AGREEMENT NO: CE 38/2008 (HY)
KAI TAK DEVELOPMENT - TRUNK ROAD T2 AND
INFRASTRUCTURE AT SOUTH APRON
INVESTIGATION, DESIGN AND CONSTRUCTION



# Appendix 4L

Emission of Kai Tak Cruise Terminal

## Appendix 4L

CE 38/2008(HY)
Kai Tak Development - Trunk Road T2 and Infrastructure at South Apron Investigation, Design and Construction
Emission of Kai Tak Cruise Terminal

| Cruise Vessel | Event     | Source ID | X-Coodinate | Y-Coordinate | Stack<br>Height (m) | Stack<br>Temp (K) | Stack<br>Diameter (m) | Stack<br>Exit Velocity<br>(m/s) | NOx (g/s) | RSP (g/s) |
|---------------|-----------|-----------|-------------|--------------|---------------------|-------------------|-----------------------|---------------------------------|-----------|-----------|
| Panamax       | Hotelling | H1a       | 839974.7    | 818474.4     | 52                  | 537               | 1.9                   | 24.6                            | 21.0698   | 2.1465    |
| Panamax       | Hotelling | H1        | 839974.7    | 818474.4     | 52                  | 537               | 1.9                   | 24.6                            | 42.1395   | 4.2930    |
| Panamax       | Hotelling | H2a       | 839683.2    | 818756.5     | 52                  | 537               | 1.9                   | 24.6                            | 21.0698   | 2.1465    |
| Panamax       | Hotelling | H2        | 839683.2    | 818756.5     | 52                  | 537               | 1.9                   | 24.6                            | 42.1395   | 4.2930    |

| Tug Boat   | Event | Source ID | X-Coodinate | Y-Coordinate | Stack<br>Height (m) | Stack<br>Temp (K) | Stack<br>Diameter (m) | Stack<br>Exit Velocity<br>(m/s) | NOx (g/s) | RSP (g/s) |
|------------|-------|-----------|-------------|--------------|---------------------|-------------------|-----------------------|---------------------------------|-----------|-----------|
| Tug Boat_1 |       | T1c       | 839917.8    | 818487.5     | 10                  | 523               | 1                     | 1.7                             | 0.7177    | 0.0574    |
| Tug Boat_2 |       | T1d       | 839989.9    | 818418.2     | 10                  | 523               | 1                     | 1.7                             | 0.7177    | 0.0574    |
| Tug Boat_3 |       | T2c       | 839626.3    | 818769.6     | 10                  | 523               | 1                     | 1.7                             | 0.7177    | 0.0574    |
| Tug Boat_4 | •     | T2d       | 839698.4    | 818700.2     | 10                  | 523               | 1                     | 1.7                             | 0.7177    | 0.0574    |

## **Emission Factors for Cruise Terminal**

## Marine Emission from Cruise Ships

Emission Rate = Engine Power x Loading Factor x Emission Factor x Low Load Adjustment Factor

| Type of Engine    | Engine Power, kW [1] | Loading Factor [2] | Emission Fac | ctor, g/kWh [3] | Low Load Factor [4] |      |
|-------------------|----------------------|--------------------|--------------|-----------------|---------------------|------|
| Type of Engine    | Engine Power, kw · · | Hotelling          | NOx          | RSP             | NOx                 | RSP  |
| Propulsion Engine | 88000                | 0                  | 14.00        | 1.43            | 4.63                | 7.29 |
| Auxiliary Engine  | 24464                | 0.416              | 14.70        | 1.44            | N/A                 | N/A  |
| Boiler            | 1000                 | 1                  | 2.10         | 0.80            | N/A                 | N/A  |

#### Note:

- [1] Engine Power for the Propulsion Engine Referred to the approved KTD EIA Report (AEIAR-130/2009) Appendix 6.4.
  - Engine Power for the Auxiliary Engine According to Table 3-20 of the Study on Marine Vessels Emissions Inventory, February 2012:
- Auxiliary Engine Power = 88000 x 0.278 = 24464 kW.
- Engine Power for the Boiler referred from Table 3-23 of the Study on Marine Vessels Emissions Inventory, February 2012 (assuming the passenger carrying capacity is more than 2600 for conservative approach).
- [2] Loading Factor for the Propulsion Engine Referred to Table 3-18 of the Study on Marine Vessels Emissions Inventory, February 2012. Loading Factor for the Auxiliary Engine - referred to Table 3-21 of the Study on Marine Vessels Emissions Inventory, February 2012.
- Loading Factor for the Boiler Assumed 100% loading as a conservative approach.
  [3] Emission Factor for the Propulsion Engine Referred to Table 3-27 of the Study on Marine Vessels Emissions Inventory, February 2012 (assuming the engine type of Medium Speed Diesel Engine and use of Heavy Fuel Oil, according to KTD EIA).
- Emission Factor for the Auxiliary Engine Referred to Table 3-28 of the Study on Marine Vessels Emissions Inventory, February 2012 (assuming the use of Heavy Fuel Oil for conservative approach).
- Emission Factor for the Boiler Referred from Table 3-29 of the Study on Marine Vessels Emissions Inventory, February 2012 (assuming the use of Heavy Fuel Oil for conservative approach).
- [4] Low Load Adjustment Factor Referred to Table 3-30 of the Study on Marine Vessels Emissions Inventory, February 2012.

