Appendix 3.18a -	Emission Rates	of Portal,	Top Openir	ngs and Ver	tilation Exh	aust (Hr00-01)

													Hr	00-01 (2015 EI	A_19-12-2011	.xls)							Rate (g/km-		Emissic (g/	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC Total	PM	NOx	PM	NOx
A ^(I)	73	Lin Cheung Rd (underpass)	Northbound	3	73	215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0% 10	0.0955238	1.2304077	0.0004165	0.0053642
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0% 10	0.0955238	1.2304077	0.0015517	0.0199873
C(I)	73	Lin Cheung Rd (underpass)	Northbound		110		53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0% 10	0.0955238	1.2304077	0.0006275	0.0080831
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3	176	215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0% 10	0.0955238	1.2304077	0.0010041	0.0129330
E(I)	72	Lin Cheung Rd (underpass)	Southboun		155	265	55%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	2% 10	0.0936651	1.1839523	0.0010687	0.0135086
F ⁽¹⁾			Southboun	3	172	265	55%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	2% 10	0.0936651	1.1839523	0.0011859	0.0149902
G (i)	118	Lin Cheung Rd (depressed)	Southboun		121	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	0%	0%	2%	2%	0%	2% 10	0.0924976	1.2001108	0.0008550	0.0110927
H ^(l)	119	Austin Rd W (depressed)	Eastbound		173	435	32%	1%	51%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	196	1%	2% 10	0.1342209	1.4577666	0.0028058	0.0304734
I ⁽¹⁾			Eastbound				36%	0%	56%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%		0% 10		1.2475830	0.0009291	0.0084039
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound		194	165	33%	0%	45%	0%	3%	3%	3%	3%	0%	0%	6%	0%	0%	3%	0%	0% 10	0.1363135	1.5185645	0.0012121	0.0135026
K ⁽ⁱ⁾			Southboun				70%	0%	30%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0% 10		0.5373284	0.0000855	0.0007090
L(0)	112	Lin Cheung Rd (depressed)	Northbound	3	95	260	54%	2%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0% 10	0.0950957	1.2108087	0.0006525	0.0083075
M ⁽¹⁾			Southboun		56		54%	0%	24%	0%	2%	2%	4%	4%	2%	2%	0%	0%	2%	2%	0%	0% 10		1.1887411	0.0003362	0.0042531
N ^(I)			Northbound		56		52%	1%	22%	0%	2%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1% 10		1.2034973	0.0006144	0.0076756
O ⁽¹⁾			Eastbound		52		3470	1%	49%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1% 10		1.4683894	0.0006732	0.0075296
P ^(l)	110	Austin Rd W (depressed)	Westbound		52	205	32%	0%	49%	0%	2%	2%	5%	2%	0%	0%	0%	0%	0%	2%	2%	2% 10		1.7179691	0.0004066	0.0050871
W ⁽¹⁾			Northbound		1970		55%	0%	14%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%			0% 10		1.4126668	0.0342503	0.8851339
			Bothbound		404		50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%		0%	0% 10		1.3796668	0.0006645	0.0061932
			Bothbound		361		38%	0%	31%	0%	0%	0%	0%	8%	0%	0%	23%	0%	0%	0%	0%	0% 10		1.5226167	0.0010929	0.0099245
			Bothbound		521		33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0% 10		2.1257746	0.0009323	0.0092294
X ₀₃	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	965	35%	1%	11%	1%	7%	4%	11%	11%	2%	1%	1%	0%	1%	10%	5%	1% 10	0.1170200	2.5587013	0.0056462	0.1234573

nario 2		10%									
		10.0	Calculated by th (extracted from the Road Works at the Emission Ra	he approved EIA of Vest Kowloon)	Volume source by number of po involved	rtal/opening	Area source - divided by are	a		te	
			Opening	ic - I of tai/	Portal/Oper	ning	Opening				
			(g/s)		(g/s) - Volun		(g/m2-s) -				
		Portal/ opening	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
			rce Ty							Scenario	
		A Are				-	8.47836E-08			1	0.1 x Tunnel Section A
80.935 0.87	3	B Are				-	4.91863E-06			1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
		CE Are				-	3.0554E-07	3.89511E-06	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
		D1-D7	0.001789222	0.0230463		0.002194889		-			
		D8-D14 Vol				0.001097445		-		1	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F Are						9.78301E-06	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
		11-14	0.006935946	0.0793295		0.013221579		-		1	1 x lunnel Section 1 + 1 x lunnel Section G + 1 x lunnel Section H + 0.14 x lunnel Section K + 0.9 x 0.38 x lunnel Section O + 0.9 x (1/3 x (lunnel Section
			ime		0.000577995	0.006610789		-	-		Internal Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
		JKO1 Are						1.95053E-06	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		L1-L5	0.001645478	0.0187941		0.002505873	-	-	-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		L6-L10 Vol				0.001252937	-	-	-	1	Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of
		M1-M4	0.000475272	0.0059643		0.000994057	-	-	-		
		M5-M8 Vol	ime			0.000497029		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4	0.000475272	0.0059643		0.000994057		-	-		
		N5-N8 Vol	ime		3.9606E-05	0.000497029	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4	0.001582175	0.0168551		0.00280919		-	-		1 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		P5-P8 Vol	ime			0.001404595		-	-	1	Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D + traff
		W1-W8	0.034250253	0.8851339		0.073761157		-	-		
		W9-W16 Vol				0.036880578		-	-	1	1 x Tunnel W
		701-710	0.005646217	0.1234573	0.000376414	0.008230489		-	-	1	
		711-720 Vol	ime			0.004115245	-	-	-	-	1 x Tunnel X
		BaseA Vol	me 0.000896544	0.008449	0.000896544	0.008449025					1/3 x Basement roads A,B,C
% of Serving	Rd	BaseC	0.000896544	0.008449	0.000896544	0.008449025					1/3 x Basement roads A,B,C
-	Out of 500m	801-820 Vol	ime		-	-		-	-	1	1 x Tunnel Y
	Out of 500m	901-903			-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906 Val	ime		-	-	-	-	-	1	
	Out of 500m	V1 Poi	t							from 1-4	

Appendix 3.18a - Emission	Rates of Por	tal, Top Openings and Ventilation Ex	khaust (Hr01-02)																								
																								Emission		Emission	a Rate
														Hr 01-02 (2015 E	BA 19-12-2011.	.xls)								Rate		(g/s	i)
															1	1								PM	NOx	PM	NOx
Remarks (Tunnel name -																											
Portal & top opening of																											
underpass in EIA of Rd	WKCD																										
Works in WK)		Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLR	PV4	PV5	NFR6	NFB7	NFR8	FBSD	FRDD	MC	Total				/
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	210	55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0004016	0.0052242
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	210	55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0014965	0.0194656
C ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	110	210	55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0006052	0.0078721
D ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	176	210	55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0009683	0.0125954
E ^(t)	72	Lin Cheung Rd (underpass)	Southbound	3	155	115	61%	0%	26%	0%	4%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0856195	0.9034429	0.0004239	0.0044733
F ^(l)	72	Lin Cheung Rd (depressed)	Southbound	3	172	115	61%	0%	26%	0%	4%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0856195	0.9034429	0.0004704	0.0049639
G ^(l)	118	Lin Cheung Rd (depressed)	Southbound	3	121	130	58%	0%	23%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0920525	1.0899955	0.0004022	0.0047627
H _(i)	119	Austin Rd W (depressed)	Eastbound	3	173	425	31%	1%	52%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1397561	1.5027165	0.0028543	0.0306909
(t)	117	Austin Rd W (depressed)	Eastbound	3	194	115	35%	0%	57%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1433709	1.2930617	0.0008885	0.0080134
$J^{(l)}$	116	Austin Rd W (depressed)	Westbound	3	194	155	32%	0%	48%	0%	3%	3%	3%	3%	0%	0%	3%	0%	0%	3%	0%	0%	100%	0.1409186	1.5411581	0.0011771	0.0128730
K ⁽⁰⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	25	60%	0%	40%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0867808	0.7080664	0.0000573	0.0004671
L ^(f)	112	Lin Cheung Rd (depressed)	Northbound	3	95	270	54%	2%	24%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0969609	1.2051710	0.0006908	0.0085868
M ^(t)	84	Lin Cheung Rd	Southbound	3	56	105	62%	0%	24%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0835398	0.9063790	0.0001364	0.0014804
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	420	52%	1%	23%	0%	2%	2%	6%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1014759	1.2541069	0.0006630	0.0081935
O(1)	111	Austin Rd W (depressed)	Eastbound	3	52	340	29%	1%	53%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1423837	1.5668165	0.0006993	0.0076948
P ^(l)	110	Austin Rd W (depressed)	Westbound	3	52	195	28%	0%	51%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1466236	1.8155317	0.0004130	0.0051137
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	560	56%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0376112	1.0372349	0.0115257	0.3178549
	A	Internal Rd A	Bothbound	4	404	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1181331	1.2262913	0.0001989	0.0020643
	В	Internal Rd B	Bothbound	4	361	20	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0901715	0.9342677	0.0001808	0.0018737
	С	Internal Rd C	Bothbound	4	521	10	50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1771997	1.8394369	0.0002564	0.0026621
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	650	35%	1%	12%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	5%	1%	100%	0.1184204	2.5744043	0.0038487	0.0836681

| Proceedings | 144 | Reprovision of Gascoigne Ref Pyower | Westbound | 3 | 180 | 1850 | 33% | 1% | 12% | 17% |
| Water (II) Turnerl name is based on Protal is to preparing of undergase in EAA of Read Motion in West Nowton.
| Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutants multiplied by traffic tow of each roads.

Scenario 2		10%										
-				Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA t West	Volume source - by number of po involved	rtal/opening	Area source - co	alculated by em	ission rate		
				Emission Rate	- Portal/	Emission Rate						
				Opening		Opening		Emission Rat		ening		
				(g/s)		(g/s) - Volume		(g/m2-s) - Are				
Length of opening		Portal/ opening	Source Type	PM	NOx	PM	NOx	PM	NOx		Formula from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
Length of opening				4.0162E-05	0.0005334			8 17634F-08	1.06356E-06			Emission carculation formula (extracted from the approved f.F.A of road works at west rownoon) O.1 x Turnel Section A
80.935 0.873		B		0.00162177				4.7434E-08	6.17014E-05	341.9	i	10.1 x Turnier Seutron A ± 1 y Turnol Section B) ± 1/2 y / 30 935 / 50) y / 0.9 y Turnol Section A ± 1 y Turnol Section B)
60.530 0.673		CF	Area	0.00012653	0.0210337	-	-		2.42674E-06		1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B) 0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
		D1-D7		0.00172549		0.000164332	0.002137599			-		
		D8-D14	Volume			8.2166E-05	0.0010688	-				0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F	Area	8.5197E-05	0.000899		-	3.07018E-07	3.2396E-06	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
		11-14		0.00519682	0.0548451		0.009140845			-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
		15-18	Volume			0.000433069	0.004570423			-		Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of T
				0.00021376		-	-		1.50188E-06	1542.7	1	[0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x (1 x Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel T x Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel Section Intern
		L1-L5		0.00142412	0.0165723	0.000189883	0.002209646					
			Volume				0.001104823				1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)))
		M1-M4 M5-M8	Volume	0.00039971	0.004837	6.66187E-05 3.33093E-05	0.00080616					0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00039971	0.004927		0.00040308			-		U.S.X (Turner Section WF + Turner Section V)
			Volume	0.00039971	0.004637		0.00040308	-	-	_		0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00132658	0.014759		0.002459831	_	_	_		11 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			Volume	0.00102000	0.01-1700		0.002439936	-	-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section D)))
		W1-W8		0.01152574	0.3178549		0.026487906	-		-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		W9-W16	Volume			0.000480239	0.013243953	-	-	-	1	1 x Tunnel W
		701-710		0.00384866	0.0836681		0.005577876	-			1	
			Volume				0.002788938				-	1 x Tunnel X
			Volume	0.00021205	0.0022	0.00021205	0.002200019					1/3 x Basement roads A,B,C
% of Serving		BaseC		0.00021205	0.0022	0.00021205	0.002200019					1/3 x Basement roads A,B,C
	Out of 500m		Volume			-	-	-	-	-		1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	

Appendix 3.18a - Emissio	n Rates of Port	al, Top Openings and Ventilation Ex	khaust (Hr02-03)																								
																								Emission		Emission	Rate
													Hr	02-03 (2015 E	BA 19-12-2011.	xis)								Rate		(g/s))
																								PM	NOx	PM	NOx
Remarks (Tunnel name -																											
Portal & top opening of																											1
underpass in EIA of Rd	WKCD																										
Works in WK)	section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	73	135	56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0003043	0.0037416
B ^(t)		Lin Cheung Rd (underpass)	Northbound	3	272	135	56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0011339	0.0139413
C ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	110	135	56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0004585	0.0056380
D(0)		Lin Cheung Rd (underpass)	Northbound	3	176	135	56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0007337	0.0090208
E ^(t)	72	Lin Cheung Rd (underpass)	Southbound	3	155	110	59%	0%	27%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0882718	0.9397428	0.0004181	0.0044507
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	110	59%	0%	27%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0882718	0.9397428	0.0004639	0.0049389
G ^(l)	118	Lin Cheung Rd (depressed)	Southbound	3	121	135	56%	0%	22%	0%	4%	0%	7%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1024286	1.2617028	0.0004648	0.0057250
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	440	30%	1%	52%	0%	1%	1%	5%	2%	1%	1%	0%	0%	1%	1%	1%	2%	100%	0.1425085	1.5675662	0.0030133	0.0331453
(t)	117		Eastbound	3	194	120	33%	0%	54%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	4%	100%	0.1364513	1.2514258	0.0008824	0.0080926
J ^(l)			Westbound	3	194	145	34%	0%	52%	0%	0%	0%	3%	3%	0%	0%	0%	0%	0%	0%	3%	3%	100%	0.1300228	1.5319528	0.0010160	0.0119705
K ^(l)		Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0551335	0.4595877	0.0000291	0.0002426
L ^(t)	112	Lin Cheung Rd (depressed)	Northbound	3	95	185	54%	0%	24%	0%	3%		5%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1010261	1.1767331	0.0004932	0.0057447
M ^(l)	84	Lin Cheung Rd	Southbound	3	56	100	60%	0%	25%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0864728	0.9467793	0.0001345	0.0014728
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	275	55%	0%	24%	0%	4%	2%	5%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0962872	1.2157264	0.0004119	0.0052006
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	350	30%	1%	51%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	1%	1%	100%	0.1422522	1.6214943	0.0007192	0.0081976
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	190	26%	3%	53%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	0%	3%	3%	100%	0.1473824	1.7098931	0.0004045	0.0046927
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	545	55%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0372391	1.0434813	0.0111061	0.3112038
	A	Internal Rd A	Bothbound	4	404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0057955	0.0567367	0.0000033	0.0000318
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1048959	1.1361667	0.0001578	0.0017090
	С	Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.3088922	3.3517635	0.0002235	0.0024254
Χ ^{rr}		Reprovision of Gascoigne Rd Flyover		3	180	645	34%	1%	12%	1%	7%	4%	12%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1178284	2.5455230	0.0038000	0.0820931

Scenario 2			10%										
					Calculated by the (extracted from to of Road Works a Kowloon) Emission Rate	he approved Ell at West	Volume source by number of provinced	portal/opening	Area source - c divided by area	alculated by emi-	ssion rate		
						- Portal/				e - Portal/ Ope			
					Opening		Opening				ning		
					(g/s)	les an	(g/s) - Volun		(g/m2-s) - Are				
			Portal/ opening	,	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
			ID.	Source Type	3.0431E-05							Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
		0.873	A		0.00122881			-	6.19518E-08 3.59406F-06	7.61727E-07 4.41907F-05	491.2	1	0.1 x Tunnel Section A 2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
	80.935	0.873	CE.	Area	0.00122881	0.0151088	-		3.59406E-06 1.66147F-07		635.3	1	2/3 X (U.9 X Turnel Section A + 1 X Turnel Section B) + 1/3 X (30.935 / 50) X (U.9 X Turnel Section A + 1 X Turnel Section B) 0.1 x Turnel Section C + 0.1 x (1/3 x (1.9.065 / 50) x (0.9 x Turnel Section B) + 0.1 x Turnel Section E
			D1-D7		0.00010333					1.53431E-00	030.3	-	6.1 X Tullinet Section C + 0.1 X (15.0057.50) X (0.5 X Tullinet Section A + 1 X Tullinet Section B)) + 0.1 X Tullinet Section B
			D8-D14	Volume			6.22568E-05		-	_	-	1	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			F	Area	8.4018E-05	0.0008945		-	3.02766E-07	3.22325E-06	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
			11-14		0.00539457	0.0582169		0.009702809	-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume			0.000449548			-	-		Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of
			JKO1	Area	0.00018884				1.22406E-07	1.41086E-06	1542.7	1	0.1 x Turnel Section J + 0.1 x (1 - 0.14) x Turnel Section N + 0.1 x Turnel Section O + 0.1 x 1/3 x (Turnel Section I hernal Road B + Turnel Section I hernal Road B
			L1-L5	1	0.00115707	0.0134988		0.001799839	-	-	-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Hoad A + Tunnel Section Internal Hoad B
			L6-L10	Volume			7.71377E-05	0.000899919	-		-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)))
			M1-M4		0.0002732	0.0033367		0.000556115	-				
			M5-M8	Volume	0.0002732		2.2767E-05	0.000278057	-			1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4 N5-N8	Volume	0.0002732	0.0033367	4.5534E-05 2.2767E-05	0.000556115	-				0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00116622	0.0122575		0.000278057	-	-	-		13.3 x (tuline) Section N + 10 mine) Section N) 11 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			P5-P8	Volume	0.00116622	0.0133373	9.71849F-05	0.002226258	_	_		,	Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I)
			W1-W8	Voiding	0.01110605	0.3112038	0.000925504	0.025933649	_	-	_		Contournational road of / Turno now of the sol contourn / Turn
			W9-W16	Volume	0.01110000	0.0112000	0.000462752	0.012966825		-	-	1	1 x Tunnel W
			701-710		0.00379997	0.0820931	0.000253331	0.005472875	-	-	-	1	
			711-720	Volume			0.000126666	0.002736437	-				1 x Tunnel X
			BaseA	Volume	0.00012818	0.0013887	0.000128184	0.001388731					1/3 x Basement roads A,B,C
	% of 5	Serving Rd	BaseC		0.00012818	0.0013887	0.000128184	0.001388731					1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
		Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
		Out of 500m	904-906	Volume			-	-	-	-	-	1	
		Out of 500m	V1	Point								from 1-4	
						1						l	

Appendix 3.18a - Emission	Rates of Port	al, Top Openings and Ventilation Ex	chaust (Hr03-04)																								
																								Emission		Emission	Rate
														ir 03-04 (2015 E	BA 19-12-201	I.xis)								Rate		(g/s)	j l
															1	T								PM	NOx	PM	NOx
Remarks (Tunnel name -																											/ · · · · ·
Portal & top opening of																											
underpass in EIA of Rd	WKCD																										
Works in WK)		Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	73	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0001174	0.0012855
B ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	272	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0004373	0.0047897
C ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	110	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0001768	0.0019370
D ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	176	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0002829	0.0030992
E ⁽⁰⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0970091	1.1690494	0.0005012	0.0060401
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0970091	1.1690494	0.0005562	0.0067025
G ^(f)	118	Lin Cheung Rd (depressed)	Southbound	3	121	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1089485	1.3270861	0.0005493	0.0066907
H ^(t)	119		Eastbound		173	225	27%	2%	53%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1423527	1.7284372	0.0015392	0.0186887
(t)	117		Eastbound		194	60	33%	0%	58%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1543550	1.4791575	0.0004991	0.0047826
J ⁽¹⁾	116		Westbound	3	194	70	36%	0%	57%	0%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1472623	1.3912920	0.0005555	0.0052483
K ^(l)			Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0543449	0.4569923	0.0000287	0.0002412
L ⁽⁰⁾			Northbound	3	95		59%	0%	29%	0%	0%	0%	6%	6%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0929589	0.9520466	0.0002085	0.0021355
M ^(l)	84		Southbound	3	56	115	52%	0%	22%	0%	4%	4%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1036526	1.2775418	0.0001854	0.0022854
N ^(t)	77		Northbound	3	56	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1089485	1.3270861	0.0002542	0.0030965
O ⁽¹⁾	111		Eastbound	3	52	180	22%	3%	53%	0%	3%	3%	6%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1489664	1.9219048	0.0003873	0.0049970
P ⁽¹⁾			Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1413646	1.2954102	0.0001940	0.0017776
W ⁽¹⁾		West Kowloon Highway (WKH)	Northbound	2	1970	545	55%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0372391	1.0452387	0.0111061	0.3117279
			Bothbound		404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0057589	0.0568122	0.0000032	0.0000319
			Bothbound		361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1048837	1.1379078	0.0001578	0.0017116
_			Bothbound		521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.3088921	3.3569111	0.0002235	0.0024291
X**	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	655	34%	1%	11%	1%	7%	5%	12%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1202185	2.5743785	0.0039372	0.0843109

Scenario 2			10%										
occidio 2			10.8		Calculated by th (extracted from t of Road Works a Kowloon)	the approved EIA at West	Volume source by number of po involved	ortal/opening	Area source - c divided by area	alculated by emi	ssion rate		
					Emission Rate	e - Portal/	Emission Rat						
					Opening		Opening			e - Portal/ Ope	ning		
					(g/s)		(g/s) - Volume		(g/m2-s) - Are				
			Portal/ opening	Source Type	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
			A	Area	1.1736E-05	0.0001285		_	2.38919F-08	2.61698E-07	491.2	1	0.1 x Tunnel Section A
	80.935	0.873	В	Area	0.00047389		-	_	1.38606E-06	1.51821E-05	341.9	1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
			CE	Area	7.4706E-05		-	-	1.17591E-07	1.37461E-06	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
			D1-D7		0.0005042	0.0055227		0.000525973			-		
			D8-D14	Volume			2.40095E-05		-	-	-	1	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			F	Area	0.00010073	0.0012139			3.62983E-07	4.37428E-06	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
			11-14		0.00365942	0.043153		0.007192169	-		-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume			0.000304951				-		Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of T
			JKO1	Area	0.00010957				7.1022E-08	7.67712E-07	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			L1-L5		0.00058548	0.0066282	7.80635E-05		-		-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Hoad A + Tunnel Section Internal Hoad B + Tunnel
			L6-L10	Volume			3.90317E-05			-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)))
			M1-M4	4	0.00021982	0.002691	3.66364E-05		-		-		
			M5-M8	Volume				0.000224246	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4	ł	0.00021982	0.002691	3.66364E-05	0.000448493	-		-	┥.	0.5 x (Tunnel Section M + Tunnel Section N)
			N5-N8 P1-P4	Volume	0.00064181	0.0050440	1.83182E-05 0.000106968	0.000224248	-	-	-	1	U.5.x (Turnel Section M + 1 unnel Section N) 1.x Turnel Section P + 0.9 x 0.76 x Turnel Section J + 0.9 x 0.86 x Turnel Section K + 0.9 x (1/3 x (Turnel Section Internal Road A + Turnel Section Internal Road B + Turnel
			P1-P4 P5-P8	Volume	0.00064181	0.0059116	5.34842E-05	0.000985265	-	-	-	⊣.	Section Internal Road C 1x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P)
			W1-W8	voiume	0.01110605	0.2117270		0.000492633	-	-	-	-	Section internal road C) X (trainer low or runner Section F) (trainer low or runner Section F + trainer low or runner Section F)))
			W9-W16	Volume	0.01110603	0.3117279	0.000925504	0.025977327	-	-	-	٠,	1 x Tunnel W
			701-710		0.00393716	0.0842100		0.005620726		-	_	-	1 A Turner W
			711-720	Volume	0.00333710	0.0045103		0.002810363				L.	1 x Tunnel X
			BaseA	Volume	0.00012817	0.0013909	0.000128171	0.00139086					1/3 x Basement roads A.B.C
	% of 5	Serving Rd	BaseC	Voiding	0.00012817			0.00139086					1/3 x Basement roads A.B.C
	,0 OI C	Out of 500m	801-820	Volume				-	-		-	1	1x Tunel Y
		Out of 500m	901-903				-	_	-	-	-		1 x Turnel Z
		Out of 500m	904-906	Volume			-	-	_	-	-	1	
		Out of 500m	V1	Point								from 1-4	

