
EG: Metals and Major Cations (QC Lot: 1850829)								
HK1114171-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	13	12	0.0
HK1114550-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	3	3	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1850829)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.1	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1850829)										
HK1114170-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	83.8	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114853
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	:	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 30-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 12-JUL-2011
C-O-C number	: H016784			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114853

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.
This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried
out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114853

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858718)								
HK1114853-001	A-S20A1 1.50M-1.95M	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	17.7	17.5	1.1
HK1114929-008	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	12.2	11.0	10.1
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report										
Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	A-S20A1 1.50M-1.95M	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114984
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	:	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 30-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 12-JUL-2011
C-O-C number	: H016785			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114984

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.
This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried
out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3

- CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114984

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858718)								
HK1114853-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	17.7	17.5	1.1
HK1114929-008	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	12.2	11.0	10.1
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report										
Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114985
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	:	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 30-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 12-JUL-2011
C-O-C number	: H016786			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114985

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.
This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried
out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3

- CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114985

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858718)								
HK1114853-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	17.7	17.5	1.1
HK1114929-008	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	----	0.1	\%	12.2	11.0	10.1
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report										
Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	$:$ CIVIL ENGINEERING AND DEVELOPMENT
	DEPARTMENT
Contact	$:$ MS LOUISA CHEUNG
Address	$:$
E-mail	$:$ louisa.cheung@arup.com
Telephone	:---
Facsimile	$:---$
Project	$:$ PLANNING AND ENGINEERING STUDY ON
	DEVELOPMENT OF LOK MA CHAU LOOP -
	INVESTIGATION
Order number	$:$ GE/2009/16.15
C-O-c number	$:$ H016787
Site	$:$ LMC LOOP AREA A

Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 5
Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114986
Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: +852 26101044		
Facsimile	: +852 26102021		
Quote number	: ----	Date Samples Received	: 30-JUN-2011
		Issue Date	: 12-JUL-2011
		No. of samples received	: 4
		No. of samples analysed	: 4

This report may not be reproduced except with prior written approval from the testing laboratory.

This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6
Signatories Position Authorised results for
Fung Lim Chee, Richard \quad General Manager \quad Inorganics

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114986

Sample(s) were received in a chilled condition.
Water sample(s) analysed and reported on an as received basis.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Water sample(s) were filtered prior to dissolved metal analysis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

4 of 5
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114986

5 of 5
CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114986
Work Order

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858719)								
HK1114986-001	A-S20A1 3.00M-3.45M	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-\|	0.1	\%	12.8	14.2	10.6
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0
Matrix: WATER				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EG: Metals and Major Cations - Filtered (QC Lot: 1858880)								
HK1114986-004	A-S20A1 FIELD BLANK	EG020: Arsenic	7440-38-2	10	$\mu \mathrm{g} / \mathrm{L}$	<10	<10	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report										
Matrix: SOIL	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
EG020: Arsenic 7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	----	85	115	-	----
Matrix: WATER	Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Method: Compound CAS Number	LOR	Unit	Result		LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 1858880)										
EG020: Arsenic 7440-38-2	10	$\mu \mathrm{g} / \mathrm{L}$	<10	$100 \mu \mathrm{~g} / \mathrm{L}$	90.5	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	----	----
Matrix: WATER					Matrix) and	pike Dup	(MSD)		
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations - Filtered (QC Lot: 1858880)										
HK1114986-003	A-S20A1 EQUIPMANT BLANK	EG020: Arsenic	7440-38-2	$100 \mu \mathrm{~g} / \mathrm{L}$	87.9	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114988
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	:	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 30-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 12-JUL-2011
C-O-C number	: H016788			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114988

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.
This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried
out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3

- CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114988

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858719)								
HK1114986-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	12.8	14.2	10.6
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	16	16	0.0

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114989
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	:	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 30-JUN-2011
Order number	: GE/2009/16.15			Issue Date	: 12-JUL-2011
C-O-C number	: H016789			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114989

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.
This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried
out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3

- CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114989

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858719)								
HK1114986-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	12.8	14.2	10.6
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	16	16	0.0

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114991
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	:	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 02-JUL-2011
Order number	: GE/2009/16.15			Issue Date	: 12-JUL-2011
C-O-C number	: H016790			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114991

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.
This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried
out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3

- CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114991

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858719)								
HK1114986-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	12.8	14.2	10.6
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	Anonymous	EG020: Arsenic	7440-38-2	1	mg/kg	16	16	0.0

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114994
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	:	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 02-JUL-2011
Order number	: GE/2009/16.15			Issue Date	: 12-JUL-2011
C-O-C number	: H016791			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114994

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.