## **Emission Rate of Hotelling**

| Pollutant |                   | Emission F       | Emission Rate for 60 mins [6] | Emission Rate for 30 mins [7] |       |                |
|-----------|-------------------|------------------|-------------------------------|-------------------------------|-------|----------------|
|           | Propulsion Engine | Auxiliary Engine | Boiler                        | Total                         |       | 30 1111113 [7] |
| NOx       | 0.00              | 149.60           | 2.10                          | 151.70                        | 42.14 | 21.07          |
| RSP       | 0.00              | 14.65            | 0.80                          | 15.45                         | 4.29  | 2.15           |

### Note

- [6] Referred to the approved KTD EIA Report, it is assumed that the cruise vessel is not equipped with cold-ironing and hence hotelling emission is anticipated throughout the hotelling period.
- [7] Referred to the approved KTD EIA Report, the hotelling period of 30 minutes during the berthing period is adopted.

## Marine Emission from Tugboat (assuming all Rivertrade tugboat)

Emission Rate = Engine Power x Loading Factor x Emission Factor

| Type of Engine    | Engine Power, kW <sup>[1]</sup> Loading Factor <sup>[2]</sup> |             | Emission Factor, g/kWh [3] |      |  |
|-------------------|---------------------------------------------------------------|-------------|----------------------------|------|--|
| Type of Eligilie  | Engine Power, KW                                              | Maneuvering | NOx                        | RSP  |  |
| Propulsion Engine | 2371                                                          | 0.30        | 13.20                      | 0.72 |  |
| Auxiliary Engine  | 220                                                           | 0.43        | 10.00                      | 0.40 |  |

#### Note

- [1] Engine Power fo the Propulsion Engine Referred to Table 4-5 of the Study on Marine Vessels Emissions Inventory, February 2012. Engine Power for the Auxiliary Engine Referred to Table 4-6 of the Study on Marine Vessels Emissions Inventory, February 2012.
- [2] Loading Factor for the Propulsion Engine Referred to Table 4-7 of the Study on Marine Vessels Emissions Inventory, February 2012. Loading Factor for the Auxiliary Engine Referred to Table 4-10 of the Study on Marine Vessels Emissions Inventory, February 2012.
- [3] Emission Factor for the Propulsion Engine & Auxiliary Engine Referred to Table 4-16 of the Study on Marine Vessels Emissions Inventory, February 2012.

**Emission Rate of Maneuvering** 

| Pollutant |                   | Emission Rate (kg/hr) |       | Emission Rate for 15 mins [4] |
|-----------|-------------------|-----------------------|-------|-------------------------------|
|           | Propulsion Engine | Auxiliary Engine      | Total |                               |
| NOx       | 9.39              | 0.95                  | 10.34 | 0.72                          |
| RSP       | 0.51              | 0.04                  | 0.55  | 0.04                          |

## Note:

[4] Referred to the approved KTD EIA Report, the tugboat will assist to the cruise vessel during the 15 minutes maneuvering motion.

## Marine Emission from Tugboat (assuming all OGV tugboat)

Emission Rate = Engine Power x Loading Factor x Emission Factor x Low Load Adjustment Factor

| Type of Engine    | 5 B LW[1]                       | Loading Factor [2] | Emission Fac | ctor, g/kWh [3] | Low Load Factor [4] |      |
|-------------------|---------------------------------|--------------------|--------------|-----------------|---------------------|------|
| Type of Engine    | Engine Power, kW <sup>[1]</sup> | Maneuvering        | NOx          | RSP             | NOx                 | RSP  |
| Propulsion Engine | 2344                            | 0.02               | 14.00        | 1.43            | 4.63                | 7.29 |
| Auxiliary Engine  | 520                             | 0.45               | 14.70        | 1.44            | N/A                 | N/A  |

## Note:

- [1] Engine Power for the Propulsion Engine Referred to Table 3-15 of the Study on Marine Vessels Emissions Inventory, February 2012. Engine Power for the Auxiliary Engine - According to Table 3-20 of the Study on Marine Vessels Emissions Inventory, February 2012: Auxiliary Engine Power = 2344 x 0.222 = 520 kW.
- [2] Loading Factor for the Propulsion Engine Referred to Table 3-18 of the Study on Marine Vessels Emissions Inventory, February 2012. Loading Factor for the Auxiliary Engine referred to Table 3-21 of the Study on Marine Vessels Emissions Inventory, February 2012. Loading Factor for the Boiler Assumed 100% loading as a conservative approach.
- [3] Emission Factor for the Propulsion Engine Referred to Table 3-27 of the Study on Marine Vessels Emissions Inventory, February 2012 (assuming the engine type of Medium Speed Diesel Engine and use of Heavy Fuel Oil, according to KTD EIA).

  Emission Factor for the Auxiliary Engine Referred to Table 3-28 of the Study on Marine Vessels Emissions Inventory, February 2012 (assuming the use of Heavy Fuel Oil for conservative approach).
- [4] Low Load Adjustment Factor Referred to Table 3-30 of the Study on Marine Vessels Emissions Inventory, February 2012.

## **Emission Rate of Hotelling**

| Pollutant | -                 | Emission Rate for 15 mins [5] |       |      |
|-----------|-------------------|-------------------------------|-------|------|
|           | Propulsion Engine | Auxiliary Engine              | Total |      |
| NOx       | 3.04              | 3.44                          | 6.48  | 0.45 |
| RSP       | 0.49              | 0.34                          | 0.83  | 0.06 |

## Note:

[5] Referred to the approved KTD EIA Report, it is assumed that the cruise vessel is not equipped with cold-ironing and hence hotelling emission is anticipated throughout the hotelling period.