Appendix 3.18a - Emissio	n Rates of Por	tal, Top Openings and Ventilation E	xhaust (Hr04-05)			1																					D :
														04.05./0045	F1 & 40 40 004	4								Emission Rate		Emission (g/s	
	1		1	1									n n	04-05 (2015	EIA_19-12-201	I.XIS)	_							PM	NOx	PM g/s	NOx
																								rwi	NOX	rivi	NOX
Remarks (Tunnel name - Portal & top opening of																											
	WKCD																										
underpass in EIA of Rd							PC	taxi	LGV3			HGV7	HGV8	PLR		PV5	NFR6	NFR7	NFR8	FRSD	FRDD	MC	Total				
Works in WK)	section no.	Road name Lin Cheung Rd (underpass)	Bound Northbound	Road Type	Length (m)	Total (veh/hr)	E00/	18XI	2E9/	LGV4	LGV6	ngv/	ngvo	OG/	PV4	ne/	OS/	OS/	NP BO	PBSD 09/	PBUU OS/	OS/	100%	0.0970008	1.0605467	0.0001180	0.0012903
99	73	Lin Cheung Rd (underpass)	Northbound	3	272	60	58%	0%	25%	0%	0%	0%	0.70	076	076	0%	0%	0.6	076	0.76	0%	0%	100%	0.0970008	1.0605467	0.0001180	0.0012503
~(F)	73	Lin Cheung Rd (underpass)	Northbound	3	110	60	58%	076	25%	0%	076	0%	0.70	076	076	0%	0%	0.6	076	0.76	0%	0%	100%	0.0970008	1.0605467	0.0004397	0.0019443
200	73	Lin Cheung Rd (underpass)	Northbound	3	176	60	58%	076	25%	0%	076	0%	0.70	076	076	0%	0%	0.6	076	0.76	0%	0%	100%	0.0970008	1.0605467	0.0001778	0.0015442
(P)	70	Lin Cheung Rd (underpass)	Southbound	3	155		54%	076	25%	0%	49/	0%	49/	4%	40/	0%	0%	0.6	40/	0.76	0%	0%	100%	0.0976081	1.1735407	0.0002843	0.006063
=(1)	72	Lin Cheung Rd (depressed)	Southbound	3	172		54%	0%	25%	0%	4%	0%	4%	496	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0976081	1.1735407	0.0005596	0.0067283
20)	118	Lin Cheung Rd (depressed)	Southbound	3	121		50%	0%	23%	0%	394	3%	7%	396	394	3%	0%	0%	394	0%	0%	0%	100%	0.1095626	1.3316678	0.0005524	0.006713
40	110	Austin Rd W (depressed)	Eastbound	3	173	230	26%	294	54%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1447187	1 7333541	0.0005524	0.0191584
in)	117	Austin Rd W (depressed)	Eastbound	3	194	60	33%	0%	58%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1555242	1.4858010	0.0005029	0.004804
(1)	116	Austin Rd W (depressed)	Westbound	3	194	65	31%	0%	62%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1594894	1.5012774	0.0005587	0.0052586
< ⁽¹⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0547480	0.4592040	0.0000289	0.0002424
(0)	112	Lin Cheung Rd (depressed)	Northbound	3	95	85	59%	0%	29%	0%	0%	0%	6%	6%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0935337	0.9559042	0.0002098	0.0021441
N _(i)	84	Lin Cheung Rd	Southbound	3	56	120	50%	0%	25%	0%	4%	4%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1085232	1.2989946	0.0002026	0.0024248
A ₍₁₎	77	Lin Cheung Rd	Northbound	3	56	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1095626	1.3316678	0.0002556	0.0031072
O _(i)	111	Austin Rd W (depressed)	Eastbound	3	52	180	19%	3%	56%	0%	3%	3%	6%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1556065	1.9736005	0.0004046	0.0051314
p(l)	110	Austin Rd W (depressed)	Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1424472	1.3014426	0.0001955	0.0017859
M ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	535	54%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0379007	1.0648712	0.0110960	0.3117558
	A	Internal Rd A	Bothbound		404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0054188	0.0557154	0.0000030	0.0000313
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.0982316	1.0922400	0.0001478	0.0016429
	С	Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.2892760	3.2210045	0.0002093	0.0023308
(ii)	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	315	35%	0%	11%	0%	6%	5%	13%	11%	2%	2%	2%	0%	0%	10%	5%	0%	100%	0.1205227	2.5939861	0.0018982	0.0408553

C Internal Ric C September 1 of C September 2 of C Septem

Scenario 2			10%										
occinatio 2				•	Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA t West	Volume source by number of p involved	ortal/opening	Area source - divided by area	alculated by en	nission rate		
					Emission Rate	- Portal/	Emission Ra						
					Opening		Opening		Emission Ra		ening		
					(g/s)		(g/s) - Volum		(g/m2-s) - Ar				
			Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
			ID.	Source Type								Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
			A	Area	1.1802E-05		-	-		2.6269E-07		1	0.1 x Tunnel Section A
	80.935	0.873	В	Area	0.00047656			-	1.39386E-06	1.52397E-05		1	2/3 x(0.9 x Turnel Section A + 1 x Turnel Section B) + 1/3 x (30.935 / 50.1 x (0.9 x Turnel Section A + 1 x Turnel Section B) 0.1 x Turnel Section C + 1.0 x (1/3 x (19.065 / 50.) x (0.9 x Turnel Section A + 1 x Turnel Section B) 10.1 x Turnel Section C + 1.0 x (1/3 x (19.065 / 50.) x (0.9 x Turnel Section A + 1 x Turnel Section B) 11.5 x (1.9
			CE	Area	7.5153E-05 0.00050704					1.37987E-06	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
			D1-D7 D8-D14		0.00050704		4.82894E-05 2.41447E-05				-	1.	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065/50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			D6-D14	Volume Area	0.00010135		2.4144/E-05	0.000263983	0.00045.07	4.39109E-06	077.5	1	0.5 x Lunner Section C + 0.9 x 1/3 x (19.065 / 50 x (0.9 x Lunner Section A + 1 x Lunner Section B)) + 1 x Lunner Section D
			H M	Area	0.00373635		0.000022725	0.007200201	3.00224E-07	4.39109E-06	2//.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F 1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			11*P4	Volume	0.00373033	0.0437423	0.000311363			-	-		Turned Section Internal Dead R . Turned Section Internal Dead C .) v. traffic flow of Turned Section I. / traffic flow of Turned Section II. / traffic flow of Turned Section III. / traffic flow of Turned Section III. / traffic flow of Turned Section III. /
			JKO1	Area	0.00011081	0.0011933		0.003043150	7.18301E-08	7.7354E-07	1542.7	1	Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / traffic flow of Tunnel Section I + traffic flow of T
			L1-L5	rucu	0.00059449		7 9265E-05	0.000892158		7.7004L 07	104E.7		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x Tunnel Section Internal Road B +
			L6-L10	Volume	0.00000440	0.0000012		0.000446079			-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			M1-M4		0.00022911	0.002766	3.81852E-05			-	-		(I)
			M5-M8	Volume			1.90926E-05	0.000230501			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00022911	0.002766	3.81852E-05	0.000461001			-		
			N5-N8	Volume			1.90926E-05	0.000230501		-	-		0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00064272	0.0059135		0.000985584		-	-		1 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			P5-P8	Volume			5.35599E-05	0.000492792		-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section D + traffic flow of Tunnel Section P)))
			W1-W8		0.01109596	0.3117558	0.000924664	0.025979653			-		
			W9-W16	Volume			0.000462332	0.012989827			-	1	1 x Tunnel W
			701-710		0.00189823	0.0408553	0.000126549	0.002723685			-	1	1 x Tunnel X
			711-720	Volume			6.32744E-05	0.001361843			-		
			BaseA BaseC	Volume	0.00012004		0.00012004	0.001334976					1/3 x Basement roads A.B.C 1/3 x Basement roads A.B.C
	% 01	Serving Rd		Makees	0.00012004	0.001335	0.00012004	0.001334976					1/3 x Basement roads A.B.U.
		Out of 500m Out of 500m	801-820 901-903	Volume			-		-	-			1 x Turnel Z
		Out of 500m	901-903	Volume								١.	I A LUEROLE
		Out of 500m	304-900	Point								from 1-4	
		Out of booth	V 1	FUIIL								1011 (-4	

Appendix 3.18a - Emission	Rates of Por	tal, Top Openings and Ventilation E	xhaust (Hr05-06)																								
		.,																						Emission		Emission (g/s)	
					,								H	r 05-06 (2015	EIA_19-12-201	1.xls)								Rate			
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)		Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLR	PV4	PV5	NFB6	NFB7	NFR8	FBSD	FBDD	MC	Total				/
A ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	73	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0001082	0.0011465
B ⁽⁰⁾	73	Lin Cheung Rd (underpass)	Northbound	3	272	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0004033	0.0042720
C(1)	73	Lin Cheung Rd (underpass)	Northbound	3	110	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0001631	0.0017277
D ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	176	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0002610	0.0027643
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155		54%	0%	23%	0%	4%	0%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.0939265	1.1335754	0.0005257	0.0063449
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		54%	0%	23%	0%	4%	0%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.0939265	1.1335754	0.0005834	0.0070408
G ^(l)	118	Lin Cheung Rd (depressed)	Southbound	3	121	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1104808	1.3353208	0.0005570	0.0067322
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	230	26%	2%	54%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1490417	1.7540131	0.0016473	0.0193867
1(0)	117	Austin Rd W (depressed)	Eastbound	3	194		27%	0%	64%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1741529	1.6384512	0.0005162	0.0048562
$J^{(l)}$	116	Austin Rd W (depressed)	Westbound	3	194		29%	0%	57%	0%	0%	0%	7%	0%	0%	0%	7%	0%	0%	0%	0%	0%	100%	0.1665138	1.6021293	0.0006281	0.0060436
K ^(t)	114	Lin Cheung Rd (depressed)	Southbound	3	95		60%	0%	40%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0887268	0.7213419	0.0000585	0.0004759
L ⁽¹⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95		58%	0%	26%	0%	0%	0%	5%	5%	5%	0%	0%	0%	0%	0%	0%	0%	100%	0.0872000	0.8773389	0.0002186	0.0021994
M ^(t)	84	Lin Cheung Rd	Southbound	3	56		50%	0%	25%	0%	4%	4%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1042185	1.2227209	0.0002270	0.0026628
N°'	77	Lin Cheung Rd	Northbound	3	56		50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1104808	1.3353208	0.0002578	0.0031157
0"	111	Austin Rd W (depressed)	Eastbound	3	52	190	18%	3%	58%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1628554	1.9802526	0.0004469	0.0054347
P ^(r)	110	Austin Rd W (depressed)	Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1471108	1.3229804	0.0002019	0.0018154
W ¹⁷	98	West Kowloon Highway (WKH)	Northbound	2	1970	525	53%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0385875	1.0858022	0.0110859	0.3119419
	Α	Internal Rd A	Bothbound	4	404 361		33%	U76	33%	076	0%	0%	U%	076	U76	0%	33%	U76	U76	076	U%	0%	100%	0.0785591	0.9548754	0.0001322	0.0016074
-	0	Internal Rd B	Bothbound	4	361 521		50%	U76	25%	0%	0%	0%	U%	0%	U76	U%	50%	U76	U76	076	U%	0%	100%	0.0602288	0.7299638	0.0001208	0.0014640
	G			4			35%	0%	11%	0%	0%	0%	0%	11%	0%	0%	50%	0%	0%	0%	0%	0%	100%		1.4323130	0.0001705	0.0020729
X"	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	315	35%	0%	11%	0%	6%	5%	13%	11%	2%	2%	2%	0%	0%	10%	5%	0%	100%	0.1200647	2.5928393	0.0018910	0.0408372

C Internal Ric C September 1 of C Septem

Scenario 2			10%										
					Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA t West	Volume source by number of p involved	ortal/opening	Area source - co	alculated by em	ission rate		
					Emission Rate	- Portal/	Emission Rat						
					Opening		Opening		Emission Rat		ening		
					(g/s)		(g/s) - Volum		(g/m2-s) - Are				
			Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
			ID.	Source Type Area	1.0825E-05	0.0004447			2 20372F-08	2 33416F-07		Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.1 x Turnel Section A
	80.935	0.873	A	Area	0.00043711		-	-	2.203/2E-08 1.27846F-06	2.33416E-07 1.35414E-05		1	U.1 x Turnet Section A 1 x Turnet Section B + 1/3 x (30.935 / 50) x (0.9 x Turnet Section A + 1 x Turnet Section B)
	80.935	0.873	CE.	Area	7.5249E-05		-	-	1.2/846E-06 1 18446F-07	1.35414E-05 1.37678E-06		1	2/3 X (U.9 X TURNET SECTION B) + 1 X TURNET SECTION B) + 1/3 X (3.0.935 / 50 L) X (1.9 X TURNET SECTION B + 1 X TURNET SECTION B) (0.1 X TURNET SECTION C + 0.1 X (1/3 X (1.9.065 / 50 L) X (0.9 X (1.0 X TURNET SECTION B) + 0.1 X TURNET SECTION B)
			D1-D7	Alea	0.00046506		4 42014E-05	0.00046913	1.10440E-07	1.37070E-00			6.1 X Tulliel Section 7 6.1 X (13.003/30/X (13.003/X (13.003/30/X (13.003/X (13.003/
			D8-D14	Volume	0.00040000	0.0040200	2.21457E-05				-	٦,	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			F	Area	0.00010565	0.0012751		-	3.80736E-07	4.59501E-06	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
			11-14		0.00386097	0.0447214	0.000643495	0.007453573	-	-	-	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F 1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume			0.000321747			-	-		Turnel Section Internal Road B + Turnel Section Internal Road C) x (traffic flow of Turnel Section I / traffic flow of Turnel Section I + traffic flow of T
			JKO1	Area	0.00012666		-		8.21032E-08	8.81719E-07	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			L1-L5		0.00065295	0.0072697		0.000969295			-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel Roa
			L6-L10	Volume			4.353E-05	0.000484647		-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)))
			M1-M4		0.00024238	0.0028893		0.000481547			-		
			M5-M8	Volume	0.00024238	0.0000000	2.01981E-05	0.000240773		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4 N5-N8	Volume	0.00024238	0.0028893	4.03961E-05 2.01981E-05	0.000481547		-	-	-1,	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4	voidille	0.00072609	0.0067926		0.000240773		-	_		13. X (Tuniel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road
			P5-P8	Volume	0.00072003	0.0007030	6.05072E-05	0.000565298	-	_	_	١,	Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P + traffic flow of Tunnel Section P))
			W1-W8		0.01108588	0.3119419	0.000923823	0.02599516	-	-	-		7,7,
			W9-W16	Volume			0.000461911	0.01299758			-	1	1 x Tunnel W
			701-710		0.00189102	0.0408372	0.000126068	0.002722481	-	-	-	1	
			711-720	Volume			6.3034E-05	0.001361241		-	-		1 x Tunnel X
			BaseA	Volume	0.00014119		0.000141191	0.001714744					1/3 x Basement roads A,B,C
	% of	Serving Rd	BaseC		0.00014119	0.0017147	0.000141191	0.001714744					1/3 x Basement roads A,B,C
		Out of 500m	801-820 901-903	Volume			-	-	-	-	-	1	1 x Turnel /
		Out of 500m					-	-	-	-	-	1.	I X I LITTRE Z
		Out of 500m Out of 500m	904-906	Volume Point			-	-	-	-	-	1 from 1-4	
		Out or bodm	VI	Point								from 1-4	

													Hr	06-07 (2015	EIA_19-12-2011	.xls)								Emission Rate		Emissior (g/s	
narks (Tunnel name - lal & top opening of erpass in EIA of Rd ks in WK)	WKCD section no.			Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC		PM	NOx	PM	NOx
			Northbound	3	73		50%		21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0003069	0.0038
	73		Northbound	3	272		50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0011436	0.01434
	73		Northbound	3	110	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0004625	0.00579
			Northbound	3	176		50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0007400	0.0092
		Lin Cheung Rd (underpass)	Southbound	3	155		54%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0970157	1.2597501	0.0010025	0.0130
			Southbound	3	172	240	54%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0970157	1.2597501	0.0011124	0.0144
			Southbound	3	121	285	53%	2%	25%	0%	2%	2%	5%	4%	4%	2%	0%	0%	2%	2%	0%	0%	100%	0.0933683	1.1684203	0.0008944	0.01119
		Austin Rd W (depressed)	Eastbound	3	173	230	24%	2%	57%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1484276	1.7677545	0.0016405	0.01953
			Eastbound	3	194		27%	0%	64%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1682295	1.6125588	0.0004986	0.00477
			Westbound	3	194	70	29%	0%	57%	0%	0%	0%	7%	0%	0%	0%	7%	0%	0%	0%	0%	0%	100%	0.1611435	1.5786187	0.0006079	0.00595
			Southbound	3	95	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0943519	1.0162219	0.0001369	0.00147
			Northbound	3	95	215	51%		23%	0%	2%	2%	7%	2%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1004855	1.3425969	0.0005701	0.00761
	84		Southbound	3	56		53%	0%	25%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0995059	1.2528920	0.0003947	0.00498
	77		Northbound	3	56	300	52%	2%	25%	0%	2%	2%	7%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1014731	1.2752009	0.0004735	0.00595
		Austin Rd W (depressed)	Eastbound	3	52	190	18%	3%	58%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1574671	1.9567890	0.0004322	0.00537
	110	Austin Rd W (depressed)	Westbound	3	52	95	32%	0%	63%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1525056	1.3861474	0.0002093	0.00190
			Northbound	2	1970		51%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0606065	1.5378068	0.0351551	0.89201
			Bothbound	4	404		50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0602259	0.7300918	0.0001352	0.00163
			Bothbound	4	361		43%	0%	29%	0%	0%	0%	0%	0%	0%	0%	29%	0%	0%	0%	0%	0%	100%	0.0680821	0.8264940	0.0002389	0.00290
	С	Internal Rd C	Bothbound	4	521	20	25%	0%	25%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1165277	1.4187265	0.0003373	0.00410
-	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	665	33%	1%	11%	1%	7%	5%	13%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1198887	2.5771269	0.0039863	0.08568

C Hefemili Rd C

Golfsbound 4 SS1 20 25% (%), 25% (%).

Note: (i): Turnel name to based on Protal & top opening of underpass in RD A Place Withsbound 1 180 (65 30%), 1%, 11%, 11%.

Note: (ii): Turnel name to based on Protal & top opening of underpass in RD A Place Works in West Kowlson.

Note: Emission mate is calculated by emission bactor prodeded by Verticula Emission Countril Section of EPT provided the vehicle fleet average emission factor or pollutarits multiplied by traffic flow of each roads.

Scenario 2			10%										
ocenano 2			10%	•								1	
					Calculated by the		Volume source	- calculated					
					(extracted from th	ne approved EIA	by number of pr		Area source - c	alculated by em	ission rate		
					of Road Works at	t West	involved	ortan opening	divided by area				
					Kowloon)								
					Emission Rate	- Portal/	Emission Rat	e - Portal/				i	
					Opening		Opening		Emission Rat	e - Portal/ Op	ening		
					(a/s)		(g/s) - Volume	source	(g/m2-s) - Are	a source	-		
					PM	NOx					(Area)	Formula	
			Portal/ opening		1 141	HOX	I IVI	HOX	1.01	HOX	(Alea)	from	
			ID.	Source Type								Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
			A	Area	3.0692E-05	0.0003849		-	6.2483E-08	7.83527E-07	491.2	1	0.1 x Tunnel Section A
	80.935	0.873	R	Area	0.00123935			-	3.62488F-06	4 54555F-05		1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
			CF	Area	0.00016454	0.002108		_	2 59F-07	3.31807E-06	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
			D1-D7		0.0013186		0.000125581	0.00157477			-	1	
			D8-D14	Volume			6.27906E-05	0.000787385			-	1	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			F	Area	0.00020147	0.0026161	-	_	7.26015E-07	9.42732E-06	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
			11-14		0.00504589	0.0617414	0.000840982	0.010290232		-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume			0.000420491	0.005145116			-		Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of
			JKO1	Area	0.00013949	0.0015476	-	-	9.04216E-08	1.00315E-06	1542.7	1	Turnel Section Internal Road B + Turnel Section Internal Road C) x(traffic flow of Turnel Section I / traffic flow of Turnel Section I + traffic flow of Tu
			L1-L5		0.00106827	0.0131065	0.000142437	0.001747533			-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			L6-L10	Volume			7.12183E-05	0.000873766		-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)))
			M1-M4		0.00043412	0.0054604	7.2354E-05	0.000910062		-	-		
			M5-M8	Volume			3.6177E-05	0.000455031	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00043412	0.0054604	7.2354E-05	0.000910062		-	-		
			N5-N8	Volume			3.6177E-05	0.000455031		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00078659	0.0078614	0.000131099	0.001310229	-	-	-		1 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			P5-P8	Volume			6.55496E-05	0.000655114		-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			W1-W8		0.03515512	0.8920134	0.002929593	0.074334446		-	-		
			W9-W16	Volume			0.001464796	0.037167223		-	-	1	1 x Tunnel W
			701-710		0.0039863	0.0856895	0.000265753	0.005712631	-	-	-	1	
			711-720	Volume			0.000132877	0.002856316		-	-	-	1 x Tunnel X
			BaseA	Volume	0.00023714		0.000237135	0.002881947					1/3 x Basement roads A,B,C
	% of S	erving Rd	BaseC		0.00023714	0.0028819	0.000237135	0.002881947					1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
			901-903				-	-	-	-	-		1 x Tunnel Z
		Out of 500m	904-906	Volume			-	-	-	-	-	1	
		Out of 500m	V1	Point								from 1-4	

Appendix 3.18a - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr07-08)	

														Hr 07-08 (2015	EIA 19-12-201	1.xls)								Emission Rate		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLR	PV4	PV5	NFR6	NFR7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0003791	0.0050443
B ⁽⁰⁾	73	Lin Cheung Rd (underpass)	Northbound	3	272	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0014124	
C(0)	73	Lin Cheung Rd (underpass)	Northbound	3	110	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0005712	
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0009139	0.0121615
E ^(t)	72	Lin Cheung Rd (underpass)	Southbound	3	155	615	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.0980281	1.2558395	0.0025957	0.0332536
F ⁽¹⁾	72		Southbound	3	172	615	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.0980281	1.2558395	0.0028804	
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	750	51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.0989166	1.2331750	0.0024935	0.0310863
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	950	24%	2%	57%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1529852	1.7603536	0.0069842	0.0803650
l _(t)	117	Austin Rd W (depressed)	Eastbound	3	194	280	25%	2%	55%	0%	2%	2%	4%	2%	2%	0%	0%	0%	2%	2%	2%	2%	100%	0.1486270	1.7441715	0.0022426	0.0263176
J _(i)	116	Austin Rd W (depressed)	Westbound	3	194	280	25%	2%	54%	0%	2%	2%	4%	2%	2%	0%	2%	0%	2%	2%	2%	2%	100%	0.1483998	1.7608600	0.0022392	0.0265694
K ^(t)	114	Lin Cheung Rd (depressed)	Southbound	3	95	165	45%	3%	24%	0%	3%	3%	6%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.1063910	1.4684505	0.0004632	0.0063939
L ⁽¹⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	320	53%	2%	25%	0%	2%	2%	6%	3%	3%	2%	0%	0%	2%	2%	0%	0%	100%	0.0964757	1.1908753	0.0008147	
M ^(l)	84	Lin Cheung Rd	Southbound	3	56	645	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1018044	1.2926960	0.0010214	
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	465	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1010955	1.2592016	0.0007313	0.0091082
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	785	25%	1%	57%	0%	1%	1%	4%	2%	1%	1%	1%	0%	1%	1%	2%	3%	100%	0.1488055	1.6842114	0.0016873	
P ^(l)	110	Austin Rd W (depressed)	Westbound	3	52	430	26%	1%	55%	0%	1%	1%	5%	1%	1%	1%	1%	0%	1%	1%	2%	2%	100%		1.7654596	0.0009252	0.0109655
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	1575	51%	0%	17%	0%	2%	2%	6%	3%	3%	3%	2%	0%	5%	2%	3%	0%	100%	0.0613596	1.5130225	0.0528843	1.3040362
	A		Bothbound	4	404	30	50%	0%	33%	0%	0%	0%	0%	0%	0%	0%	17%	0%	0%	0%	0%	0%	100%	0.1380794	1.2327271	0.0004649	
	В	Internal Rd B	Bothbound	4	361	60	33%	0%	25%	0%	8%	0%	0%	8%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1730856	1.7471376	0.0010414	
	C	Internal Rd C	Bothbound	4	521	25	20%	0%	20%	0%	0%	0%	0%	0%	0%	0%	60%	0%	0%	0%	0%	0%	100%	0.2563377	2.5515727	0.0009274	
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1325	33%	0%	11%	1%	7%	5%	13%	10%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1212756	2.6406536	0.0080345	0.1749433

Note: (i): Tunnel name is based on Portionals 16 top pering of undergass in EAR of Season Works in West Monton.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fixed average emission factors for pollutants multiplied by traffic flow of each roads.