This report may not be reproduced except with prior written approval from the testing laboratory.
This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried
out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3
: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114994

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858719)								
HK1114986-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	12.8	14.2	10.6
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	A-S20B1 4.50M-4.95M	EG020: Arsenic	7440-38-2	1	mg/kg	16	16	0.0

Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)											
EG020: Arsenic	7440-38-2	1	mg/kg	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	----	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	----	----

ALS Technichem (HK) Pty Ltd

ALS Laboratarப Graup
 ANALYTICAL CHEMISTRY \& TESTING SERVICES

CERTIFICATE OF ANALYSIS

Client	: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT	Laboratory	: ALS Technichem HK Pty Ltd	Page	: 1 of 3
Contact	: MS LOUISA CHEUNG	Contact	: Chan Kwok Fai, Godfrey	Work Order	: HK1114997
Address	:	Address	11/F., Chung Shun Knitting Centre, 1-3 Wing Yip Street, Kwai Chung, N.T., Hong Kong		
E-mail	: louisa.cheung@arup.com	E-mail	: Godfrey.Chan@alsenviro.com		
Telephone	: ----	Telephone	: +852 26101044		
Facsimile	:	Facsimile	: +852 26102021		
Project	PLANNING AND ENGINEERING STUDY ON DEVELOPMENT OF LOK MA CHAU LOOP INVESTIGATION	Quote number	----	Date Samples Received	: 02-JUL-2011
Order number	: GE/2009/16.15			Issue Date	: 12-JUL-2011
C-O-C number	: H016792			No. of samples received	: 1
Site	: LMC LOOP AREA A			No. of samples analysed	: 1

General Comments

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release. When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes. The completion date of analysis is: 08-JUL-2011
Key: LOR = Limit of reporting; CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Specific comments for Work Order: HK1114997

Sample(s) were received in a chilled condition.
Soil sample(s) analysed on an as received basis. Result(s) reported on a dry weight basis.
Soil sample(s) as received, digested by In-house method E-ASTM D3974-81 based on ASTM D3974-81, prior to the determination of metals.
This document has been electronically signed by those names that appear on this report and are the authorised signatories. Electronic signing has been carried
out in compliance with procedures specified in the Electronic Transactions Ordinance of Hong Kong, Chapter 553, Section 6.

Signatories	Position	Authorised results for
Fung Lim Chee, Richard	General Manager	Inorganics

: 2 of 3

- CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT HK1114997

: CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT

Laboratory Duplicate (DUP) Report

Matrix: SOIL				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (\%)
EA/ED: Physical and Aggregate Properties (QC Lot: 1858719)								
HK1114986-001	Anonymous	EA055: Moisture Content (dried @ $103^{\circ} \mathrm{C}$)	-	0.1	\%	12.8	14.2	10.6
EG: Metals and Major Cations (QC Lot: 1862040)								
HK1114863-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	5	5	0.0
HK1114994-001	Anonymous	EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	16	16	0.0

Method Blank (MB), Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report											
Matrix: SOIL		Method Blank (MB) Report			Laboratory Control Spike (LCS) and Laboratory Control Spike Duplicate (DCS) Report						
		Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)				
Method: Compound	CAS Number		LOR	Unit	Result	LCS	DCS	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)											
EG020: Arsenic	7440-38-2	1	$\mathrm{mg} / \mathrm{kg}$	<1	$5 \mathrm{mg} / \mathrm{kg}$	89.8	--	85	115	----	----

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report						
				Spike Concentration	Spike Recovery (\%)		Recovery Limits (\%)		RPD (\%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number		MS	MSD	Low	High	Value	Control Limit
EG: Metals and Major Cations (QC Lot: 1862040)										
HK1114853-001	Anonymous	EG020: Arsenic	7440-38-2	$5 \mathrm{mg} / \mathrm{kg}$	77.6	----	75	125	--	----

[^3]
Appendix E

Responses to Comments

Civil Engineering and Development Department, New Territories North and West Development Office... 2
Environmental Protection Department, Environmental Assessment Division, Strategic Assessment Group ... 2

COMMENTS FROM RELATED DEPARTMENTS/PARTIES

No.	Comments	Responses
1.	Civil Engineering and Development Department, New Territories North and West Development Office Emily L. F. Chan, via email dated 09 September 2011	
	I refer to your letter ref. 209840/03/LYPC/TC/00394 dated 18.8.2011 submitting the supplementary CAR/RAP for Area A. Please note that I have no comment on the report except that the summary of test results of Stage 2 SI Works currently bound in Appendix D should be placed in Appendix C.	Noted. The summary of test results of Stage 2 SI Works will be placed in the corresponding appendix accordingly.
Please also incorporate comments from other departments in the report	Noted.	
2.	Environmental Protection Department, Environmental Assessment Division, Strategic Assessment Group Mr. Vincent Lau, via email dated 16 September 2011	I
I refer to the captioned Supplementary Contamination Assessment and Remediation Action Plan for Area A dated August 2011. Remments from our specialist colleague on land contamination/waste management (Dr. Jacqueline Wong, ph: 2835 1226) are given below:		

Agreement No. CE 53/2008 (CE)
Planning and Engineering Study on Development of Lok Ma Chau Loop - Investigation
Supplementary Contamination Assessment Report for Area A - Responses to Comments

| No. | Comments | Responses |
| :--- | :--- | :--- | :--- |

No.	Comments	Responses
	Section 5:The meaning of the first sentence in the second paragraph is unclear.	The second paragraph have been revised as follow: "According to the testing results, no further Arsenic exceedances were found at the sampling depths where such contamination was detected previously in Stage I SI. However, Arsenic concentrations in the soil samples collected from A-SO3al at 4.5-4.95 mbgl and from A-SO3cl at 1.5-1.95 mgbl have marginally exceeded the RBRGs of Rural Residential land uses. These two boreholes were considered as two additional contaminated boreholes and their respective possible contamination zones have been estimated."

[^0]: Figure 5.1
 Filist Isot

[^1]: Figure 5.2.1
 高

[^2]: ,

[^3]: A Campbell Brothers Limited Company