Scenario 2			10%										
					Calculated by the (extracted from to of Road Works a Kowloon) Emission Rate	he approved EIA at West	Volume source by number of po involved	ortal/opening	Area source - c divided by area		mission rate		
									Emission Rat	B . VO			
					Opening		Opening (g/s) - Volume		(g/m2-s) - Are		pening		
					PM	NOx					(Area)	Formula	
			Portal/ opening		rivi	NOX	rwi	NOX	rwi	NOX	(Area)	from	
			ID.	Source Type								Scenario	
			A	Area	3.7907E-05	0.0005044		-		1.02693E-06		1	0.1 x Tunnel Section A
80.93	35	0.873	В	Area	0.0015307	0.020369		-		5.9576E-05		1	2/3 x (0,9 x Turnel Section A + 1 x Turnel Section B) + 1/3 x (30,935/50) x (0,9 x Turnel Section A + 1 x Turnel Section B) 0.1 x Turnel Section C + 0.1 x (1/3 x (19,065/50) x (0,9 x Turnel Section A + 1 x Turnel Section B)) + 0.1 x Turnel Section E
			CE		0.00033898			-	5.33571E-07	6.89759E-06	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 0.1 x Tunnel Section E
			D1-D7 D8-D14		0.00162859	0.0216/16	7.75517E-05				-	١.	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			D6-D14	Volume Area	0.00052165	0.0088830		0.001031963	1.87983E-06	2.40825E-05	277 5		0.3 x turnel Section E + 0.1 x Turnel Section F + 1 x turnel Section F 0.1 x 0.9 x Turnel Section F + 1 x turnel Section F 0.1 x 0.9 x Turnel Section F 0.1 x 0.9 x Turnel Section F 0.1 x 0.9 x Turnel Section F 0.3 x Turnel Section F 0
			11-14	Aica	0.01725559	0.0000023	0.002875932	0.034511558				1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume				0.017255779			-		
			JKO1		0.00051361		-	-		3.83288E-06	1542.7	1	Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of
			L1-L5		0.00246669	0.0301234		0.004016458	-	-			1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			L6-L10	Volume			0.000164446		-	-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			M1-M4 M5-M8		0.00087635	0.0110391		0.001839856		-	-	<u>.</u>	0.5 x (Tunnel Section M + Tunnel Section N)
			M5-M8 N1-N4	Volume	0.00087635	0.0110201		0.000919928		-	-	1	U.S.X (Tunnel Section M + Tunnel Section N)
			N5-N8	Volume	0.00067633	0.0110391	7.3029E-05	0.000919928	_	_	_	,	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.0031202	0.035856		0.005975998	_	_	_		1 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			P5-P8	Volume				0.002987999	-	-		1	Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			W1-W8		0.05288432	1.3040362		0.108669687	-		-		
			W9-W16	Volume				0.054334843	-	-	-	1	1 x Tunnel W
			701-710		0.00803451	0.1749433		0.011662887	-	-	-	1	
			711-720	Volume	0.00004404	0.0079646		0.005831443	-	-	-	-	1 x Tunnel X 1/3 x Basement roads A.B.C
	% of Ser	nina Rd	BaseA BaseC	Volume		0.0079646		0.007964619				_	1/3 x Basement roads A,B,C 1/3 x Basement roads A,B,C
	76 UI 3 EI	Out of 500m	801-820	Volume	0.00001124	0.0073040	0.000811237	0.007504015	_	_		1	1x Turnel Y
		Out of 500m	901-903	Touric			-	-	_	_	-	i -	1 x Tunnel Z
		Out of 500m	904-906	Volume			-	-	-	-	-	1	
		Out of 500m	V1	Point								from 1-4	-

appendix o. rou · Emission	i nates of Pol	al, Top Openings and Ventilation E	(1100-05)										н	Ir 08-09 (2015	EIA 19-12-201	1.xls)								Emission Rate		Emission (g/s)	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
(II)	73	Lin Cheung Rd (underpass)	Northbound	3	73	385	51%	1%	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0009380	0.0112480
3(1)	73	Lin Cheung Rd (underpass)	Northbound	3	272	385	51%	1%	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0034950	0.0419102
200	73	Lin Cheung Rd (underpass)	Northbound	3	110	385	51%	1%	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0014134	0.0169490
O ₍₁₎	73	Lin Cheung Rd (underpass)	Northbound	3	176	385	51%	1%	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0022615	0.0271184
(0)	72	Lin Cheung Rd (underpass)	Southbound	3	155	1215	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167078	1.4026321	0.0061053	0.0733752
(1)	72	Lin Cheung Rd (depressed)	Southbound	3	172	1215	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167078	1.4026321	0.0067749	0.0814228
3(1)	118	Lin Cheung Rd (depressed)	Southbound	3	121	1505	51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1148200	1.3773529	0.0058081	0.0696730
d _D	119	Austin Rd W (depressed)	Eastbound	3	173	1435	23%	2%	58%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1719684	1.8790136	0.0118589	0.1295763
(f)	117	Austin Rd W (depressed)	Eastbound	3	194	400	24%	1%	58%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	3%	3%	100%	0.1687920	1.8971826	0.0036384	0.0408948
(II)	116	Austin Rd W (depressed)	Westbound	3	194	400	24%	1%	56%	0%	1%	1%	4%	1%	1%	0%	3%	0%	1%	1%	3%	3%	100%	0.1706781	1.9329541	0.0036791	0.0416659
C ₍₁₎	114	Lin Cheung Rd (depressed)	Southbound	3	95	295	53%	2%	25%	0%	2%	2%	7%	3%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1146854	1.3530218	0.0008928	0.0105329
(1)	112	Lin Cheung Rd (depressed)	Northbound	3	95	685	50%	1%	24%	0%	2%	2%	7%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1172186	1.3964640	0.0021189	0.0252430
A ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	1305	51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167217	1.3848659	0.0023694	0.0281128
4 ⁽¹⁾	77	Lin Cheung Rd	Northbound	3	56	960	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1184768	1.4240655	0.0017693	0.0212660
O(1)	111	Austin Rd W (depressed)	Eastbound	3	52	1205	23%	2%	58%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1699619	1.8582016	0.0029583	0.0323430
3 (1)	110	Austin Rd W (depressed)	Westbound	3	52	645	23%	2%	57%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1719585	1.8928938	0.0016021	0.0176355
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	4145	51%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0631257	1.5196290	0.1431840	3.4468774
	A	Internal Rd A	Bothbound	4	404	50	40%	0%	30%	0%	0%	0%	0%	10%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1729363	1.4952900	0.0009704	0.0083902
	В	Internal Rd B	Bothbound	4	361	85	35%	0%	24%	0%	6%	0%	6%	6%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.2081043	2.0551660	0.0017738	0.0175174
_	С	Internal Rd C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2364946	2.3544629	0.0011979	0.0119260
(1)	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1680	33%	1%	11%	1%	7%	5%	13%	10%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1407950	2.8390978	0.0118268	0.2384842

Scenario 2			10%		Calculated by the (extracted from to of Road Works a Kowloon)	ne approved EIA t West	by number of p involved	ortal/opening	Area source - divided by area	calculated by er	nission rate																		
					Emission Rate Opening	- Portal/	Emission Ra Opening (g/s) - Volum		Emission Ra	te - Portal/ O	pening																		
			Portal/ opening		PM	NOx	PM		PM			Formula from																	
			ID.	Source Type								Scenario	Emission cal		ula (Extract	ted from the	ipproved E1	A of Road	Works at	West Kowlo	on)								
			A			0.0011248	-	-	1.9096E-07 1.10783F-05	2.2899E-06		1	0.1 x Tunnel																
	80.935	0.873	B	Area Area	0.00378768 0.00080702	0.04542	-	-	1.10783E-05 1.2703E-06	0.000132846 1.52586E-05		1	2/3 x (0.9 x 0.1 x Tunnel	unnel Section	on A + 1 x I	unnel Section	nB)+1/3>	(30.935	50) x (0.	9 x Tunnel S	Section A	+ 1 x Tunne	Sectio	nB)					
			D1-D7		0.00402991		0.000000004	0.004602341		1.02086E-U0	030.3		U. I X TUITIEI	Section C +	U. I X (1/3	X (19.065 / 5	U) X (U.S X	Turiner Se	CUOITA +	I X TUITIELS	ections)) + U.I X I	unnerse	CHOILE					
				Volume	0.00402991	0.0463246	0.000383801	0.002301171		-	-		0 Q v Tunnol	Section C +	00 0 / 1/2	v / 10 065 / F	0 - / 0 0 - 7	unnal Sac	tion A . 1	v Tunnol Sa	ction R \	. 1 v Tunn	ol Soctio	on D					
					0.00122696	0.014746	0.0001919	0.002301171	4 42140E 00	5.31389E-05	277 5		0.3 x Turrier	monal Saction	n.E . 0.1 v	Tunnol Socti	on E	uriner oec	UUIIATI	x runner oe	CHOILD)) + 1 × 1011	ioi Oeciic	UIID					-
			11-14		0.03375827		0.005626378	0.064693812		0.31305E-00		1	0.1 x 0.9 x T 1 x Tunnel S	ection I + 1 x	Tunnel Se	ction G + 1 x	Tunnel Sec	tion H + 0	14 x Tunns	Section K	+09×0	38 x Tunne	Section	n Ω + 0	9 x (1/3 x i	Tunnel S	ection Interr	al Road A	+
			15-18	Volume	0.00070027	0.0001020	0.002813189	0.032346906		_	_		Tunnel Sect	on Internal R	load B + Tu	innel Section	Internal Ro	dC)v(t	affic flow	of Tunnel Se	ection I/(traffic flow	of Tunne	Section	n I + traffic	flow of Ti	nnel Section	1 + traffic	· flow of
			JKO1		0.00087192	0.0095678		-	5.65189F-07	6.20201E-06	1542 7	1	0.1 x Tunnel	Section J + 0	0.1 x (1 - 0	14) x Tunne	Section K	+ 0.1 x Tu	nnel Section	$n \Omega + 0.1 x$	1/3 x (Ti	innel Section	on Interna	al Road	A + Tunne	Section	Internal Roa	d B + Tunn	nel
			11-15		0.00503255		0.000671007	0.007754814			-		1 x Tunnel S	ection L + 0.	9 x 0.24 x 1	Tunnel Section	nJ + 0.9 x (0.62 x Tuni	nel Section	1O+0.9x	1/3 x (Tu	unnel Section	on Interna	al Road	A + Tunne	Section	Internal Roa	B + Tunn	iel
			L6-L10	Volume			0.000335503	0.003877407			-	1	Section Inte	nal Road C)	x (traffic flo	ow of Tunnel	Section L /	traffic flov	v of Tunne	Section I +	traffic flo	w of Tunnel	Section	L + traf	fic flow of "	Tunnel Se	ction P)))		
			M1-M4		0.00206935	0.0246894	0.000344892	0.004114902			-																		
			M5-M8	Volume			0.000172446	0.002057451		-	-	1	0.5 x (Tunne	Section M +	+ Tunnel Se	ection N)													
			N1-N4		0.00206935	0.0246894	0.000344892	0.004114902			-		1																
			N5-N8	Volume			0.000172446	0.002057451		-	-	1		Section M +															
			P1-P4		0.0052505	0.0569982	0.000875083	0.009499705		-	-		1 x Tunnel S															d B + Tunn	iel
			P5-P8	Volume			0.000437542	0.004749853	-	-	-	1	Section Inte	nal Road C)) x (traffic	flow of Tunne	I Section P	/ (traffic fli	ow of Tunn	el Section I	+ traffic fl	low of Tunn	el Sectio	on L + tra	affic flow of	Tunnel S	Section P)))		
			W1-W8		0.14318403	3.4468774		0.287239783			-																		_
			W9-W16	Volume			0.005966001	0.143619891	-	-	-	1	1 x Tunnel V	!															
			701-710		0.01182678	0.2384842		0.015898948		-	-	1																	
				Volume			0.000394226	0.007949474		-	-	-	1 x Tunnel X																
				Volume	0.00131403			0.012611228						ent roads A,															
	% of	Serving Rd	BaseC		0.00131403	0.0126112	0.001314025	0.012611228						ent roads A,	,B,C														
		Out of 500m		Volume			-	-	-	-	-	1	1 x Tunnel Y					1	1		-								
		Out of 500m	901-903				-	-		-	-		1 x Tunnel Z									_	_			1			
		Out of 500m	904-906	Volume			-	-		-	-	1										_	_			1			
		Out of 500m	V1	Point								from 1-4	-						1	-						_	_		
					1			1										1								1			

ppendix s.roa - Emission	nates of Polis	al, Top Openings and Ventilation E	KIII USK (11103-10)																					Emission Rate		Emission (g/s	
	,		,	,	,								н	r 09-10 (2015	EIA_19-12-2011	.xis)		_									
lemarks (Tunnel name - ortal & top opening of nderpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
/orks in WK)			Bound	Road Type	Length (m)	Total (veh/hr)		taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
(0)	73	Lin Cheung Rd (underpass)	Northbound	3	73	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0009631	0.0113947
27	73	Lin Cheung Rd (underpass)	Northbound	3	272		50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0035886	0.0424570
	73	Lin Cheung Rd (underpass)	Northbound	3	110		50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0014513	0.0171701
P7	73	Lin Cheung Rd (underpass)	Northbound	3	176		50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1 /4	0%	0%	100%	0.1249897	1.4787662	0.0023220	0.0274722
397	72	Lin Cheung Rd (underpass)	Southbound	3	155		51%	1%	24%	0%	2%	2%	6%	3%		3%	1%	0%	3%	2%	0%	1%	100%	0.1211567	1.4332808	0.0051448	0.0608630
(1)	72	Lin Cheung Rd (depressed)	Southbound	3	172		51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1211567	1.4332808	0.0057091	0.0675383
(1)	118	Lin Cheung Rd (depressed)	Southbound	3	121		50%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1199153	1.4192033	0.0049575	0.0586722
(II)	119	Austin Rd W (depressed)	Eastbound	3	173	1456	22%	2%	59%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1781594	1.9129040	0.0124670	0.1338584
0		Austin Rd W (depressed)	Eastbound	3	194		23%	1%	58%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%		2%	2%	100%	0.1750981	1.9417582	0.0038325	
10			Westbound	3	194		22%	1%	57%	0%	1%	1%	4%	1%	1%	0%	4%	0%	1%	1%	2%	2%	100%	0.1794183	2.0092829	0.0038767	0.0434145
99	114	Lin Cheung Rd (depressed)	Southbound	3	95		51%	2%	25%	0%	3%	2%	6%	3%		2%	0%	0%	2%		0%	0%	100%	0.1178027	1.4026281	0.0008842	0.0105279
00	112	Lin Cheung Rd (depressed)	Northbound	3	95		51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1196141	1.3978110	0.0022256	
f ^(f)	84	Lin Cheung Rd	Southbound	3	56		51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	0%	100%	0.1211000	1.4093701	0.0020499	0.0238565
po .	77	Lin Cheung Rd	Northbound	3	56		50%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1217139	1.4371498	0.0018462	
y ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	1233	22%	2%	59%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1762200	1.8941014	0.0031389	0.0337386
40	110	Austin Rd W (depressed)	Westbound	3	52	650	22%	2%	58%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1792959	1.9438496	0.0016842	0.0182593
V ⁽¹⁾		West Kowloon Highway (WKH)	Northbound	2	1970	3591	50%	0%	17%	0%	2%	2%	7%	3%	3%	3%	2%	0%	5%	2%	3%	0%	100%	0.0644040	1.5391149	0.1265607	3.0245239
	A	Internal Rd A	Bothbound	4	404	79	36%	0%	26%	1%	5%	1%	3%	6%	1%	1%	19%	0%	0%	1%	0%	0%	100%	0.1905963	1.9044530	0.0016852	
·	В	Internal Rd B	Bothbound	4	361	134	34%	0%	24%	1%	5%	1%	3%	6%	1%	1%	23%	0%	0%	1%	0%	0%	100%	0.1971908	1.9763877	0.0026450	
	C	Internal Rd C	Bothbound	4	521	61	22%	0%	16%	0%	3%	1%	2%	4%	1%	1%	50%	0%	0%	1%	0%	0%	100%	0.2498420	2.5507236	0.0021918	0.0223770
0)	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1685	33%	1%	11%	1%	7%	5%	13%	10%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1463557	2.8843031	0.0123305	0.2430025

Scenario 2			10%										
					Calculated by th (extracted from to of Road Works a Kowloon)	the approved EIA at West	Volume source by number of p involved	ortal/opening	Area source - c divided by area	alculated by e	mission rate		
					Opening	e - I ortal	Opening		Emission Rat	e - Portal/O	sening		
					(g/s)		(g/s) - Volum		(g/m2-s) - Are		emig		
						NOx					(Area)	Formula	
			Portal/ opening ID.	Source Type								from Scenario	
			A	Area	9.6312E-05			-		2.31977E-06		1	0.1 x Tunnel Section A
	80.935	0.873	В		0.00388912	0.0460125	-	-	1.1375E-05	0.000134579		1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
			CE	Area	0.00071624			-	1.1274E-06	1.33374E-05	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
			D1-D7 D8-D14	Volume	0.00413783	0.0489551		0.004662386			-	١.	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			D8-D14		0.00103394	0.0100015		0.002331193	3.72591E-06	4 407755 05	077.5	1	0.3 x Turniel Section C + 0.3 x (13.05.7 Stx (10.3 x Turniel Section A + 1 x Turniel Section B)) + 1 x Turniel Section D 0.1 x 0.9 x Turniel Section E + 0.1 x Turniel Section F 10.1 x 0.9 x Turniel Section E + 0.1 x Turniel Section F
			11.14	Area	0.03221083	0.0122313	0.005200472	0.000471254	3.7259 IE-U6	4.4U//DE-UD	2//.5		1. x Turnel Section 1 + x Turnel Section G + 1 x Turnel Section H + 0.14 x Turnel Section K + 0.9 x 0.38 x Turnel Section O + 0.9 x (1/3 x (Turnel Section Internal Road A +
			15-18	Volume	0.00221000	0.0020201	0.003684236			_	_		Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section I - traffic flow of
			JK01	Area	0.000995	0.0108116				7.00821E-06	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road B + Tunnel Section Internal Road B
			L1-L5		0.00559769	0.0647116	0.000746359	0.008628211		-	-		0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
			L6-L10	Volume			0.000373179				-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)))
			M1-M4		0.00194803	0.0228278			-	-	-		
			M5-M8	Volume			0.000162336			-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4	1	0.00194803	0.0228278			-		-		
			N5-N8	Volume				0.001902317		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00574253	0.0606208		0.010103473	-	-	-	4.	1 x Tunnel Section P + 0.9 x 0.76 x Turnel Section J + 0.9 x 0.86 x Turnel Section K + 0.9 x (1.76 x Turnel Section Internal Road A + Turnel Section Internal Road C) x (Traffic flow of Turnel Section I + traffic flow of Turnel Section P))
			P5-P8 W1-W8	Volume	0.12656074	0.0045000		0.005051736		-	-	1	Section internal Hoad C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			W1-W6 W9-W16	Volume	0.12030074	3.0243239		0.12602183		-	-	١.	1 x Tunnel W
			701-710		0.01233047	0.2430025		0.016200169		E		1	1 A TORINGT VY
			711-720	Volume	0.01200047	0.2-100020		0.008100084				-	1 x Tunnel X
			BaseA	Volume	0.00217401	0.0219086		0.021908614					1/3 x Basement roads A.B.C
	% of :	Serving Rd	BaseC		0.00217401	0.0219086	0.002174009	0.021908614					1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-	-	-		-	1	1 x Tunnel Y
		Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
		Out of 500m	904-906	Volume			-	_	-		-	1	
		Out of 500m	V1	Point								from 1-4	
							1			1			

Appendix 3.18a - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr10-11)	
---	--

														Hr 10-11 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emissio (g/:	's)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(f)	73		Northbound	3	73		49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0008576	0.0103088
B ^(I)	73		Northbound	3	272	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0031956	0.0384110
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0012923	0.0155339
D ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	176	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0020677	0.0248542
E ^(I)	72	Lin Cheung Rd (underpass)	Southbound	3	155	735	52%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1224588	1,4292669	0.0038753	0.0452303
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	735	52%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1224588	1.4292669	0.0043003	0.0501911
G ⁽ⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	905	51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1204179	1.4169757	0.0036629	0.0431016
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	1425	24%	2%	58%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1763572	1.8766803	0.0120768	0.1285135
l ₀ ,	117	Austin Rd W (depressed)	Eastbound	3	194	405	25%	1%	57%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1724208	1.9217716	0.0037631	0.0419427
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	405	25%	1%	56%	0%	1%	1%	4%	1%	1%	0%	2%	0%	1%	1%	2%	2%	100%	0.1743272	1.9588750	0.0038047	0.0427524
K ^{II)}	114	Lin Cheung Rd (depressed)	Southbound	3	95	205	49%	2%	24%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1189213	1.4490713	0.0006433	
L ₀	112	Lin Cheung Rd (depressed)	Northbound	3	95	555	51%	2%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1181199	1.3881040	0.0017300	0.0203299
M ^(t)	84	Lin Cheung Rd	Southbound	3	56	780	51%	1%	25%	0%	2%	3%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1235803	1.4164610	0.0014994	0.0171864
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	790	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	1%	0%	1%	100%	0.1237291	1.4379412	0.0015205	0.0176707
O ^(t)			Eastbound	3	52		24%	2%	58%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	3%	100%	0.1750260	1.9054963	0.0030085	0.0327534
P ^(l)	110	Austin Rd W (depressed)	Westbound	3		640	23%	2%	57%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1775428	1.9422847	0.0016413	0.0179553
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2		3140	50%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0632495	1.5224591	0.1086801	2.6160077
	A	Internal Rd A	Bothbound	4	404	55	36%	0%	27%	0%	9%	0%	0%	9%	0%	0%	18%	0%	0%	0%	0%	0%	100%	0.1746258	1.6526518	0.0010778	0.0102005
	В		Bothbound	4	361	95	37%	0%	26%	0%	5%	0%	5%	5%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.2030834	1.9538961	0.0019347	
	С		Bothbound	4	521		29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2371532	2.3500970	0.0012012	0.0119039
X ^{eq}	144	Reprovision of Gascoigne Rd Flyover		3	180	1670	33%	1%	11%	1%	7%	4%	13%	10%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1487671	2.9494200	0.0124221	0.2462766

Act | 1940 | 194

		10%																							
				Calculated by the (extracted from to of Road Works a Kowloon)	ne approved EIA	Volume source by number of p involved		Area source - divided by are	- calculated by	emission rat	e														
				Emission Ra	e - Portal/	Emission R	ate -	Emission	Rate - Port	al/	Ī														
				Opening		Portal/Ope		Opening																	
				(g/s)		(g/s) - Volu	me source	(g/m2-s) -	Area sourc	e															
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula														
		Portal/ opening	Source Type								from Scenario	Emission calculation	formula (I		41		epand W.	also at Was	4 Vamlaan	-\					
		Δ.		8.5763E-05	0.0010309	_	_	1 7/500E-07	2.0987E-06	491.2	1	0.1 x Tunnel Section	iormuia (i	extracted ir	ош ше аррі	oved EIA	or Road we	rks at wes	KOWIOOI	1)					-
80.935 0.873		R		0.00346317					0.000121754		1	2/3 x (0.9 x Tunnel Se		1 x Tunnel S	ection B) +	- 1/3 x (30	935 / 50)	x (0.9 x T	unnel Sect	ion A + 1 x	Tunnel S	ection B)			_
		CE		0.00056719					1.05187E-05		1	0.1 x Tunnel Section (E		_
		D1-D7		0.00368464		0.000350918	0.004218076	-	-	-															_
		D8-D14	Volume			0.000175459	0.002109038	-	-	-	1	0.9 x Tunnel Section ().9 x Tunne	el Section A	4 + 1 x Tun	nel Section	n B)) + 1:	x Tunnel S	Section D			
		F		0.00077881		-		2.80653E-06	3.27562E-05	277.5	1	0.1 x 0.9 x Tunnel Sec	ction E + 0	.1 x Tunnel	Section F										
		11-14		0.02795102	0.3106974		0.0517829	-		-	1	1 x Tunnel Section I +													
		15-18	Volume		0.00500	0.002329252	0.02589145	-	-	-		Road A + Tunnel Sec													
		JKO1 L1-L5		0.0008771			0.007219519	5.68551E-07	6.21119E-06	1542.7	1	0.1 x Tunnel Section L 1 x Tunnel Section L													
		L1-L5 L6-L10	Volume	0.00466901	0.0541464	0.000622535	0.007219519	-	-	-		+ Tunnel Section Inter													
		M1-M4		0.00150997	0.0174285		0.00300376		_			+ Turiner Section miles	mai moau v	J) X (trainic	now or run	1161 0601101	IL/ (u aili	C HOW OF TO	111161 0601	OIII T II GII	IC HOW OI	Turrier Occ	JUON L T III	and now or i	I GI II
		M5-M8	Volume	0.00100007	0.0174200	0.000251031	0.001452379		-	-	1	0.5 x (Tunnel Section	M + Tunne	Section N											
		N1-N4		0.00150997	0.0174285	0.000251661	0.002904758	_	-	-															_
		N5-N8	Volume			0.000125831	0.001452379	-	-	-	1	0.5 x (Tunnel Section													
		P1-P4		0.00524728	0.0561434	0.000874547	0.009357234	-	-	-		1 x Tunnel Section P													
		P5-P8	Volume			0.000437273	0.004678617		-		1	+ Tunnel Section Inter	rnal Road (C) x (traffi	c flow of Tu	nnel Secti	on P / (traf	fic flow of	Tunnel Sec	ction I + tra	iffic flow o	f Tunnel S	ection L +	traffic flow of	f Tu
		W1-W8		0.10868014	2.6160077		0.218000641	-		-	4														
		W9-W16	Volume	0.01242206	0.0100700	0.004528339	0.10900032	-	-	-	1	1 x Tunnel W													
		701-710 711-720	Volume	0.01242206	0.2462766	0.000828137	0.016418438	-	-	-	1	1 x Tunnel X													
		BaseA		0.00140458	0.0135727	0.000414069	0.008209219	-	-	-	-	1/3 x Basement roads	ARC												_
% of Serving Rd		BaseC	voidille	0.00140458			0.013572667					1/3 x Basement roads													_
	of 500m	801-820	Volume					-	-	-	1	1 x Tunnel Y	,_,0	1	1							1	1		\neg
	of 500m	901-903				-	-	-	-	-		1 x Tunnel Z													+
	of 500m	904-906	Volume			-	-	-	-	-	1														寸
Out o	of 500m	V1	Point								from 1-4	-													

	Top Openings and Ventilation Exhaust (Hr11-12)

														Hr 11-12 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.			Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	0.1149823	1 3998324	0.0006179	0.0075222
PIII	73		Northbound Northbound	3	272	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0006179	0.00/5222
C(l)	73		Northbound	3	110	265	51%	276	23%	076	476	276	0%	476	2%	270	2%	076	2%	276	0%	0%	100%	0.1149823	1.3998324	0.0023022	0.0280278
DID.	73		Northbound	3			51%	276	23%	0%	4%	276	6%	4%	2%	270	2%	0%	2%	276	0%	0%	100%	0.1149823	1.3998324	0.0009310	0.0113348
E(I)	70		Southbound	3	155	735	53%	10/	24%	0%	99/	20/	69/	20/	29/	20/	10/	0%	20/	10/	0%	10/	100%	0.1151255	1.3383639	0.0036432	0.0423536
E(I)	72		Southbound	3			53%	196	24%	0%	2%	2%	6%	3%	2%	2%	190	0%	2%	194	0%	190	100%	0.1151255	1.3383639	0.0030432	0.0469989
G ⁽¹⁾	118		Southbound	3		885	51%	196	24%	1%	2%	296	6%	394	3%	294	196	0%	2%	296	0%	194	100%	0.1137843	1.3521385	0.0033846	0.0402205
H(II)	119		Eastbound	3	173		25%	196	56%	096	194		4%	294	196	194	096	0%	194	194	2%	2%	100%	0.1137543	1.8055075	0.0112384	0.1201691
(0)			Fastbound	3			26%		55%	0%	194		4%	394	196	096	0%	0%	194	194	394	394	100%	0.1649965	1.8596684	0.0035566	
I(I)	116		Westbound	3		420	27%	1%	54%	0%	1%		4%	1%	1%	0%	2%	0%	1%	1%	2%	2%	100%	0.1644221	1.8491397	0.0037214	0.0418522
K ^{III}	114		Southbound	3			48%	3%	25%	0%	3%	3%	5%	5%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.1182355	1,4507647	0.0006240	0.0076568
L ⁽⁰⁾	112		Northbound	3			51%	1%	23%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1166714	1.3612459	0.0013239	
M ^(t)	84	Lin Cheung Rd	Southbound	3	56	750	52%	1%	25%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1160938	1.3369325	0.0013544	
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	605	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1163359	1.3867050	0.0010949	0.0130504
O(1)	111	Austin Rd W (depressed)	Eastbound	3	52	1145	25%	2%	56%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1693787	1.8231642	0.0028013	0.0301531
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	635	26%	2%	54%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1677059	1.8604224	0.0015382	0.0170642
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	3195	51%	0%	16%	0%	2%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0617470	1.4910877	0.1079569	2.6069805
	A	Internal Rd A	Bothbound	4	404	50	40%	0%	30%	0%	0%	0%	0%	10%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1735904	1.4895423	0.0009740	0.0083580
	В	Internal Rd B	Bothbound	4	361	95	37%	0%	26%	0%	5%	0%	5%	5%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.2030667	1.9541474	0.0019345	0.0186160
	С	Internal Rd C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2370515	2.3486783	0.0012007	0.0118967
X ^(r)	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1655	34%	1%	11%	1%	7%	5%	13%	11%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1416055	2.8319594	0.0117179	0.2343446

PA Heapprosists of classcogne for Hypoer (Westbound 3 | 1980 | 1965 | 34% | 1% | 17% | 17% | 1. Note: (I): Tunnel name is based on Portal 3 to opening of undergass in EUA of Rev Morks in West Kowtoon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutarits multiplied by traffic flow of each roads.

		10%																									_
				Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA	Volume source by number of po involved	skall an author	Area source - divided by are	calculated by	emission rat	•																
				Emission Ra Opening		Emission Ra Portal/ Oper (g/s) - Volun	ning	Opening	Rate - Porta Area sourc																		
		Portal/ opening		PM						(Area)	Formula from																П
		ID.	Source Type								Scenario	Emission cal	lculation fo	ormula (I	Extracte	ed from	the appro	oved EIA	of Road W	orks at We	est Kowloo	n)					<u></u>
		A		6.1787E-05		-	-		1.53138E-06 8.88415E-05		1	0.1 x Tunnel 2/3 x (0.9 x 1						1/0 / 00	005 / 50)				-				_
80.935 0.1	373	В	Area Area	0.002495	0.0303749	-	-		8.88415E-05 9.14705E-06		1	0.1 x Tunnel													_		_
		D1-D7		0.00049376		0.000050045	0.003077847	7.77202E-07	9.14/05E-06	635.3	1	U. I X Turinei	Section C	+ U. I X (1/3 X (19.005	/ 50) X (u.9 x run	nei Sectior	A+IXI	unnei Sec	uon B)) +	U. I X IUI	nei Section	E		_
		DI-D/ D8-D14	Volume	0.00203433	0.0323174		0.003077847	-	-	-	┧,	0.9 x Tunnel	Section C	. nav/	1/3 v /	10.065	/50 v / 0	Q v Tunna	al Section	1 t v Tu	nnal Sactio	n B)) . 1	v Tunnol	Section D			
		E .		0.00073217	0.0085117	0.000120407	0.001336524	2 62046E 06	3.06728E-05	277 5		0.1 x 0.9 x Ti						J X TUITIN	oi Oection i	1 T I X IUI	III IOI OOCIIC)	x ruillioi	Occion D			_
		11-14		0.02615117		0.004358528	0.048570998	2.03040E-00	3.00/26E-00	211.0	1	1 x Tunnel S	ection I +	1 x Tunne	Section	n G +	x lunnel	Section I	H + 0.14 x	Tunnel Se	ction K + 0	0.9 x 0.38 x	Tunnel S	ection O +	0.9 x (1/3 x	(Tunnel Se	acti
		15-18	Volume	0.02010117	0.201420	0.002179264	0.024285499		_	_		Road A + Tu															
		JKO1		0.00084292	0.0091547	-	-	5.46391E-07	5.93421E-06	1542.7	1	0.1 x Tunnel															
		L1-L5		0.00405271	0.047082	0.000540361	0.006277606	-	-	-		1 x Tunnel S															
		L6-L10	Volume			0.000270181	0.003138803		-	-	1	+ Tunnel Sec	ction Intern	nal Road (C) x (tra	affic flo	w of Tunn	el Section	n L / (traffi	c flow of T	Tunnel Sec	tion I + tra	ffic flow o	Tunnel Se	ction L + tra	ffic flow of T	Tun
		M1-M4		0.00122464	0.014324	0.000204106	0.002387332	-		-																	
		M5-M8	Volume			0.000102053	0.001193666		-	-	1	0.5 x (Tunne	Section N	A + Tunne	el Sectio	on N)											
		N1-N4		0.00122464	0.014324	0.000204106	0.002387332		-	-	1																
		N5-N8	Volume			0.000102053	0.001193666		-	-	1	0.5 x (Tunne															
		P1-P4		0.00510102	0.054548	0.000850171	0.009091334		-	-	1	1 x Tunnel S															
		P5-P8	Volume	0.10705000		0.000425085	0.004545667			-	1	+ Tunnel Sec	ction intern	nai Hoad (C) X (1	traffic t	low of Tun	nei Secti	on P/(tra	TIC TIOW OT	Tunnel Se	ection I + tr	attic flow	of Tunnel S	ection L + t	raffic flow of	f II
		W1-W8		0.10795692	2.6069805	0.00899641	0.217248371		-	-	4.	1 x Tunnel W	i														
		W9-W16 701-710	Volume	0.01171785	0.0040446	0.004498205	0.108624185		-	-	1	1 x Turinei W	V														_
		711-720	Volume	0.011/1/65	0.2343446	0.00078119	0.007811488	-	-	-		1 x Tunnel X															
		BaseA	Volume	0.00136975	0.0120560	0.000390595	0.007811488	-	-	-	-	1/3 x Basem		ABC													_
% of Servin	vs Rd	BaseC	voiume	0.00136975		0.001369753	0.012956888					1/3 x Basem															_
.0 01 001411	Out of 500m	801-820	Volume						_	_	1	1 x Tunnel Y		,-,-	1						1	Т	1	1	1	1	\neg
	Out of 500m	901-903				_	-	-	_	_		1 x Tunnel Z			1	_					1		1				\dashv
	Out of 500m	904-906	Volume			_	-	-	_	_	1	Janiloi L			1	_					1		1				\neg
	Out of 500m	V1	Point								from 1-4	-									İ		t -				\exists
											1																\neg

Appendix 3.18a - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr12-13)

														Hr 12-13 (201	5 EIA_19-12-20	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.			Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total			0.0006219	
PIII	73		Northbound Northbound	3	272	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0006219	0.0075405
C(l)	73		Northbound	3	110	275	53%	276	22%	0%	476	276	5%	476	2%	276	2%	076	2%	276	076	0%	100%	0.1115212	1.3522164	0.0023172	0.0280961
D _(i)	73		Northbound	3		275	53%	276	22%	0%	4%	276	5%	4%	2%	270	2%	0%	2%	276	0%	0%	100%	0.1115212	1.3522164	0.0009371	0.0113624
E(I)	70		Southbound	2		620	52%	10/	23%	0.00	99/	20/	0%	49/	29/	20/	10/	0%	20/	20/	0%	19/	100%	0.1118212	1.3586054	0.0030654	0.0362672
E(I)	72		Southbound	3		620	52%	196	23%	0%	2%	2%	6%	4%	2%	2%	190	0%	2%	2%	0%	196	100%	0.1148323	1.3586054	0.0034016	0.0402449
G ^(t)	118		Southbound	3		720	52%	196	23%	1%	2%	296	6%	4%	2%	294	196	0%	2%	194	0%	196	100%	0.1132003	1.3205377	0.0027394	0.0319570
H ^(l)	119		Eastbound	3	173	1145	27%	1%	54%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1655421	1.7884494	0.0091087	0.0984069
(ii)	117		Fastbound	3	194	340	28%	1%	53%	0%	1%	1%	4%	3%	196	0%	0%	0%	1%	1%	1%	1%	100%	0.1661145	1.7972764	0.0030436	
J ⁽¹⁾	116		Westbound	3	194	365	29%	1%	52%	0%	1%	1%	4%	1%	1%	0%	3%	0%	1%	1%	1%	1%	100%	0.1664142	1.7891971	0.0032733	0.0351925
K ^(t)	114	Lin Cheung Rd (depressed)	Southbound	3	95	110	64%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0981950	0.8909022	0.0002850	0.0025861
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	415	51%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1185754	1.3887175	0.0012986	0.0152084
M ^(t)	84	Lin Cheung Rd	Southbound	3	56	620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1172912	1.3848692	0.0011312	0.0133563
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	590	52%	1%	24%	0%	3%	2%	6%	3%	3%	2%	1%	0%	3%	2%	0%	1%	100%	0.1173109	1.3980316	0.0010767	0.0128308
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	935	27%	2%	54%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1644126	1.7735435	0.0022205	0.0239527
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3		525	28%	1%	52%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1673237	1.8281113	0.0012689	0.0138632
W ^(t)	98		Northbound	2		2710	53%	0%	16%	0%	2%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0598529	1.4669904	0.0887602	2.1755061
	A		Bothbound		404	45	44%	0%	33%	0%	0%	0%	0%	0%	0%	0%	22%	0%	0%	0%	0%	0%	100%	0.1699591	1.4821729	0.0008583	0.0074850
	В		Bothbound		361	80	38%	0%	25%	0%	6%	0%	0%	6%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1802252	1.7106099	0.0014458	0.0137229
	С		Bothbound		521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2369078	2.3433221	0.0012000	0.0118696
X**	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1635	34%	1%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1401460	2.8205301	0.0114569	0.2305783

PA Heapprosists of classcogne for Hypoer (Westbound 3 | 1980 | 1985 | 34% | 1% | 17% | 17% | 1. Note: (I): Tunnel name is based on Portal 3 to opening of undergass in EUA of Rev Morks in West Kowtoon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutarits multiplied by traffic flow of each roads.

		10%																									_
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA at West	Volume source by number of po involved	ortal/opening	divided by are			e																
				Emission Ra Opening		Emission Ra Portal/ Ope	ning	Emission I Opening																			
				(g/s) PM		(g/s) - Volum PM		(g/m2-s) PM		(Area)	Formula																_
		Portal/ opening	Source Type	r M	NOX	r M	NOX	r M	NOX	(Area)	from Scenario	Emission calc	ulation for	rmula (F	Extractor	d from	the ennrove	od FIA of	Dond We	rke at Wa	et Kowloo	.m)					
		Α.		6.2189E-05	0.000754		-	1 26605F-07	1.53511F-06	491.2	1	0.1 x Tunnel S	Section A	uu (1.	zati ucto	unom	ше пррготе	cu Larror	Ttout 110	THE HE TIC	JE 160 11 10 0	•••)					_
80.935 0.	873	В		0.00251121			-	7.34487E-06	8.9058E-05	341.9	1	2/3 x (0.9 x Tu	unnel Section	on A + 1	x Tunn	el Secti	on B) + 1/3	3 x (30.9	35 / 50)	x (0.9 x 1	Tunnel Sec	tion A + 1	x Tunnel S	Section B)			_
		CE	Area	0.00043681	0.0052063		-	6.87568E-07	8.19505E-06	635.3	1	0.1 x Tunnel S	Section C +	- 0.1 x ('	1/3 x (1	19.065	50) x (0.9	9 x Tunne	Section	A + 1 x T	unnel Sect	ion B)) +	0.1 x Tuni	nel Section	E		_
		D1-D7		0.0026718	0.0323961	0.000254458	0.003085347			-																	
		D8-D14	Volume			0.000127229	0.001542673		-	-	1	0.9 x Tunnel S						x Tunnel	Section A	4 + 1 x Tur	nnel Section	n B))+1	x Tunnel	Section D			
		F		0.00061604			-	2.21998E-06	2.6265E-05	277.5	1	0.1 x 0.9 x Tui	nnel Sectio	on E + 0.	.1 x Tuni	nel Sec	tion F										
		11-14		0.02151469	0.2400565		0.040009418		-	-	1	1 x Tunnel Se															
		15-18	Volume			0.001792891	0.020004709	-	-	-		Road A + Tun															
		JKO1		0.00069069		-	-		4.69275E-06	1542.7	1	0.1 x Tunnel S															
		L1-L5		0.00358545	0.0409055		0.005454064			-	4.	1 x Tunnel Sect															
		L6-L10 M1-M4	Volume	0.00110393	0.0400000	0.00023903	0.002727032	-	-	-	1	+ Tunner Sect	ion interna	II HOAO C) x (tra	HIIC HOV	voi Tunnei	Section	-/ (traini	C HOW OI I	unner Sec	uon i + irai	IIC HOW OI	Turinei Sec	uon L + tra	THE HOW OF I	uni
		M1-M4 M5-M8	Volume	0.00110393	0.0130936	0.000183989 9.19943F-05	0.00218226	-	-	-	٠.	0.5 x (Tunnel	Continu M	. Tunnol	l Continu	n ND											
		N1-N4		0.00110393	0.0130036	0.000183989	0.00109113	-	_	-		U.S X (Turriner	SECTION IN	+ Turine	360101	II IN)											_
		N5-N8	Volume	0.00110030	0.0130330	9.19943E-05	0.00218228		_		-,	0.5 x (Tunnel	Section M.	⊥ Tunnel	Section	n NN											
		P1-P4		0.00415958	0.0425181	0.000693263	0.00708635	_	_	_	-	1 x Tunnel Se					ion J + 0.9	x 0.86 x	Tunnel Se	ection K +	0.9 x (1/3	x (Tunne	Section I	nternal Roa	A + Tunne	el Section In	iter
		P5-P8	Volume			0.000346632	0.003543175		_	-	1	+ Tunnel Sect	tion Interna	I Road C	2)x(tr	raffic flo	w of Tunne	el Section	P/(traf	fic flow of	Tunnel Se	ction I + tr	affic flow	of Tunnel S	ection L + tr	affic flow of	í Tu
		W1-W8		0.08876023	2.1755061	0.007396686	0.181292173		-	-					, ,												_
		W9-W16	Volume			0.003698343	0.090646086			-	1	1 x Tunnel W															
		701-710		0.01145693	0.2305783	0.000763796	0.015371889			-	1																
		711-720	Volume			0.000381898	0.007685945	-	-	-	-	1 x Tunnel X															
			Volume	0.00116803		0.001168035	0.011025814					1/3 x Baseme															
% of Servi		BaseC		0.00116803	0.0110258	0.001168035	0.011025814					1/3 x Baseme	nt roads A,	,B,C													
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y															
	Out of 500m	901-903					-		-	-		1 x Tunnel Z										1					
	Out of 500m	904-906	Volume				-	-	-	-	1				1						ļ	1		1			4
	Out of 500m	V1	Point								from 1-4	-			1												4

														Hr 13-14 (201	5 EIA_19-12-20	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A19	73		Northbound	3	73	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0008675	0.0103001
B ⁽¹⁾	73		Northbound	3		355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0032324	0.0383784
C ⁽ⁱ⁾	73		Northbound	3	110	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0013072	0.0155207
D19	73		Northbound	3		355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0020915	0.0248331
E.	72		Southbound	3		620	54%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1107060	1.2881744	0.0029552	
F"	/2		Southbound	3		620	54%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1107060	1.2881744	0.0032794	0.0381586
G ^r	118		Southbound	3	121	705	53%	1%	23%	1%	3%	1%	6%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1124899	1.3189998	0.0026655	
H	119		Eastbound	3	173	1110	29%	1%	53%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1614658	1.6962797	0.0086129	0.0904824
T.			Eastbound	3		335	30%	1%	52%	0%	1%		4%	3%	1%	0%	U%	0%	0%	1%	1%	1%	10070	0.1581962	1.6706572	0.0028559	
Jin	116		Westbound	3		375	31%	1%	51%	0%	1%		4%	3%	1%	0%	3%	0%	0%	1%	1%	1%	100%	0.1579677	1.6500713	0.0031923	
- 40	114		Southbound	3			63%	0%	32%		0%	0.00	5%	0%	0%	2%	1%	0%	0%	0%	0%	0%	100%	0.1013909	0.9325919	0.0002542	
E-11	112		Northbound	3		470	53%	1%	23%	0%	2%	2%	5%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1127223	1.2877637	0.0013981	0.0159718
M1.	84		Southbound	3		585	53%	1%	24%	0%	3%	2%	5%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1111367	1.2941094	0.0010113	0.0117764
IN.	//		Northbound	3		715 890	52%	176	23%	9.10	3%	276	0%	4%	2%	2%	176	U%	2%	176	U76	176	100%	0.1144628	1.3362032		
DIII	111		Eastbound Westbound	3		505	27% 28%	2%	53%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1642927	1.7922519	0.0021121	0.0230404
IAI ⁽²⁾	110		Northbound	3		2770	53%	176	15%	0%	276	276	6%	4%	176	176	1%	0%	176	176	2%	2%	100%		1.8466717	0.0012234	0.0134704 2.1818415
**	98		Bothbound	2	404		43%	076	29%	0%	3%	276	0%	476	376	276	29%	0%	0%	276	376	0%	100%	0.1785564	1.6120202	0.0007013	0.0063317
	n		Bothbound	*	361	00	38%	0.76	29%	0%	076	0.00	076	0.70	076	070	23%	0.76	076	0.70	076	0.76	100%	0.1785564	1.5729374	0.0007013	0.0063317
	D C		Bothbound	4	361 521	30	38%	U76	3176	0%	U76	U76	0%	0%	U% 09/	U76	50%	0%	0%	0%	0%	09/	100%	0.1805212	2.1353673	0.0011766	0.0102525
V ²	144		Westbound	9	180	1620	34%	0.76	17.70	0.70	076	407	12%	110/	076	070	0076	0.76	076	10%	0.76	0.76	100%	0.2189680	2.7864835	0.0009507	0.0092711
^	144	reprovision of Gascoigne Hd Flyover	vvestoound	3	100	1020	34%	U%	1176	176	/%	4%	1270	1176	2%	170	176	U76	176	10%	076	176	100%	U. 139/600	2.7864835	0.0113206	0.225/052

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 1860 | 34% | 19%

P5PB Volume		10%	6									
Portial Opening (g/s) Open				(extracted from t of Road Works a Kowloon)	he approved EIA it West	by number of p involved	ortal/opening	divided by are	ea		e	
Portal opening ID. Source Type A. Area 6.6751E-05 0.00103 1,76611E-07 2066826 06 412 1 1 0.1 x Turnel Section A + 1 x Turnel Section A + 1 x Turnel Section B + 1/3 x (3.0357.50) x (0.9 x Turnel Sectio				Opening	te - Portal/	Portal/Ope	ening	Opening				
A Ans 8.6751E-05 0.00103		Portal/ opening			NOx						from	
Second Research Second Res		Δ.		8 6751F-05	0.00103			1 76611E-07	2 008025-08	491.2	5cenario	
CE	80 935 0 873	R				-	_				1	
De Did Volume Control Contro		CE	Area				_				1	
F Area (0.00054939) (0.0069107 - 2.1402116 (be 2.45034E of 2.77.5 t) (1.1 x Tunnel Section F + 0.1 x Tunnel Section F + 0		D1-D7		0.00372708	0.0442522	0.00035496	0.004214499	-	-	-		
1		D8-D14	Volume			0.00017748	0.002107249		-	-	1	
Sea		F	Area				-	2.14021E-06	2.49034E-05	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
Anni		11-14		0.02045437	0.224391				-	-	1	
1.1.5		15-18					0.018699247	-	-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow
E4.10 Volume Vo			Area				-	4.19124E-07	4.34398E-06	1542.7	1	0.1 x lunnel Section J + 0.1 x (1 - 0.14) x lunnel Section K + 0.1 x lunnel Section O + 0.1 x 1/3 x (1 unnel Section Internal Hoad A + Junnel Section Internal Hoad A
M1-M4			-l	0.00357059	0.0397558				-	-	4.	
MS-MB Volume NS-MB Volume NS-MB NS			Volume	0.00114221	0.012210			-	-	-	1	+ Turner Section Internal Hoad C) x (traine now of Turner Section L / (traine now of Turner Section L + traine now of Turner Section
N1-N4			Volume	0.00114221	0.013319			-	-	-	+.	0.5 v /Tunnal Section M - Tunnal Section M
S-NB Volume			volume	0.00114221	0.013319					Ē		0.5 X (Tullier Section III + Tullier Section III)
P P 0,00393082 0,040295 0,00037586			Volume	0.00114221	0.010010				_	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
Wi-Wa				0.00393082	0.0400295	0.000655136			-	-		1 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
WS-W16 Volume		P5-P8	Volume			0.000327568	0.00333579		-	-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section D / (traffic flow of Tunnel Section
Total Tota		W1-W8		0.08836937	2.1818415	0.007364114	0.181820121	-	-	-		
711-720 Volume 0.00094289 0.000073826 1 x Turnel X 1/3 x Basenert roads A.B.C 1			Volume					-	-	-	1	1 x Tunnel W
See A Volume 0.00094299 0.0096194 0.00094289 0.00961940 1/3 x Basement roads A,B,C			1	0.01132056	0.2257052				-	-	1	4
% of Serving Rid Out of 500m 01-520 Volume 0-1-620 Volume 01-620 Volume 01-640 Volume								-	-	-	-	
Out of 500m 601-920 Volume 1 1 X Tunnel Y			Volume									
Out of \$500m 99 1903 1 1 X Turnel Z				0.00094289	0.0086184	0.000942888	0.008618401					
Out of 500m 904-906 Volume 1			volumé			-		-	-		-	
			Maluma	-		-		-	-		٠.	TA TURNET Z
		1/1	Point								from 1-4	
			1	1	1	1		1	1	1	1	<u>, , , , , , , , , , , , , , , , , , , </u>

	entilation Exhaust (Hr14-15)

														Hr 14-15 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emissio (g/s	's)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0006521	0.0077959
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0024298	0.0290476
C ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	110	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0009826	0.0117472
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3	176	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0015722	0.0187955
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	630	55%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1097523	1.2790129	0.0029770	0.0346932
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	630	55%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1097523	1.2790129	0.0033035	0.0384983
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3	121	690	54%	1%	22%	1%	3%	1%	5%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1105299	1.2991527	0.0025634	0.0301295
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	1090	31%	1%	51%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1582427	1.6918077	0.0082888	0.0886178
l ₀ ,	117	Austin Rd W (depressed)	Eastbound	3	194	335	33%	1%	49%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1515504	1.6320511	0.0027359	0.0294631
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	390	33%	1%	49%	0%	1%	1%	4%	3%	1%	0%	3%	0%	0%	1%	1%	1%	100%	0.1522437	1.6011564	0.0031997	0.0336510
K ^{II)}	114	Lin Cheung Rd (depressed)	Southbound	3	95	95	63%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1017280	0.9382234	0.0002550	0.0023521
L ₀	112	Lin Cheung Rd (depressed)	Northbound	3	95	365	52%	1%	22%	0%	3%	3%	5%	4%	3%	1%	1%	0%	1%	1%	0%	1%	100%	0.1116124	1.2940595	0.0010750	0.0124643
M ^(t)	84	Lin Cheung Rd	Southbound	3	56	570	54%	1%	23%	0%	3%	2%	5%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1106405	1.3065727	0.0009810	0.0115849
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	550	53%	1%	23%	0%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1124187	1.3362689	0.0009618	0.0114325
O ⁽¹⁾			Eastbound	3	52	860	31%	1%	51%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1574999	1.6848836	0.0019565	0.0209300
P ^(l)	110	Austin Rd W (depressed)	Westbound	3			29%	1%	50%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1651335	1.8474785	0.0011926	
W ^(r)	98	West Kowloon Highway (WKH)	Northbound	2		3380	55%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0566192	1.4044621	0.1047235	2.5977088
	A	Internal Rd A	Bothbound	4	404	40	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1545602	1.4016274	0.0006938	0.0062917
	В		Bothbound	4	361	70	43%	0%	29%	0%	0%	0%	0%	7%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.1658985	1.4511260	0.0011645	
	С	Internal Rd C	Bothbound	4	521	30	33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2139628	2.1022106	0.0009290	0.0091271
X ⁽ⁱ⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1930	35%	1%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	4%	1%	100%	0.1388937	2.7873581	0.0134032	0.2689801

PA Heapprosison of classcogne for Hypther (Westbound 3 | 1980 | 1930 | 25% | 1% | 17% | 17% | 1. Notic: ((): Tunnel name is based on Portal 3 to opening of undregass in EUA of Park Morks in West Kowtoon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutarits multiplied by traffic flow of each roads.

		10%																									_
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA	Volume source by number of po involved	skall an author	Area source - divided by are	- calculated by	emission rat	e																
				Emission Ra Opening		Emission Ra Portal/ Oper (g/s) - Volun	ning	Emission I Opening																			
		Portal/ opening		PM				(g/m2-s) PM		(Area)	Formula from																
		ID.	Source Type								Scenario	Emission cal-	culation fo	ormula (F	Extracte	ed from	the appro	ved EIA o	f Road Wo	rks at We	st Kowloo	n)					
		A		6.5211E-05			-		1.58711E-06		1	0.1 x Tunnel \$															
80.935 0.8	873	В	Area	0.00263327	0.0314802		-		9.20742E-05		1	2/3 x (0.9 x T															
		CE		0.00043431				6.83628E-07	8.0315E-06	635.3	1	0.1 x Tunnel \$	Section C	+ 0.1 x (1/3 x (19.065	/50)x(0).9 x Tunn	el Section	$A + 1 \times T$	unnel Sect	ion B)) +	0.1 x Tun	nel Section	E		
		D1-D7 D8-D14	Volume	0.00280167		0.000266825	0.003189843		-	-	1	0.9 x Tunnel						9 x Tunne	Section A	A + 1 x Tur	nel Section	n B))+1	x Tunnel	Section D			
		F		0.00059829				2.15599E-06	2.51251E-05	277.5	1	0.1 x 0.9 x Tu	unnel Secti	ion E + 0.	.1 x Tun	nnel Se	ction F										
		11-14		0.01991097	0.2206624		0.036777062	-	-	-	1	1 x Tunnel Se															
		15-18	Volume			0.001659247	0.018388531		-	-		Road A + Tur															
		JKO1		0.00063046				4.08671E-07	4.22239E-06	1542.7	1	0.1 x Tunnel \$															
		L1-L5		0.00311223	0.0349228		0.004656367	-	-	-		1 x Tunnel Se															
		L6-L10	Volume			0.000207482	0.002328184		-	-	1	+ Tunnel Sec	tion Intern	nal Road C	C) x (tra	affic flo	w of Tunne	el Section	L/(traffi	c flow of T	unnel Sec	tion I + tra	fic flow of	Tunnel Sec	ction L + tra	ffic flow of T	Tun
		M1-M4		0.00097141	0.0115087	0.000161901	0.001918122		-	-	1																
		M5-M8	Volume			8.09507E-05	0.000959061	-	-	-	1	0.5 x (Tunnel	Section M	1 + Tunne	el Sectio	on N)											
		N1-N4		0.00097141	0.0115087	0.000161901	0.001918122	-	-	-	4																
		N5-N8	Volume		0.0101000	8.09507E-05	0.000959061		-	-	1	0.5 x (Tunnel 1 x Tunnel Se					f 1 . A.	A A AA .	Toward C	IZ	00/4/	V. (T	0		J A T		
		P1-P4		0.00392699	0.0401366	0.000654499	0.006689435			-	4	+ Tunnel Sec															
		P5-P8	Volume	0.10170010	0.5077000	0.00032725	0.003344717			-	1	+ Tunnel Sec	tion intern	nai Hoad C	() X (1	tramc r	ow of Tuni	nei Sectio	n P / (tra	TIC TIOW OT	Tunnel Se	ction I + tr	attic flow	of Tunnel S	ection L + t	rattic flow of	ſΙ
		W1-W8		0.10472346	2.5977088	0.008726955	0.216475731		-	-	4.	1 x Tunnel W															
		W9-W16 701-710	Volume	0.01340324	0.0000004	0.004363478	0.108237866		-	-	1	i x runnei vv															_
		701-710		0.01340324	0.2689801	0.000893549	0.017932004	-	-	-	1	1 x Tunnel X															
		BaseA	Volume Volume	0.00092909	0.000535	0.000446775	0.008534982			-	-	1/3 x Baseme	ont rondo A	A B C													_
% of Servin	na Dal	BaseC	voiume	0.00092909		0.000929091	0.008534982					1/3 x Baseme															_
∞ or Servir	Out of 500m	801-820	Volume	0.00032303	0.000000	0.000929091	0.000034982	_	_	_	1	1 x Tunnel Y	one rodus P	٠,٥,٥	_									1	1	1	\neg
	Out of 500m	901-903	* Oldric				_					1 x Tunnel Z			+							+	1		+	1	\dashv
	Out of 500m	904-906	Volume								,	1 A TUTILIOI Z	-		+	-					-	+	t	1	+	1	-
	Out of 500m	V1	Point								from 1-4	_	_		+	-	_				-	1	-	1	+		-
			-												1						—	†		1	1	1	\rightarrow

													Hr	15-16 (2015 E	IA_19-12-2011	1.xls)								Emission Rate		Emission (g/s)	
emarks (Tunnel name - ortal & top opening of inderpass in EIA of Rd forks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)		taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
1)	73	Lin Cheung Rd (underpass)	Northbound	3	73	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0008315	
1)	73	Lin Cheung Rd (underpass)	Northbound	3	272	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0030981	0.037521
1)	73	Lin Cheung Rd (underpass)	Northbound	3	110	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0012529	0.015174
10	73	Lin Cheung Rd (underpass)	Northbound	3	176	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0020047	0.024278
9)	72	Lin Cheung Rd (underpass)	Southbound	3	155	640	55%	1%	22%	1%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1004353	1.1996396	0.0027675	0.033056
1)		Lin Cheung Rd (depressed)	Southbound	3		640	55%	1%	22%	1%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1004353	1.1996396	0.0030711	0.036682
0)	118	Lin Cheung Rd (depressed)	Southbound	3	121	675	54%	1%	22%	1%	3%	1%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1021868	1.2116609	0.0023184	0.027489
1)	119	Austin Rd W (depressed)	Eastbound	3	173	1280	33%	1%	49%	0%	2%		4%	3%	1%	1%	0%	0%	0%	2%	1%	2%	100%	0.1458971	1.5789733	0.0089743	0.097124
		Austin Rd W (depressed)	Eastbound	3		400	35%	1%	48%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	1%	1%	100%	0.1419147	1.5273814	0.0030591	0.032923
0	116	Austin Rd W (depressed)	Westbound	3	194	500	35%	1%	45%	0%	2%	2%	4%	2%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1417755	1.5644763	0.0038201	0.042153
9)	114	Lin Cheung Rd (depressed)	Southbound	3	95	95	63%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970331	0.9105323	0.0002433	0.002282
0	112	Lin Cheung Rd (depressed)	Northbound	3	95	420	55%	1%	23%	0%	2%	2%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1006229	1.1568494	0.0011152	0.012821
(1)	84	Lin Cheung Rd	Southbound	3	56	560	54%	1%	23%	0%	3%	2%	4%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1030646	1.2325114	0.0008978	0.010736
1)	77	Lin Cheung Rd	Northbound	3	56	665	54%	1%	23%	0%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1049602	1.2438549	0.0010858	0.012867
0)	111	Austin Rd W (depressed)	Eastbound	3	52	990	33%	2%	49%	0%	2%	2%	5%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1474459	1.5816576	0.0021085	0.022617
1)	110	Austin Rd W (depressed)	Westbound	3	52	590	33%	1%	47%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1468227	1.6763221	0.0012513	0.014286
(1)	98	West Kowloon Highway (WKH)	Northbound	2	1970	3445	55%	0%	14%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0555149	1.3914694	0.1046557	2.623171
	A	Internal Rd A	Bothbound	4	404	50	50%	0%	30%	0%	0%	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1547026	1.3396760	0.0008681	0.007517
	В	Internal Rd B	Bothbound	4	361	90	39%	0%	28%	0%	6%	0%	0%	6%	0%	0%	22%	0%	0%	0%	0%	0%	100%	0.1760864	1.6307366	0.0015892	0.014717
	С	Internal Rd C	Bothbound	4	521	45	33%	0%	22%	0%	0%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	100%	0.2116818	2.0191565	0.0013786	0.013149
1	144	Reprovision of Gascoigne Rd Flyover	Westhound	3	180	1900	35%	0%	11%	196	7%	4%	11%	11%	196	194	190	0%	196	10%	4%	1%	100%	0.1297838	2 6714914	0.0123295	

Scenario 2		10%										
				Calculated by th	e formula shown							
				(extracted from t		Volume source -		Area source - ca	alculated by en	mission rate		
				of Road Works a	t West	by number of po involved	rtal/opening	divided by area				
				Kowloon)		invaived						
				Emission Rate	- Portal/	Emission Rate	- Portal/					
				Opening		Opening		Emission Rate	- Portal/ Or	nening		
				(g/s)		(g/s) - Volume		(g/m2-s) - Are				
					NOx		NOx			(Area)	Formula	
		Portal/ opening		rivi	NOX	PM	NOX	rm	NOX	(Area)	from	
		ID.	Source Type								Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
		A	Area	8.3148E-05	0.001007		_	1.69274E-07	2.05013E-06	491.2	1	0.1 x Tunnel Section A
80.935	0.873	В	Area	0.00335755	0.0406642		_	9.82027E-06	0.000118936	341.9	1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
		CE	Area	0.00045093	0.0054152	-	-	7.09797E-07	8.52385E-06	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
		D1-D7		0.00357227	0.0432646		0.004120442	-		-		
		D8-D14	Volume			0.000170108	0.002060221		-	-	1	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F	Area	0.00055619	0.0066433	-	-	2.00428E-06	2.394E-05	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
		11-14		0.02043901	0.2284076		0.038067931		-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
		15-18	Volume			0.001703251	0.019033965			-		Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of
		JKO1		0.00074163		-	-	4.80738E-07	5.09039E-06	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel Road B
		L1-L5		0.00345968	0.039281		0.005237467					1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x Tunnel Section Internal Hoad A + Tunnel Section Internal Hoad B +
		L6-L10	Volume				0.002618733		-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)))
		M1-M4		0.00099178	0.0118018		0.001966961					
		M5-M8	Volume				0.000983481			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00099178	0.0118018		0.001966961			-		0.5 x (Tunnel Section M + Tunnel Section N)
		N5-N8 P1-P4	Volume	0.00453398	0.0477400		0.000983481		-	-	1	U.5.X (Turnel Section M + Lunnel Section N) 1 X Turnel Section P + 0.9 x 0.76 x Turnel Section J + 0.9 x 0.86 x Turnel Section K + 0.9 x (1/3 x (Turnel Section Internal Road A + Turnel Section Internal Road B + Turnel
		P1-P4 P5-P8	Volume	0.00453398	0.0477428		0.007957133		-	-		1 x fullier Section F + U.9 x U.9 x fullier Section F + U.9 x U.9 x fullier Section F + U.9 x fu
		W1-W8		0.10465568	0.600171		0.003978506		-	-		Section internal road C /x (traine now or runner Section F / (traine now or runner Section E + traine now or runner Section F / (traine now or runner Section E + traine now or runner Section F / (traine now or runner Secti
		W9-W16	Volume	0.10403300	2.023171		0.109298791				1	1 x Tunnel W
		701-710		0.01232946	0.2537917		0.016919446	_	_	_	1	F.A. LIGHT BUT TY
		711-720	Volume	0.01202040	0.2007017		0.008459723					1 x Tunnel X
		RaseA	Volume	0.0012786	0.0117947		0.011794742					1/3 x Basement roads A.B.C
96	of Serving Rd	BaseC			0.0117947		0.011794742					1/3 x Basement roads A.B.C
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-		-	1	
	Out of 500m	V1	Point								from 1-4	-

													Hr	16-17 (2015 8	EIA_19-12-2011	.xls)								Emission Rate		Emissio (g/	
Remarks (Tunnel name - Portal & top opening of Inderpass in EIA of Rd Vorks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NO
,m	73	Lin Cheung Rd (underpass)	Northbound	3	73	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0009323	0.01
A	73	Lin Cheung Rd (underpass)	Northbound	3	272	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0034736	0.043
p	73		Northbound	3	110	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0014048	
1)	73	Lin Cheung Rd (underpass)	Northbound	3	176	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0022476	0.02
0	72	Lin Cheung Rd (underpass)	Southbound	3	155	640	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0994555	1.1909776	0.0027406	0.00
)	72	Lin Cheung Rd (depressed)	Southbound	3	172	640	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0994555	1.1909776	0.0030411	0.00
1)	118	Lin Cheung Rd (depressed)	Southbound	3	121	655	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.1023337	1.2244056	0.0022529	0.0
0	119	Austin Rd W (depressed)	Eastbound	3	173	1255	35%	1%	47%	0%	2%	2%	4%	3%	1%	1%	0%	0%	0%	2%	1%	2%	100%	0.1410136	1.5105051	0.0085045	0.09
	117	Austin Rd W (depressed)	Eastbound	3	194	400	38%	1%	46%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1378342	1.3635899	0.0029711	0.0
	116	Austin Rd W (depressed)	Westbound	3	194	520	36%	1%	43%	0%	2%	2%	5%	3%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1416634	1.5803407	0.0039697	0.0
)	114	Lin Cheung Rd (depressed)	Southbound	3	95	75	67%	0%	33%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0772351	0.6202375	0.0001529	0.0
	112	Lin Cheung Rd (depressed)	Northbound	3	95	480	55%	1%	22%	0%	3%	2%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1000858	1.1605299	0.0012678	0.0
)	84	Lin Cheung Rd	Southbound	3	56	540	55%	1%	23%	0%	3%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1033641	1.2487185	0.0008683	0.0
9	77	Lin Cheung Rd	Northbound	3	56	770	55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.1017174	1.2006051	0.0012183	0.0
)	111	Austin Rd W (depressed)	Eastbound	3	52	955	36%	1%	46%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1396371	1.5234272	0.0019262	0.0
	110	Austin Rd W (depressed)	Westbound	3	52	575	36%	1%	46%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1435693	1.5721295	0.0011924	0.0
)	98	West Kowloon Highway (WKH)	Northbound	2	1970	3510	56%	0%	14%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0543383	1.3756115	0.1043703	2.6
	A	Internal Rd A	Bothbound	4	404	50	50%	0%	30%	0%	0%	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1521985	1.3253152	0.0008540	0.00
	В	Internal Rd B	Bothbound	4	361	85	41%	0%	29%	0%	0%	0%	0%	6%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1726185	1.5172152	0.0014713	0.0
	С	Internal Rd C	Bothbound	4	521	45	33%	0%	22%	0%	0%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	100%	0.2061317	1.9849207	0.0013424	0.01
	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1885	36%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	1%	100%	0.1271305	2.6322257	0.0119821	0.2

| Control | 144 | Reprovision of Classcoipe Ref Proper | Westbound | 3 | 180 | 1885 | 38% | 17% | 17% | 17% | 17% | 17% | 1886 |

Scenario 2			10%										
occinatio 2			10.0		Calculated by the (extracted from the of Road Works a Kowloon)	he approved EIA at West	Volume source by number of p involved	ortal/opening	Area source - c divided by area	alculated by emis	sion rate		
					Opening	- 1 011110	Opening		Emission Pot	e - Portal/ Ope	ning		
					(g/s)		(g/s) - Volum		(g/m2-s) - Are		imig		
				1		NOx			PM	NOx	(Area)	Formula	
			Portal/ opening		1.111	NOX	1 1/1	NO.	1.01	NOX.	(Alea)	from	
			ID.	Source Type									Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
			A	Area	9.3226E-05			-		2.39762E-06		1	0.1 x Tunnel Section A
	80.935	0.873	В	Area	0.00376453			-			341.9	1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
			CE		0.00046935			-	7.38781E-07	9.0491E-06	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
			D1-D7 D8-D14		0.00400528	0.0505979		0.004818851				-1.	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			D8-D14	Volume Area	0.00055076	0.0005054	0.000190728	0.002409425	4 00 4705 00	2.37671E-05	077.5	1	10.3 x Turnel Section C + 0.3 x Turnel Section C + 0.3 x Turnel Section A + 1 x Turnel Section B)) + 1 x Turnel Section B 0.1 x 0.9 x Turnel Section E + 0.1 x Turnel Section F
			11-14	Area	0.01966801	0.0063934	0.003278002	0.03618035	1.984/3E-06	2.3/6/1E-05	2//.5	-	10.1 x Uninel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume	0.01000001	U.E.ITOUE1	0.000270002	0.00010000	-	_	-	<u> </u>	Tunnel Section Internal Road B + Tunnel Section Internal Road C \ v \ traffic flow of Tunnel Section I \ traffic flow of Tunnel Section I + traffic flow of
			JKO1	Area	0.000725	0.0077454		-	4.69955E-07	5.02066E-06	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			L1-L5		0.00356304	0.040288		0.005371727		-	-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			L6-L10	Volume				0.002685864		-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			M1-M4		0.0010433	0.0124349		0.002072485		-		_	
			M5-M8	Volume				0.001036242			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4 N5-N8	ł	0.0010433	0.0124349		0.002072485				-1.	0.5 x (Tunnel Section M + Tunnel Section N)
			N5-N8 P1-P4	Volume	0.00446087	0.0470706		0.001036242	-	-	-	1	10.5 X (Turniel Section M+ Turniel Section N) 11 X Turniel Section P + 0.9 x 0.76 x Turniel Section J + 0.9 x 0.86 x Turniel Section M+ 0.9 x (1/3 x (Turniel Section Internal Road A + Turniel Section Internal Road B + Turniel
			P5-P8	Volume	0.00446067	0.04/0/26	0.000743478	0.007845431	_	_	-	⊣,	Section Internal Road C I x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			W1-W8		0.10437029	2 6422058		0.220183818	_	-	_		Code of the first food of the
			W9-W16	Volume	0.10407020	L.O-ILLOOD		0.110091909		-	-	∃ 1	1 x Tunnel W
			701-710		0.01198205	0.2480873	0.000798804	0.016539152		-	-	1	
			711-720	Volume			0.000399402	0.008269576		-	-	-	1 x Tunnel X
				Volume	0.00122259			0.01109848					1/3 x Basement roads A,B,C
	% of S	Serving Rd	BaseC		0.00122259	0.0110985	0.00122259	0.01109848					1/3 x Basement roads A,B,C
			801-820	Volume			-	-		-	-	1	1 x Tunnel Y
			901-903				-	-	-	-	-	-	1xTunel Z
		Out of 500m Out of 500m	904-906	Volume Point		-	-		-	-	-	from 1-4	
		Out or boom	V I	Point								from 1-4	
							1	1	·	1	1		

														Hr 17-18 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emissio (g/:	's)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(I)	73	Lin Cheung Rd (underpass)	Northbound	3	73	540	55%	196	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0011107	0.0137570
B ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	272	540	55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0041384	0.0512591
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3		540	55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0016736	0.0207298
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	540	55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0026778	0.0331677
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	660	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0980087	1.1726445	0.0027851	0.0333226
F ⁽¹⁾	72		Southbound	3	172	660	55%	1%	22%	196	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0980087	1.1726445	0.0030905	0.0369774
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound				55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0977730	1.1767631	0.0021361	0.0257090
H ^(l)			Eastbound	3			38%	1%	45%	0%	2%	2%	5%	3%	1%	1%	0%	0%	0%	2%	196	1%	100%	0.1359502	1.4655880	0.0079378	0.0855720
I(1)			Eastbound	3			39%	1%	44%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1335938	1.3374192	0.0028437	0.0284685
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	540	37%	1%	43%	0%	2%	2%	5%	3%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1382649	1.5407643	0.0040235	0.0448362
K ⁽ⁱ⁾			Southbound	3			65%	0%	35%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0813252	0.6538889	0.0001824	0.0014667
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	510	57%	1%	22%	0%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0973764	1.1253061	0.0013105	0.0151447
M ⁽¹⁾	84		Southbound	3			55%	1%	22%	0%	3%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1017097	1.2512942	0.0008306	0.0102189
N ^(l)			Northbound	3			55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0999051	1.1785577	0.0013365	0.0157665
O ⁽¹⁾			Eastbound	3			39%	1%	44%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1348947	1.4432168	0.0018023	0.0192830
P ^(l)	110		Westbound	3			39%	1%	43%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1355976	1.5135493	0.0011262	
W ⁽¹⁾	98		Northbound	2		4165	57%	0%	13%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0531229	1.3581898	0.1210767	3.0955598
	A		Bothbound		404		46%	0%	31%	0%	0%	0%	0%	0%	0%	0%	23%	0%	0%	0%	0%	0%	100%	0.1638192	1.4453496	0.0011950	
	В		Bothbound	4			43%	0%	29%	0%	0%	0%	0%	5%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1686630	1.4954378	0.0017759	
	С		Bothbound	4	521		36%	0%	18%	0%	0%	0%	0%	0%	0%	0%	45%	0%	0%	0%	0%	0%	100%	0.1979458	1.9406644	0.0015756	
X**	144	Reprovision of Gascoigne Rd Flyover		3	180	1865	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	1%	10%	4%	0%	100%	0.1245703	2.6362905	0.0116162	0.2458341

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 1865 | 86% | 195 | 1956 |

	10%										
			Calculated by the (extracted from ti of Road Works a Kowloon)	he approved EIA it West	Volume source by number of p involved	ortal/opening	divided by an	ea	y emission rat	e	
			Emission Rat Opening (g/s)	te - Portal/	Emission R Portal/ Ope (g/s) - Volu	ening	Emission Opening (g/m2-s) -				
	Portal/ opening	Source Type		NOx	PM			NOx	(Area)	Formula from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
			0.00011107	0.0013757			2 26115E-07	2.8007E-06	491.2	1	Emission Calculation formula (Extracted from the approved ELA of Road Works at West Rowloon) 1.1 x Tunnel Section A
80.935 0.873			0.00448498			_		0.000162479		1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
	CE		0.00051117			_		9.78138E-06		1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
	D1-D7		0.0047718	0.0591043	0.000454457	0.00562898	-	-	-		
	D8-D14	Volume			0.000227229	0.00281449			-	1	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F		0.00055971		-		2.01698E-06	2.41325E-05	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
	11-14		0.01896092	0.2104537		0.03507562	-	-	-	1	1 x Tunnel Section 1 + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section C + 0.9 x 0.40
		Volume			0.001580077	0.01753781	-		-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I /
			0.00074982			-	4.86045E-07	5.13986E-06	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	L1-L5		0.00365531	0.040854		0.005447197		-	-	1	1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x Tunnel Section Internal Road A + Tunnel Section Internal
		Volume			0.000243688	0.002723599	-	-	-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow
	M1-M4		0.00108357	0.0129927		0.002165449		-	-	1	
		Volume			9.02974E-05	0.001082724		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4		0.00108357	0.0129927		0.002165449			-	4	
		Volume	0.00151000	0.047007	9.02974E-05	0.001082724			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	P1-P4		0.00454939	0.04/997	0.000758232	0.007999504	-	-	-	4.	1x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section
		Volume	0.12107666	0.0055500	0.000379116	0.003999752			-	1	+ Turnet Section Internal Hoad C) x (trainic flow of Turnet Section P / (trainic flow of Turnet Section I + traffic flow of Turnet Section L + traffic flow of Turnet Section L + traffic flow of Turnet Section I + traffic flow of Turnet Section L + traffic flow of Turnet Section I + traffic flow of Turnet Section L + traffic flow of Turnet Section I + traffic flow
	W1-W8 W9-W16		0.12107666	3.0955598	0.010089722	0.257963314			-	4.	1 x Tunnel W
	W9-W16 701-710	Volume	0.01161618	0.0450044		0.128981657	-	-	-	1	1 x Turner w
		Volume	0.01161616	0.2430341	0.000774412	0.00819447		-	-		1 x Tunnel X
			0.00151548	0.013012	0.000387208	0.013911962	-	-	-	-	1/3 x Basement roads A.B.C
% of Serving Rd	BaseC		0.00151548		0.001515481	0.013911962			1	1	1/3 x Basement roads A.B.C
Out of 500m		Volume	0.00101040	0.010012					-	1	13 Lunel Y
Out of 500m	901-903				_	_		_	-		1 x Tunnel Z
Out of 500m		Volume			_	-		_	-	1	
Out of 500m	204 300	Point								from 1-4	

Appendix 3.18a - Emission	n Rates of Port	al, Top Openings and Ventilation E	xhaust (Hr18-19)																								
																								Emission		Emission	Rate
													н	r 18-10 /2015	EIA 19-12-201	1 viet								Rate		(g/s)	á.
				T				I	1	I		I		10-15 (2015	10-12-201	1.2139		1	1	1	1			PM	NOx	PM	NOx
Remarks (Tunnel name -																								1 141	HOX	1 .71	HOX
Portal & top opening of																											
underpass in EIA of Rd	WKCD																										
				L			PC	taxi	LGV3			HGV7	HGV8	PLR	PV4	PV5	NFR6	NFR7	NFR8		FRDD	MC To					
Works in WK)	section no.	Road name Lin Cheung Rd (underpass)	Bound Northbound	Road Type	Length (m)	Total (veh/hr)	55%	taxi	21%	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FRDD	MC Io		0.0963072	1.2124485	0.0010741	0.0135222
D ⁽²⁾	73	Lin Cheung Rd (underpass)	Northbound	3	272	550	55%	176	21%	076	4%	276	0%	D76	176	176	176	0%	276	2%	0%	176		0.0963072	1.2124485	0.0010741	0.0503840
O ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	110	550	55%	1%	21%	0%	4%	276	0%	D76	176	176	176	0%	276	2%	0%	1%		0.0963072		0.0040021	0.0203759
D.00	73	Lin Cheung Rd (underpass)	Northbound	3	176	550	55%	1%	21%	0%	4%	276	0%	D76	176	176	176	0%	276	2%	0%	176		0.0963072	1.2124485	0.0025896	0.0326014
em	73	Lin Cheung Rd (underpass)	Southbound	3	155	550	56%	176	21%	U76	476	276	0%	D76	176	176	176	0%	276	276	0%	176	100%	0.0963072	1.0975200	0.0025896	0.0320014
E-17	72	Lin Cheung Rd (depressed)	Southbound	3	172	828	56%	1%	22%	1%	3%	176	4%	5%	176	176	176	0%	176	176	U%	1%		0.0924923		0.0032957	0.0391072
-0	12			3	121	020		176	22%	176	376	176	476	0%	176	176	176	U%	176	176	U%	176		0.0924923		0.0036572	
(3"	118	Lin Cheung Rd (depressed)	Southbound	3	121	1226	56% 41%	1%	21% 42%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0928644		0.0023566	0.0284884
Hr.	119	Austin Rd W (depressed) Austin Rd W (depressed)	Eastbound	3	1/3	1226	41%	1%	42%	0%	196	2%	5%	3%	1%	1%	0%	0%	0%	2%	0%	1%		0.1262322	1.3521806	0.0074382	0.0796772
ath.	116	Austin Rd W (depressed)	Westbound	3	194		38%	1%	40%	0%	2%	176	D76 #96	3%	176	1%	0%	0%	076	176	0%	1%		0.1228485		0.0028876	0.0293481
J**	116			3	194	565		176		0.70	276	276	476	3%	176	176	0%	U%	076	2%	176	176					
K**	114	Lin Cheung Rd (depressed)	Southbound	3	95	494	58%	0%	22%	0%	2%	0%	0%	2%	1%	1%	0%	0%	0%	1%	0%	0%		0.0851190	0.7951788	0.0003982	0.0037199
Lo	112	Lin Cheung Rd (depressed)	Northbound	3	95	494 650	5/%	1%	22%	0%	3%	2%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%		0.0916868	1.0758783	0.0011943	0.0140143
M	84	Lin Cheung Rd	Southbound	3	56	844	56%	1%		0%	4%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%					
N°	//	Lin Cheung Rd	Northbound	3	56	1003	56% 42%	1%	22%	1%	4%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%		0.0948007	1.1350154	0.0012441	0.0148946
O"	1111	Austin Rd W (depressed)	Eastbound	3	52			1%	40%	0%	2%	2%	4%	3%	1%	1%	1%	0%	0%	2%	0%	1%		0.1225279		0.0017748	0.0194489
P ^(v)	110	Austin Rd W (depressed)	Westbound	3	52	594	42%	1%	13%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%			1.4357436		0.0123205
W ¹⁷	98	West Kowloon Highway (WKH)	Northbound	2	1970	4849	58%	0%		0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	2.8%	U76		0.0519319		0.1377960	3.5604241
	A	Internal Rd A	Bothbound	4	404	174	46%	0%	29%	0%	2%	0%	0%	2%	1%	1%	18%	0%	0%	1%	0%	0%		0.1468798		0.0028631	0.0256031
	R	Internal Rd B	Bothbound	4	361	262	43%	0%	2/%	0%	1%	0%	0%	2%	1%	1%	23%	0%	0%	1%	0%	0%	100%	0.1569175	1.4449279	0.0041243	0.0379771
-	С	Internal Rd C	Bothbound	4	521	143	32%	0%	20%	0%	1%	0%	0%	1%	1%	1%	42%	0%	0%	0%	0%	0%		0.1912270	1.8942337	0.0039439	0.0390672
X ^{cc}	144	Reprovision of Gascoigne Rd Flyover		3	180	1845	37%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	1%	11%	4%	0%	100%	0.1172952	2.5348958	0.0108205	0.2338441

C Hefenia No C States and C Sta

Scenario 2		10%										
				Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA at West	Volume source by number of poinvolved	rtal/opening	Area source - ca divided by area	liculated by er	nission rate		
				Emission Rate Opening		Emission Rate Opening		Emission Rate	Portol/Or	soning		
				(g/s)		(g/s) - Volume		(g/m2-s) - Are:		ening		
										(Area)	Formula	
		Portal/ opening									from	
		ID.	Source Type	0.00010741	0.0012522			2.18667E-07	2.75288E-06	404.0	Scenario	Enission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 1.1 x Timpel Section A
80.90	35 0.873	A	Area	0.00010741	0.0013522	-	-	2.1866/E-0/ 1.26857E-05	2.75288E-06 0.000159706		1	0.1 x 101789 Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section B + 1 x Tunnel Section B)
00.5	30 0.673	CE		0.00055457	0.0067434	-	-		1.06145E-05		1	25 x (3.3 x Tunnel Section C + 0.1 x (1/3 x (19.65 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section C + 0.1 x (1/3 x (19.65 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section B
		D1-D7		0.00461462	0.0580952	0.000439488	0.005532878		-	-		
		D8-D14	Volume			0.000219744	0.002766439		-	-	1	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F	Area	0.00066233	0.0078593		-	2.38678E-06	2.83217E-05	277.5	1	0.1 x.0.9 x Tunnel Section E + 0.1 x Tunnel Section F 1 x Tunnel Section E + 1.1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1.3 x (Tunnel Section Internal Road A +
		11-14		0.02024477	0.224646		0.037440999			-	1	
		JKO1	Volume Area	0.00099695	0.0104599	0.001687064	0.018/205	6.46235E-07	6.77955E-06	1540.7		Tunnel Section Internal Road B + Tunnel Section Internal Road C) x(traffic flow of Tunnel Section I / traffic flow of Tunnel Section I + traffic flow of Tu
		L1-L5		0.0041559		0.00055412	0.00635105					1x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x Tunnel Section Internal Road B +
		L6-L10	Volume			0.00027706	0.003175525			-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
		M1-M4		0.00110117	0.0132562		0.002209361					
		M5-M8	Volume				0.001104681			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4 N5-N8		0.00110117	0.0132562		0.002209361	-		-		0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4	Volume	0.00554598	0.0560533	9.17639E-05	0.001104681			-	1	U.5.x (Turnel Section M + 0.1 mnel Section N) 11 x Turnel Section P + 0.9 x 0.76 x Turnel Section J + 0.9 x 0.86 x Turnel Section K + 0.9 x (1/3 x (Turnel Section Internal Road A + Turnel Section Internal Road B + Turnel Section I
		P5-P8	Volume	0.00554596	0.0569552	0.00092433	0.009492194	-		-	1	Section Internal Boad City (traffic flow of Tunnel Section P) (traffic flow of Tunnel Section P)
		W1-W8		0.13779605	3.5604241	0.011483004	0.296702009		-	-		7,7,7
		W9-W16	Volume				0.148351005				1	1 x Tunnel W
		701-710		0.01082048	0.2338441		0.015589609			-	1	
			Volume				0.007794805			-	-	1 x Tunnel X
	% of Serving Rd	BaseA BaseC	Volume		0.0342158		0.034215791					1/3 x Basement roads A.B.C 1/3 x Basement roads A.B.C
	Out of 500m	801-820	Volume	0.00004373	0.0042130	0.003043/51	U.U04210/91			_	1	1/3 X basemen roads A,5,0
	Out of 500m	901-903	rounc			_	_	-	_	-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	

														fr 19-20 (2015	EIA 19-12-2011	.xls)								Emission Rate		Emission (g/s	
emarks (Tunnel name - ortal & top opening of inderpass in EIA of Rd orks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
,	73	Lin Cheung Rd (underpass)	Northbound	3	73	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0009473	0.0119
	73	Lin Cheung Rd (underpass)	Northbound	3	272	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0035297	0.0445
	73	Lin Cheung Rd (underpass)	Northbound	3	110	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0014274	0.0180
	73	Lin Cheung Rd (underpass)	Northbound	3	176	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0022839	0.0288
	72		Southbound	3	155	810	56%	1%	23%	1%	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0946940	1.1070114	0.0033025	0.0386
	72	Lin Cheung Rd (depressed)	Southbound	3	172	810	56%	1%	23%	1%	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0946940	1.1070114	0.0036647	0.0428
)	118	Lin Cheung Rd (depressed)	Southbound	3	121	765	56%	1%	22%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0943951	1.1249346	0.0024271	0.0289
)	119	Austin Rd W (depressed)	Eastbound	3	173	1230	39%	1%	44%	0%	2%	2%	4%	3%	1%	1%	0%	0%	0%	2%	0%	1%	100%	0.1307413	1.3764898	0.0077279	0.0813
	117		Eastbound	3	194	425	41%	1%	44%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1272482	1.2708359	0.0029143	
	116	Austin Rd W (depressed)	Westbound	3	194	570	37%	1%	40%	0%	2%	2%	4%	3%	1%	1%	6%	0%	0%	2%	1%	1%	100%	0.1374107	1.5469820	0.0042208	0.0475
)	114	Lin Cheung Rd (depressed)	Southbound	3	95	165	61%	0%	33%	0%	3%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0837406	0.7390958	0.0003646	
	112	Lin Cheung Rd (depressed)	Northbound	3	95	445	56%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0951883	1.1252717	0.0011178	0.0132
)	84	Lin Cheung Rd	Southbound	3	56	650	56%	1%	24%	0%	3%	2%	4%	5%	1%	1%	196	0%	2%	2%	0%	1%	100%	0.0965061	1.1424376	0.0009758	0.0115
	77	Lin Cheung Rd	Northbound	3	56	745	55%	1%	21%	1%	3%	2%	5%	5%	1%	1%	196	0%	1%	1%	0%	1%	100%	0.0972510	1 1633760	0.0011270	0.0134
	111	Austin Rd W (depressed)	Fastbound	3	52	1000	41%	1%	43%	0%	2%	2%	4%	3%	1%	1%	196	0%	1%	2%	1%	1%	100%	0.1284244	1.3757389	0.0018550	0.0198
	110		Westhound	3	52	590	40%	1%	42%	0%	2%	2%	4%	3%	1%	1%	196	0%	1%	2%	1%	1%	100%	0.1316538	1 4708751	0.0011220	0.0125
1)	98	West Kowloon Highway (WKH)	Northbound	2	1970	3605	57%	0%	13%	0%	3%	2%	5%	4%	2%	2%	196	0%	4%	2%	3%	0%	100%	0.0526031	1.3506539	0.1037721	2.6644
	A	Internal Rd A	Bothbound	4		160	47%	0%	28%	0%	3%	0%	0%	3%	0%	0%	19%	0%	0%	0%	0%	0%	100%	0.1500838	1.3633630	0.0026948	0.0244
	В	Internal Rd B	Bothbound	4	361	245	43%	0%	27%	0%	2%	0%	0%	2%	2%	0%	24%	0%	0%	0%	0%	0%	100%	0.1581700	1.4628400	0.0038859	0.0359
	С	Internal Bri C	Bothbound	4	521	130	35%	0%	19%	0%	0%	0%	0%	0%	0%	0%	46%	0%	0%	0%	0%	0%	100%	0.1930660	1 9136558	0.0036323	0.0360
	144	Reprovision of Gascolone Rd Flyover	Westbound	3	180	1850	36%	0%	11%	196	8%	4%	10%	12%	1%	1%	196	0%	1%	11%	4%	0%	100%	0.1202781	2 5526715	0.0111257	0.2361

[6] 144 Reprovision of Cascolipe Ref Pylover | Westbound | 3 | 180 | 1850 | 38% | 19% | 11% | 17% | 17% | 17% | 1800 | 18

Scenario 2			10%										
					Calculated by the (extracted from to of Road Works a Kowloon) Emission Rate	he approved EIA at West	Volume source by number of po involved	rtal/opening	Area source - c divided by area		mission rate		
									Emission Rat	B . VO			
					Opening		Opening (g/s) - Volume		(g/m2-s) - Are		pening		
				r	PM	NOx					(Area)	Formula	
			Portal/ opening		rivi	NOX	PNI	NOX	rm	NOX	(Area)	from	
			ID.	Source Type								Scenario	
			A	Area	9.473E-05	0.0011964	-	-		2.43568E-06		1	0.1 x Tunnel Section A
	80.935	0.873	В	Area	0.00382527	0.0483116		-		0.000141303		1	2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B) 0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
			CE		0.00052869		-		8.32187E-07	1.0022E-05	635.3	1	0.1 x Tunnel Section C + 0.1 x (1/3 x (19.065 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
			D1-D7		0.0040699	0.0514011	0.000387609	0.004895344	-	-	-	<u>.</u>	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			D8-D14	Volume Area	0.00066369	0.0077500	0.000193805	0.002447672	2.39166E-06	2.79595E-05	077.5	1	U.3 x Turniel Section C + U.3 x (1/3 x (1/3 x x (1/3 x x 1/3 x 1
			11.M	Area	0.02061991	0.0077566	0.003436651	0.03752508	2.39100E-00	2.79095E-U5	2//.5	1	0.1 x 0.3 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume	0.02001001	0.2201000		0.01876254		_	_		
			JKO1	Area	0.00097938	0.0102298	-		6.34845E-07	6.63112E-06	1542.7	1	Turnel Section Internal Road B + Turnel Section Internal Road C) x (traffic flow of Turnel Section I - I traffic flow of Turnel Section I - traffic flow of
			L1-L5		0.00399846	0.0464124		0.006188316		-	-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			L6-L10	Volume			0.000266564			-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)))
			M1-M4		0.00105141							4	
			M5-M8	Volume	0.00105141		8.76173E-05					1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4 N5-N8	Volume	0.00105141		8.76173E-05		-	-	-		0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00552939	0.0559269	0.701732-03	0.001043063	_	E		-	1.3 X (Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel Road B + Tunnel Road B + Tunnel Road B + Tunnel Road B
			P5-P8	Volume	0.00002000	0.0000200	0.0003£1303	0.003021140				1	Section Internal Boad C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			W1-W8		0.10377213	2.6644837	0.008647678	0.222040306		-	-		
			W9-W16	Volume				0.111020153		-	-	1	1 x Tunnel W
			701-710		0.01112573	0.2361221		0.015741474		-	-	1	
			711-720	Volume				0.007870737		-	-	-	1 x Tunnel X
			BaseA BaseC	Volume		0.0321408		0.032140794					1/3 x Basement roads A.B.C 1/3 x Basement roads A.B.C
	% of 3	Serving Rd	801-820	Makana	0.00340436	0.0321408	0.003404363	0.032140794					1/3 x Basemen roads A.B.C. 1x Tunnel Y
		Out of 500m Out of 500m	901-903	Volume					_				1 x Turnel Z
		Out of 500m	904-906	Volume			_		_	_	_	1	10.3000
		Out of 500m	V1	Point								from 1-4	

Appendix 3.18a - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr20-21)	
---	--

														Hr 20-21 (201	5 EIA_19-12-20	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(f)	73		Northbound	3	73	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0008810	0.0114222
B ^(l)	73		Northbound	3	272	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0032827	0.0425594
CIII	73		Northbound	3	110	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0013276	0.0172115
D(1)	73		Northbound	3		460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0021241	0.0275384
E ⁽ⁱ⁾	72		Southbound	3			56%	1%	23%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0906412	1.0507031	0.0021074	0.0244288
F ⁽¹⁾	72		Southbound	3			56%	1%	23%	1%	3%	- 10	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0906412	1.0507031	0.0023385	0.0271081
G ^(r)	118		Southbound	3			55%	1%	21%	1%	3%		5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0929131	1.1244962	0.0016083	0.0194647
H ^(t)	119		Eastbound	3	173	1035	38%	1%	45%	0%	1%		4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1275903	1.3494626	0.0063460	0.0671189
p)			Eastbound	3		355	39%	1%	44%	0%	1%		4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1231362	1.2569750	0.0023557	0.0240466
J ⁽¹⁾	116		Westbound	3		475	35%	1%	41%	0%	2%		4%	2%	1%	1%	6%	0%	0%	2%	1%	1%	100%	0.1336804	1.5647378	0.0034218	0.0400529
K ⁽ⁱ⁾	114		Southbound	3		130	58%		35%	0%	4%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0855512	0.7767962	0.0002935	0.0026648
L ⁽⁰⁾	112		Northbound	3			56%	1%	22%	0%	3%	2%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0914883	1.0890215	0.0010985	0.0130758
M ⁽¹⁾	84		Southbound	3		455	56%	1%	23%	0%	3%		4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0908042	1.0737254	0.0006427	0.0075996
N ^(t)	77		Northbound	3			55%	1%	22%	1%	3%		5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0958090	1.1643613	0.0011178	0.0135842
0"	111		Eastbound	3		845	38%	1%	44%	0%	2%		4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1283496	1.4139561	0.0015666	0.0172581
P ^(t)	110		Westbound	3		505	39%	1%	43%	0%	2%		4%	2%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1276585	1.4798679	0.0009312	0.0107948
W ⁽¹⁾	98		Northbound	2		2370	57%	0%	14%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%		1.3754610	0.0702149	1.7838583
	A		Bothbound				44%	0%	28%	0%	4%	0%	0%	4%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1511370	1.4181344	0.0021201	0.0198933
	В		Bothbound			185	43%	0%	27%	0%	3%	0%	0%	3%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1573047	1.4827939	0.0029182	0.0275079
	С		Bothbound			95	32%	0%	21%	0%	0%	0%	0%	0%	0%	0%	47%	0%	0%	0%	0%	0%	100%	0.2026860	2.0048960	0.0027867	0.0275645
X ⁽ⁱ⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1245	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	0%	10%	4%	0%	100%	0.1159785	2.4957565	0.0072197	0.1553608

		10%									_														
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA	Volume source by number of p involved		Area source - divided by are	- calculated by	y emission rat	e														
				Emission Ra	te - Portal/	Emission R	ate -	Emission	Rate - Port	tal/															
				Opening		Portal/ Ope		Opening																	
				(g/s)		(g/s) - Volu	me source	(g/m2-s) -	Area sourc	ce															
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula														
		Portal/ opening	Source Type								from Scenario	Emission calculation t	formula (I	extracted fr	om the anni	oved FIA	of Road We	rke at Wes	t Kowloor	n)					
		A		8.8102E-05	0.0011422			1.79362E-07	2.32537E-06	491.2	1	0.1 x Tunnel Section A		Att ucteu II	ли сис прри	O'CU LLE	or reoute the	racius inc.	110 11 1001	,					_
80.935 0.873	3	В		0.00355763				1.04055E-05	0.000134903	3 341.9	1	2/3 x (0.9 x Tunnel Sec	ction A +	x Tunnel S	ection B) +	- 1/3 x (30	0.935 / 50)	x (0.9 x T	unnel Sect	ion A + 1 >	Tunnel S	ection B)			_
		CE	Area	0.0003953	0.0048356		-	6.22224E-07	7.61156E-06	635.3	1	0.1 x Tunnel Section C	+ 0.1 x (1/3 x (19.0	65 / 50) x (0.9 x Tunr	nel Section	A + 1 x Tu	nnel Section	on B)) +	0.1 x Tunr	el Section	E		_
		D1-D7		0.00378514	0.0490731	0.000360489	0.00467363	-	-	-															
		D8-D14	Volume			0.000180245	0.002336815	-	-	-	1	0.9 x Tunnel Section C).9 x Tunne	el Section A	4 + 1 x Tun	nel Section	n B)) + 1	x Tunnel S	Section D			
		F		0.00042352			-	1.5262E-06	1.76916E-05	277.5	1	0.1 x 0.9 x Tunnel Sec	tion E + 0	1 x Tunnel	Section F										
		11-14		0.01533227	0.1677044		0.027950736	-		-	1	1 x Tunnel Section I +													
		15-18	Volume			0.001277689	0.013975368	-		-		Road A + Tunnel Secti													
		JKO1		0.00078492		-	0.00543423	5.08793E-07	5.48333E-06	1542.7	1	0.1 x Tunnel Section J 1 x Tunnel Section L +													
		L1-L5 L6-L10	Volume	0.00352402	0.040/56/	0.000469869	0.00543423	-		-	4.	+ Tunnel Section Inter													
		M1-M4		0.00088023	0.0105010		0.002/1/115	-	-	-	,	+ Turiner Section miter	ilai nuau v) X (trainic	now or run	ilei Sectioi	IL/(uaiii	C HOW OF TO	illiei Secii	10111 + 11 411	IIC HOW OI	Turrier Sec	JUOII L + U c	affic flow of	Turii
		M1-M4 M5-M8	Volume	0.00000023	0.0103919	7.33527F-05	0.001765317	-	-	-	٠,	0.5 x (Tunnel Section I	M . Tunne	Section N											
		N1-N4		0.00088023	0.0105919		0.001765317		-			U.S X (Turrier Section)	WIT TUILING	OCCUONTY											_
		N5-N8	Volume	0.00000020	0.0100010	7.33527E-05	0.000882659	-	-	-	1	0.5 x (Tunnel Section I	M + Tunne	Section N											
		P1-P4		0.00440041	0.0467298	0.000733402	0.007788292	-	-	-		1 x Tunnel Section P +													
		P5-P8	Volume			0.000366701	0.003894146	-		-	1	+ Tunnel Section Inter-	nal Road (C) x (traffi	c flow of Tu	nnel Section	on P / (traf	fic flow of	Tunnel Sec	ction I + tra	affic flow o	f Tunnel S	ection L + 1	traffic flow of	of Tu
		W1-W8		0.07021488	1.7838583	0.00585124	0.148654861	-	-	-															
		W9-W16	Volume			0.00292562	0.07432743			-	1	1 x Tunnel W													
		701-710		0.00721966	0.1553608		0.01035739	-	-	-	1														
		711-720	Volume			0.000240655	0.005178695	-		-		1 x Tunnel X													
		BaseA		0.00260833		0.002608329	0.024988565					1/3 x Basement roads													
% of Serving		BaseC		0.00260833	0.0249886	0.002608329	0.024988565					1/3 x Basement roads	A,B,C												
	Out of 500m	801-820 901-903	Volume			-	-	-		-	1	1 x Tunnel Y 1 x Tunnel Z		1								-	1	4	-+
	Out of 500m Out of 500m	901-903				-	-	-	-	-	- 1.	1 x Turinei Z											-	-	$^{+}$
	Out of 500m	904-906 V1	Volume Point			-	F		_		from 1-4			-	-	-						-	+	+	-
	Out or South	V 1	r Ollik								nom 1-4			+		-					-	 	+	+	+

Appendix 3.18a - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr21-22	

														Hr 21-22 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emission (g/s	s)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0007250	0.0089924
B ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	272	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0027015	0.0335059
C _(i)	73	Lin Cheung Rd (underpass)	Northbound	3	110	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0010925	0.0135502
D ^(f)		Lin Cheung Rd (underpass)	Northbound	3	176	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0017480	0.0216803
E ⁽ⁱ⁾		Lin Cheung Rd (underpass)	Southbound	3	155	540	55%	1%	23%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0945830	1.1215795	0.0021991	0.0260767
F ⁽¹⁾		Lin Cheung Rd (depressed)	Southbound	3	172	540	55%	1%	23%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0945830	1.1215795	0.0024402	0.0289367
G ⁽¹⁾		Lin Cheung Rd (depressed)	Southbound	3	121	530	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0948913	1.1392194	0.0016904	0.0202939
H ^(l)		Austin Rd W (depressed)	Eastbound	3	173	1050	36%	1%	46%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	1%	1%	100%	0.1321211	1.4500809	0.0066666	0.0731687
I(1)		Austin Rd W (depressed)	Eastbound	3	194	355	38%	1%	45%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1260448	1.2793054	0.0024113	0.0244738
J ⁽¹⁾		Austin Rd W (depressed)	Westbound	3	194	465	34%	1%	42%	0%	2%	2%	4%	2%	1%	1%	5%	0%	0%	2%	1%	1%	100%	0.1345154	1.5696270	0.0033707	0.0393322
K ⁽ⁱ⁾		Lin Cheung Rd (depressed)	Southbound	3	95	115	61%	0%	35%	0%	0%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0818698	0.6878634	0.0002485	0.0020875
L ⁽⁰⁾		Lin Cheung Rd (depressed)	Northbound	3	95	405	54%	1%	22%	0%	2%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0955293	1.1445932	0.0010210	0.0122328
M ⁽¹⁾		Lin Cheung Rd	Southbound	3	56	455	54%	1%	23%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	1%	0%	1%	100%	0.0982598	1.1898591	0.0006955	0.0084216
N ^(l)		Lin Cheung Rd	Northbound	3	56	645	54%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0969162	1.1919187	0.0009724	0.0119589
O ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3	52	840	36%	1%	45%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1320770	1.5074457	0.0016025	0.0182903
P ^(f)		Austin Rd W (depressed)	Westbound	3	52	500	36%	1%	45%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1332813	1.5280592	0.0009626	0.0110360
W ⁽¹⁾		West Kowloon Highway (WKH)	Northbound	2	1970	1765	57%	0%	14%	0%	3%	2%	5%	4%	3%	2%	1%	0%	4%	2%	3%	0%	100%	0.0533533	1.3774921	0.0515311	1.3304470
		Internal Rd A	Bothbound	4	404	100	45%	0%	30%	0%	0%	0%	0%	5%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1526722	1.3576760	0.0017133	0.0152361
		Internal Rd B	Bothbound	4	361	160	41%	0%	28%	0%	3%	0%	0%	3%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1653254	1.5557151	0.0026526	0.0249606
		Internal Rd C	Bothbound	4	521	80	31%	0%	19%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2096886	2.0813385	0.0024277	0.0240973
X _{iii}	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1250	36%	0%	11%	1%	7%	4%	11%	12%	1%	1%	1%	0%	0%	10%	4%	0%	100%	0.1159747	2.5378733	0.0072484	0.1586171

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 17250 | 380% | 175 | 175%

		10%										
				Calculated by th (extracted from to of Road Works a Kowloon)	he approved EIA it West	involved	ortal/opening	divided by are	ea	emission rate		
				Emission Ra Opening (g/s)		Portal/ Ope		Opening	Rate - Port			
		Portal/ opening								(Area)	Formula from	
		ID.	Source Type	7.050.45.05							Scenario	
		A	Area	7.2504E-05 0.00292774					1.8307E-06 0.000106206		1	0.1 x Tunnel Section A 2/3 x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
80.935 0.873	5	CF	Area Area	0.00292774					7.06975E-06		1	23 x (0.9 x Turmet Section A + 1 x Turmet Section B) + 1/3 x (30.935/30) x (0.9 x Turmet Section A + 1 x Turmet Section B) + 0.1 x Turmet Section B) + 0.1 x Turmet Section B) + 0.1 x Turmet Section B)
		D1-D7	Area	0.00037179			0.003679421	5.85215E-07	7.06975E-06	635.3	1	U.1 x Tunnel Section C + 0.1 x (1/3 x (19.065 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 0.1 x Tunnel Section E
		DR-D14	Volume	0.00311490		0.000296663	0.003679421	-	-	-		0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		E	Area	0.00044194				1 E02E7E 00	1 8885F-05	277 6		0.3 x furnier decision F + 0.1 x Tunnel Section F
		H-M	Alea	0.01590282			0.02956067	1.0020712-00	1.000012-03	211.0	1	1 x Lunnel Section 1 + 1 x Lunnel Section G + 1 x Lunnel Section H + 0.14 x Lunnel Section K + 0.9 x 0.38 x Lunnel Section O + 0.9 x (1/3 x (Lun
		15-IR	Volume	0.01000202		0.001325235	0.014780335		_	_		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I /
		JKO1	Area	0.00074515	0.0080849	-		4.83015E-07	5.24076E-06	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Road A + Tunnel Sec
		L1-L5		0.00329836	0.0390979	0.000439781	0.005213057	-	-	-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Sec
		L6-L10	Volume			0.000219891	0.002606528		-	-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow
		M1-M4		0.00083393	0.0101902	0.000138988	0.001698373		-	-		
		M5-M8	Volume			6.94939E-05	0.000849186	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00083393	0.0101902		0.001698373		-	-		
		N5-N8	Volume			6.94939E-05	0.000849186	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00426923	0.044965	0.000711538	0.007494165			-		1 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Sec
		P5-P8	Volume			0.000355769	0.003747082		-	-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic
		W1-W8		0.05153115		0.004294262	0.110870581	-	-	-	ļ	L =
		W9-W16	Volume	0.00724842		0.002147131	0.05543529		-	-	1	1 x Tunnel W
		701-710 711-720	Volume	0.00724842	0.15861/1	0.000483228	0.010574472	-	-	-	1	1 x Tunnel X
		/11-/20 BaseA	Volume	0.00226453	0.0214313		0.005287236		-	-	-	1 x turner X 1/3 x Basement roads A.B.C
% of Serving	Bal	BaseC	volume	0.00226453	0.0214313	0.002264535	0.021431334		_			1/3 x Basement roads A,B,C
∞ or Serving	Out of 500m	801-820	Volume	0.00220400	0.0214010	0.002204535	0.021431334	_	_		1	175 X Basement (Vaus A, 6, 6
	Out of 500m	901-903	* Ordino									1 x Tunnel Z
	Out of 500m	901-903	Volume	-							1	TA TURNOL
	Out of 500m	V1	Point								from 1-4	

													Hr	22-23 (2015 8	EIA_19-12-2011	.xls)								Emission Rate		Emission (g/s	
emarks (Tunnel name - ortal & top opening of nderpass in EIA of Rd orks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NO
	73	Lin Cheung Rd (underpass)	Northbound	3	73	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0005798	0.00
	73	Lin Cheung Rd (underpass)	Northbound	3	272	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0021605	0.02
	73		Northbound	3	110	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0008737	0.0
	73	Lin Cheung Rd (underpass)	Northbound	3	176	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0013980	0.0
	72	Lin Cheung Rd (underpass)	Southbound	3	155	410	55%	1%	23%	0%	2%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0925218	1.1036981	0.0016333	0.0
	72	Lin Cheung Rd (depressed)	Southbound	3	172	410	55%	1%	23%	0%	2%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0925218	1.1036981	0.0018124	0.0
	118	Lin Cheung Rd (depressed)	Southbound	3	121	400	55%	1%	23%	0%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0921177	1.1094109	0.0012385	0.0
	119	Austin Rd W (depressed)	Eastbound	3	173	860	35%	1%	47%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	1%	2%	100%	0.1358599	1.5011441	0.0056148	0.0
	117	Austin Rd W (depressed)	Eastbound	3	194	280	38%	2%	46%	0%	2%	2%	4%	2%	2%	0%	0%	0%	0%	2%	0%	2%	100%	0.1256163	1.2766566	0.0018954	0.0
	116	Austin Rd W (depressed)	Westbound	3	194	360	35%	1%	43%	0%	1%	1%	4%	3%	1%	0%	6%	0%	0%	1%	1%	1%	100%	0.1326806	1.5171168	0.0025740	0.0
	114	Lin Cheung Rd (depressed)	Southbound	3	95	110	59%	0%	32%	0%	5%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0811531	0.7553685	0.0002356	0.0
	112	Lin Cheung Rd (depressed)	Northbound	3	95	335	54%	1%	22%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0921965	1.1342608	0.0008150	0.0
	84	Lin Cheung Rd	Southbound	3	56	355	55%	1%	24%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	0%	100%	0.0929667	1.1149716	0.0005134	0.0
	77	Lin Cheung Rd	Northbound	3	56	525	54%	1%	23%	0%	3%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0956100	1.1435129	0.0007808	0.0
	111	Austin Rd W (depressed)	Eastbound	3	52	705	36%	1%	46%	0%	1%	1%	4%	3%	1%	1%	1%	0%	1%	1%	1%	1%	100%	0.1321463	1.4324072	0.0013457	0.0
	110	Austin Rd W (depressed)	Westbound	3	52	410	35%	1%	45%	0%	1%	1%	5%	2%	1%	1%	1%	0%	1%	1%	1%	1%	100%	0.1351002	1.5335894	0.0008001	0.
	98	West Kowloon Highway (WKH)	Northbound	2	1970	1755	56%	0%	14%	0%	3%	2%	5%	4%	3%	2%	1%	0%	4%	2%	3%	0%	100%	0.0535651	1.3757223	0.0514425	1.2
	A	Internal Rd A	Bothbound	4	404	105	43%	0%	29%	0%	5%	0%	0%	5%	0%	0%	19%	0%	0%	0%	0%	0%	100%	0.1513914	1.4363008	0.0017839	0.0
	В	Internal Rd B	Bothbound	4	361	155	42%	0%	26%	0%	3%	0%	0%	3%	0%	0%	26%	0%	0%	0%	0%	0%	100%	0.1631965	1.5598607	0.0025366	0.0
	С	Internal Rd C	Bothbound	4	521	75	33%	0%	20%	0%	0%	0%	0%	0%	0%	0%	47%	0%	0%	0%	0%	0%	100%	0.2107940	2.0557596	0.0022880	0.0
	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1575	36%	0%	11%	1%	7%	4%	11%	11%	196	194	190	0%	196	10%	490	094	100%	0.1165184	2 5438244	0.0091758	0

| Control | 144 | Reprovision of Classcoipe Ref Proper | Westbound | 3 | 180 | 1575 | 36% | 17%

Scenario 2			109	6									
					Calculated by the (extracted from to of Road Works a Kowloon)	he approved Ell t West	Volume source by number of involved	portal/opening	Area source - c divided by area	alculated by emi-	ssion rate		
						- Portal/			n n .	e - Portal/ Ope			
					Opening		Opening				ning		
					(g/s)		(g/s) - Volum		(g/m2-s) - Are				
			Portal/ opening	9	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
			ID.	Source Type	5.7984E-05	0.0007201			1 18045F-07	1.48643E-06	491.2	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.1 x Turnel Section A 0.1 x Turnel Section A
	80.935	0.873	A		0.00234141			-		1.48643E-06 8.62338F-05	341.9	1	0.1 x Turmel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B)
	80.935	0.873	CE	Area	0.00234141	0.0294633		_			635.3	1	23 x 0.9 x 1 uninel Section E + 1 x 1 uninel Section B + 1 x x 1 uninel Section B + 1 x 1 uninel Section B 0.1 x Tunnel Section C + 0.1 x (1/3 x (19.085/50) x (0.9 x Tunnel Section A + 1 x Tunnel Section B) + 0.1 x Tunnel Section E
			D1-D7		0.00249114			0.002987506		D.4740EE 00			OTTAINING CONTROL TO THE TOTAL TO A TOTAL TO A TOTAL CONTROL TO A TOTA
			D8-D14	Volume			0.000118626			-	-	1	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065 / 50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			F	Area	0.00032823	0.0039155		-	1.18283E-06	1.411E-05	277.5	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F
			11-14		0.01273755	0.1423944				-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume			0.001061463						Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of T
			JKO1	Area	0.00063251					4.34728E-06	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section N + 0.1 x Tunnel Section O + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x (1 - 0.14) x Tunnel Section I + 0.1 x Tunnel
			L1-L5	-	0.00276987	0.0326071				-			1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1.73 x (Tunnel Section Internal Hoad A + Tunnel Section Internal Hoad B
			L6-L10	Volume			0.000184658	0.002173803			-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			M1-M4 M5-M8	-l	0.0006471	0.0077479	5.39249F-05	0.001291317				l.	0.5 x (Tunnel Section M + Tunnel Section N)
				Volume	0.0006471	0.0077.470		0.000645659			-	1	U.5 X (Tunnel Section M + Tunnel Section N)
			N1-N4 N5-N8	Volume	0.0006471	0.0077479	5.39249F-05	0.001291317	-	-	-		0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4	voidille	0.00353606	0.0363313		0.006038541		-			1.3 X (Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road
			P5-P8	Volume	0.00333000	0.0302312	0.000389343	0.00301927		_	-	1	Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			W1-W8		0.05144254	1.3212093	0.004286878	0.110100772		-	-		,,,,
			W9-W16	Volume			0.002143439					1	1 x Tunnel W
			701-710		0.00917582	0.2003262	0.000611721	0.013355078		-	-	1	
			711-720	Volume			0.000305861	0.006677539		-	-	-	1 x Tunnel X
			BaseA	Volume	0.00220282	0.021161	0.00220282	0.02116099					1/3 x Basement roads A,B,C
	% of :	Serving Rd	BaseC		0.00220282	0.021161	0.00220282	0.02116099					1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
		Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
		Out of 500m	904-906	Volume			-	-	-	-	-	1	
		Out of 500m	V1	Point								from 1-4	
												l	

													н	r 23-00 (2015 I	EIA_19-12-2011	.xis)								Emission Rate		Emission (g/s	
emarks (Tunnel name - ortal & top opening of nderpass in EIA of Rd forks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
n	73	Lin Cheung Rd (underpass)	Northbound	3	73	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0005680	0.0072
1)	73	Lin Cheung Rd (underpass)	Northbound	3	272	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0021162	
1)	73	Lin Cheung Rd (underpass)	Northbound	3	110	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0008558	0.0109
1)	73	Lin Cheung Rd (underpass)	Northbound	3	176	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0013693	0.0174
1)	72	Lin Cheung Rd (underpass)	Southbound	3	155	425	56%	1%	24%	0%	2%	1%	5%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0887885	1.0621039	0.0016247	0.0194
ŋ	72	Lin Cheung Rd (depressed)	Southbound	3	172	425	56%	1%	24%	0%	2%	1%	5%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0887885	1.0621039	0.0018029	0.0215
0)	118	Lin Cheung Rd (depressed)	Southbound	3	121	405	54%	1%	22%	0%	2%	1%	5%	5%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.0895458	1.0911759	0.0012189	0.0148
I)	119	Austin Rd W (depressed)	Eastbound	3	173	680	35%	1%	48%	0%	1%	1%	4%	2%	1%	1%	1%	0%	1%	1%	1%	1%	100%	0.1335898	1.4637242	0.0043654	0.0478
)	117	Austin Rd W (depressed)	Eastbound	3	194	245	37%	2%	45%	0%	2%	2%	4%	2%	2%	0%	0%	0%	0%	2%	0%	2%	100%	0.1238049	1.3101097	0.0016346	
t)	116	Austin Rd W (depressed)	Westbound	3	194	295	32%	2%	41%	0%	2%	2%	3%	2%	2%	0%	10%	0%	0%	2%	2%	2%	100%	0.1314081	1.5991364	0.0020890	0.0254
0)	114	Lin Cheung Rd (depressed)	Southbound	3	95	170	56%	0%	35%	0%	3%	0%	3%	3%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0948358	0.9132334	0.0004254	0.0040
1)	112	Lin Cheung Rd (depressed)	Northbound	3	95	355	54%	1%	23%	0%	3%	1%	6%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0939261	1.1694007	0.0008799	0.0109
(1)	84	Lin Cheung Rd	Southbound	3	56	400	54%	1%	25%	0%	4%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	0%	100%	0.0918391	1.0991535	0.0005714	0.0068
0)	77	Lin Cheung Rd	Northbound	3	56	545	54%	1%	23%	0%	3%	2%	6%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0958762	1.1629589	0.0008128	0.0098
(i)	111	Austin Rd W (depressed)	Eastbound	3	52	610	35%	1%	46%	0%	2%	2%	3%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1287058	1.4387418	0.0011340	0.0126
I)	110	Austin Rd W (depressed)	Westbound	3	52	330	32%	2%	47%	0%	2%	2%	5%	2%	2%	2%	2%	0%	2%	2%	2%	2%	100%	0.1374171	1.6234948	0.0006550	0.0077
(1)	98	West Kowloon Highway (WKH)	Northbound	2	1970	1170	56%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0544161	1.3969034	0.0348399	0.8943
	A	Internal Rd A	Bothbound	4	404	175	43%	0%	29%	0%	3%	0%	3%	3%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1597945	1.5484876	0.0031382	
	В	Internal Rd B	Bothbound	4	361	285	39%	0%	26%	0%	4%	0%	2%	4%	2%	2%	23%	0%	0%	0%	0%	0%	100%	0.1588280	1.5535335	0.0045392	0.0443
	С	Internal Rd C	Bothbound	4	521	140	29%	0%	18%	0%	4%	0%	0%	4%	0%	0%	46%	0%	0%	0%	0%	0%	100%	0.2034716	2.0812462	0.0041226	0.0421
/	144	Reprovision of Gascolone Rd Flyover	Westhound	3	180	1265	35%	0%	11%	1%	7%	4%	11%	11%	2%	1%	1%	0%	0%	10%	4%	0%	100%	0.1142516	2 4953576	0.0072264	0.1578

| Control | 144 | Reprovision of Classcoipe Ref Proper | Westbound | 3 | 180 | 1265 | 35% | 17%

Scenario 2			10%									-	
					Calculated by the (extracted from of Road Works : Kowloon)	the approved EIA at West	Volume source by number of p involved	ortal/opening	Area source - divided by are	calculated by en	nission rate		
					Emission Rate	e - Portal/	Emission Rat						
					Opening		Opening			ate - Portal/ Op	ening		
					(g/s)		(g/s) - Volum		(g/m2-s) - A	rea source			
					PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
			Portal/ opening									from	
			ID.	Source Type	5.6795E-05							Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
			A		0.00229343		-	-			491.2	1	0.1 x Turnel Section A
	80.935	0.873	B		0.00229343		-	-		8.56207E-05 5.4496F-06	341.9 635.3	1	23 x (0.9 x Turnel Section A + 1 x Turnel Section B) + :1/3 x (30.935 / 50) x (0.9 x Turnel Section A + 1 x Turnel Section B) 0.1 x Turnel Section C + 0.1 x (1.3 x 1) = 0.065 / 50 1) x (0.9 x Turnel Section A + 1 x Turnel Section B) 0.1 x Turnel Section C + 0.1 x (1.3 x 1) = 0.065 / 50 1) x (0.9 x Turnel Section A + 1 x Turnel Section B)
			D1-D7		0.00028145		0.00000000	0.002966266	4.43013E-07	5.4490E-U6	630.3		U.T.X.Tuttiner Section C + 0.T.X.(1/3.X.(13.063.7.30).X.(0.3.X.Tuttiner Section B)) + 0.T.X.Tuttiner Section E
			D8-D14	Volume	0.00244009	0.0311436		0.002966266	-	-	-	┥.	0.9 x Tunnel Section C + 0.9 x (1/3 x (19.065/50 x (0.9 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			E		0.00032651	0.0030059	0.000110155	0.001403133		1.4075E-05	277.5		0.3 x turnel Section 5 + 0.3 x (13.3 x 5.3 x 5.3 x 10 me) Section 5) / 1 x Turnel Section 6)
			H-M	Aica	0.01153753	0.00039030	0.001922922	0.021767281		1.4073E-03	-	1	0.1 x 0.9 x Tunnel Section E + 0.1 x Tunnel Section F 1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.9 x 0.38 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A +
			15-18	Volume	0.01100700	0.1000001	0.000961461		_	_	_		Tunnel Section Internal Road R + Tunnel Section Internal Road C \ y \ (traffic flow of Tunnel Section I / traffic flow of Tunnel Section I + traffic flow of
			JK01	Area	0.00075223	0.0080615	-	-	4.87603E-07	5.22555E-06	1542.7	1	0.1 x Tunnel Section J + 0.1 x (1 - 0.14) x Tunnel Section K + 0.1 x Tunnel Section O + 0.1 x 1/3 x (Tunnel Section Internal Board A + Tunnel Section Internal Board B + Tunnel
			L1-L5		0.00331521	0.0389059	0.000442028	0.005187448	-	-	-		1 x Tunnel Section L + 0.9 x 0.24 x Tunnel Section J + 0.9 x 0.62 x Tunnel Section O + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			L6-L10	Volume			0.000221014	0.002593724		-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P)))
			M1-M4		0.00069213	0.0083492	0.000115355			-	-		
			M5-M8	Volume					-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00069213	0.0083492	0.000115355			-	-		
			N5-N8	Volume			5.76775E-05	0.00069577		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00366933	0.0374451		0.006240852		-	-		1 x Tunnel Section P + 0.9 x 0.76 x Tunnel Section J + 0.9 x 0.86 x Tunnel Section K + 0.9 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel
			P5-P8	Volume			0.000305777	0.003120426		-	-	1	Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P))
			W1-W8		0.0348399	0.8943674		0.074530618		-	-		
			W9-W16	Volume			0.001451662	0.037265309		-	-	1	1 x Tunnel W
			701-710		0.00722642	0.15/8314	0.000481761	0.010522091		-	-	1	Au Towal V
			711-720	Volume	0.00393331	0.0000005	0.000240881	0.005261046		-	-		1 x Tunnel X 13 x Basement mads A B C
	01 -4	Serving Rd	BaseA BaseC	Volume	0.00393331	0.0389925	0.003933306	0.038992543					1/3 x basement roads A,B,C
	76 01	Out of 500m	801-820	Volume	0.00393331	0.0369923	0.003933306	0.038992043					15 X basement rodus A,b,c
		Out of 500m Out of 500m	901-903	volume	-				-	-		-	1 x Turnel Z
		Out of 500m	904-906	Volume								١.	AUSTOL
		Out of 500m	V1	Point								from 1-4	
		Out 01 000111	••	- Carri								174	

		. Top Openings and	

												Hr	00-01 (2015 E	EIA_19-12-2011	.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)		Road name	Bound	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	73	215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0004165	0.0053642
B ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	272	215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0015517	0.0199873
C(I)	73	Lin Cheung Rd (underpass)	Northbound			53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0006275	0.0080831
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound			53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0010041	0.0129330
E ^(l)	72	Lin Cheung Rd (underpass)	Southboun			55%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0936651	1.1839523	0.0010687	0.0135086
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southboun	172	265	55%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0936651	1.1839523	0.0011859	0.0149902
G (1)	118	Lin Cheung Rd (depressed)	Southboun			53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0924976	1.2001108	0.0008550	0.0110927
H ^(l)	119	Austin Rd W (depressed)	Eastbound				1%	51%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1342209	1.4577666	0.0028058	0.0304734
I ⁽¹⁾		Austin Rd W (depressed)	Eastbound			36%	0%	56%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1379285	1.2475830	0.0009291	0.0084039
J ⁽¹⁾		Austin Rd W (depressed)	Westbound			33%	0%	45%	0%	3%	3%	3%	3%	0%	0%	6%	0%	0%	3%	0%	0%	100%	0.1363135	1.5185645	0.0012121	0.0135026
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southboun			70%	0%	30%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0648138	0.5373284	0.0000855	0.0007090
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound			54%	2%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0950957	1.2108087	0.0006525	0.0083075
M ⁽¹⁾	84	Lin Cheung Rd	Southboun			54%	0%	24%	0%	2%	2%	4%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0939613	1.1887411	0.0003362	0.0042531
N ^(t)	77	Lin Cheung Rd	Northbound			52%	1%	22%	0%	2%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0963301	1.2034973	0.0006144	0.0076756
O ⁽¹⁾		Austin Rd W (depressed)	Eastbound			34%	1%	49%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1312810	1.4683894	0.0006732	0.0075296
P ⁽¹⁾		Austin Rd W (depressed)	Westbound			32%	0%	49%	0%	2%	2%	5%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1373062	1.7179691	0.0004066	0.0050871
W ^{**}	98	West Kowloon Highway (WKH)	Northbound			55%	0%	14%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0546631	1.4126668	0.0342503	0.8851339
	A	Internal Rd A	Bothbound			50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1480281	1.3796668	0.0006645	0.0061932
	В	Internal Rd B	Bothbound			38%	0%	31%	0%	0%	0%	0%	8%	0%	0%	23%	0%	0%	0%	0%	0%	100%	0.1676717	1.5226167	0.0010929	0.0099245
	С	Internal Rd C	Bothbound			33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2147230	2.1257746	0.0009323	0.0092294
X**	144	Reprovision of Gascoigne Rd Flyover	Westbound	180	965	35%	1%	11%	1%	7%	4%	11%	11%	2%	1%	1%	0%	1%	10%	5%	1%	100%	0.1170200	2.5587013	0.0056462	0.1234573

Proceedings of the Processing of Section 1995 | 199

	20%																			
		Calculated by the form (extracted from the ap Road Works at West	pproved EIA of	Volume source by number of po involved		Area source divided by ar	- calculated by ea	emission rate	e											
		Emission Rate -	Portal/	Emission Ra	ate -	Emission	Rate - Port	al/												
		Opening		Portal/Ope	ning	Opening														
		(g/s)		(g/s) - Volum	ne source	(g/m2-s) -	Area sourc	e												
		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula											
	opening								from Scenario	r	1.10.0.10.0			7 . 1 4 W 4 W 1						
	ID.	8.32914F-05	0.0010728			4 005075 07	2.18414E-06	404.0	Scenario	0.2 x Tunn	l Costion A	racted from the ap	proved EIA of Road v	orks at west Kowio	on)					
			0.0010728		-		6.19855E-05				Tunnel Section A + 1 x	Tunnal Section B \	1/2 v / 20 025 / 50	\ v / 0.8 v Tunnol So	ction A	1 v Tunn	ol Section	B /		
		0.00038716	0.0049355				7.76877E-06		1	0.2 x Tunn	Section C + 0.2 x (1/3	v (19 065 / 50) v	(0.8 x Tunnel Section	n A + 1 v Tunnel Sec	tion B \	1 × 1011	Tunnel Sec	tion F		
			0.0218681		0.002082675					O.E X TOTAL	TOCOLOTTO TOLE X (170	/ X (10.000 / 00) /	(0.0 x Talliloi Ocolic	II A I A I A I A I A I A I A I A I A I	uon D)) 1 U.L.X	10111101 000	UOII L		
	D8-D14			8.08451E-05		-			1	0.8 x Tunn	Section C + 0.8 x (1/3	x (19.065 / 50 x (0.8 x Tunnel Section	A + 1 x Tunnel Secti	on B)) -	+ 1 x Tun	nel Section	D		
	F	0.000408172	0.0051594	-		1.47089E-06	1.85924E-05	277.5	1	0.2 x 0.8 x	Funnel Section E + 0.2	Tunnel Section F			- , ,					
	11-14	0.006591102	0.0749976	0.001098517	0.012499608	-		-	1		Section I + 1 x Tunnel S									
	15-18			0.000549259	0.006249804	-		-			d A + Tunnel Section I									
			0.0060182		-	3.70172E-07	3.90107E-06	1542.7	1	0.2 x Tunn	I Section J + 0.2 x (1 -	0.14) x Tunnel Se	ction K + 0.2 x Tunne	Section O + 0.2 x 1	'3 x (Tur	nnel Secti	on Internal	Road A +	Funnel Section	on Internal
		0.001535143	0.0176289	0.000204686		-					Section L + 0.8 x 0.24 x									
	L6-L10			0.000102343		-			1	Road B +	unnel Section Internal F	oad C) x (traffic fl	ow of Tunnel Section	L / (traffic flow of Tu	nnel Sec	tion I + tr	affic flow o	f Tunnel Se	ction L + tra	ffic flow of
		0.000475272	0.0059643				-		4											
	M5-M8	0.000475272	0.0050040	3.9606E-05 7.92121E-05		-	-		1	0.5 X (Tuni	el Section M + Tunnel S	ection N)								
	N1-N4 N5-N8	0.0004/52/2	0.0059643		0.000994057	-	-	-	4.	0 E v /Tun	el Section M + Tunnel S	ootion MI								
		0.001451553	0.0155476		0.000497029	-	-		-	1 y Tunnel	Section P + 0.8 x 0.76 x	Tunnel Section . L.	. 0.8 v 0.86 v Tunnel :	Section K ± 0.8 x / 1.	3 v / Tun	nel Secti	n Internal	Road A +	unnel Sectio	n Internal
	P5-P8	0.001451555	0.0133470		0.002391204	_			-		unnel Section Internal F									
		0.034250253	0.8851339		0.073761157	_	_		-	T IOUG D T	annor occuon micritari	oud o) x (sumo	now or running occurr	TT 7 (BUILD HOW OF	di iii Oi	30001111	a danio non	01 101111011	20011011 E 1 1	uno non oi
	W9-W16	0.00 1200200	0.0001000		0.036880578		-		┧,	1 x Tunnel	V									
	701-710	0.005646217	0.1234573	0.000376414	0.008230489	_		-	1											
	711-720			0.000188207	0.004115245	-			-	1 x Tunnel										
	BaseA			0.000896544	0.008449025						nent roads A,B,C									
	BaseC	0.000896544	0.008449	0.000896544	0.008449025						nent roads A,B,C									
Out of 500m	801-820			-	-	-	-	-	1	1 x Tunnel										
Out of 500m	901-903			-	-	-	-	-		1 x Tunnel	'									
ut of 500m	904-906			-	-	-	-		1											
ut of 500m	V1								from 1-4	-	1 1		1	1 1	1 1					

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr01-02)

													F	ir 01-02 (2015 i	EIA_19-12-201	1.xls)								Rate (g/km-		Emission (g/s)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC :	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	210	55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0004016	0.0052242
B ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	272		55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0014965	0.0194656
C ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	110	210	55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0006052	0.0078721
D ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	176		55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0009683	0.0125954
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	115	61%	0%	26%	0%	4%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0856195	0.9034429	0.0004239	0.0044733
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		61%	0%	26%	0%	4%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0856195	0.9034429	0.0004704	0.0049639
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121		58%	0%	23%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0920525	1.0899955	0.0004022	0.0047627
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173		31%	1%	52%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1397561	1.5027165	0.0028543	0.0306909
I ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3	194		35%	0%	57%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1433709	1.2930617	0.0008885	0.0080134
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194		32%	0%	48%	0%	3%	3%	3%	3%	0%	0%	3%	0%	0%	3%	0%	0%	100%	0.1409186	1.5411581	0.0011771	0.0128730
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95		60%	0%	40%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0867808	0.7080664	0.0000573	0.0004671
L ^(r)	112	Lin Cheung Rd (depressed)	Northbound	3	95		54%	2%	24%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0969609	1.2051710	0.0006908	0.0085868
M ^(r)	84	Lin Cheung Rd	Southbound	3	56	105	62%	0%	24%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0835398	0.9063790	0.0001364	0.0014804
N ⁽ⁱ⁾	77	Lin Cheung Rd	Northbound	3	56		52%	1%	23%	0%	2%	2%	6%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1014759	1.2541069	0.0006630	0.0081935
0"	111	Austin Rd W (depressed)	Eastbound	3	52		29%	1%	53%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1423837	1.5668165	0.0006993	0.0076948
P ⁽ⁱ⁾	110	Austin Rd W (depressed)	Westbound	3	52	195	28%	0%	51%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1466236	1.8155317	0.0004130	0.0051137
W ^{co}	98	West Kowloon Highway (WKH)	Northbound	2	1970		56%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0376112	1.0372349	0.0115257	0.3178549
	A	Internal Rd A	Bothbound	4	404		33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1181331	1.2262913	0.0001989	0.0020643
	В	Internal Rd B	Bothbound	4	361		50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0901715	0.9342677	0.0001808	0.0018737
100	С	Internal Rd C	Bothbound	4	521		50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1771997	1.8394369	0.0002564	0.0026621
X"	144	Reprovision of Gascoigne Rd Flyover		3	180	650	35%	1%	12%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	5%	1%	100%	0.1184204	2.5744043	0.0038487	0.0836681

At legions of the legions of classcogins for lynker (Westbound 3 1980 [900 [35%]7% [75%]7% [75%]7% [75%]7% [75%]7% [75%]75% [75%]

Scenario 2	309	N.																		
		~		ne formula shown the approved EIA at West			Area source - c. divided by area	alculated by emi	ssion rate											
			Emission Ra Opening (g/s)		Portal/ Ope (g/s) - Volu	ning ne source	Emission Ra (g/m2-s) - A	rea source												
	Portal/ opening	_	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from										
Length of opening	ID.	Source Type									Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)									
	A		0.00012049	0.0015673	-	_	2.4529E-07	3.19069E-06	491.2	1	0.3 x Turnel Section A									
80.935 0.873	В	Area	0.00155166	0.0201837	-	-		5.90338E-05	341.9	1	2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)									
	CE		0.00037652					7.21751E-06	635.3	1	0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 0.3 x Tunnel Section E									
	D1-D7		0.00155007	0.0201631	0.000147626	0.001920293	-	-	-											
	D8-D14	Volume			7.38131E-05	0.000960146		-	-	1	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D									
	F		0.00023016					8.75159E-06	277.5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F									
	11-14		0.00490552	0.0517049		0.008617479		-	-	1	1 x Tunnel Section 1 + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal									
	15-18	Volume			0.000408794	0.004308739			-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of Tunnel									
	JKO1	Area	0.00064128					4.50564E-06	1542.7	1	0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +									
	L1-L5		0.00126117	0.0147978		0.001973039	-			1	1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road A + Tunnel Section Internal Road B +									
	L6-L10	Volume			8.40781E-05	0.000986519	-			1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P))									
	M1-M4		0.00039971	0.004837		0.00080616	-		-											
	M5-M8	Volume			3.33093E-05	0.00040308	-			1	0.5 x (Tunnel Section M + Tunnel Section N)									
	N1-N4		0.00039971	0.004837		0.00080616	-			1										
	N5-N8	Volume			3.33093E-05	0.00040308	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)									
	P1-P4		0.00112356	0.0126156		0.0021026	-	-		1	1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +									
	P5-P8	Volume			9.36297E-05	0.0010513	-	-	-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section L									
	W1-W8		0.01152574	0.3178549		0.026487906				4										
	W9-W16	Volume	0.0000.1000	0.0000001	0.000480239	0.013243953				1	1 x Tunnel W									
	701-710	-l	0.00384866	0.0836681	0.000256578	0.005577876			-	1	1 x Tunnel X									
	711-720 BaseA	Volume Volume	0.00021205	0.0000	0.000128289	0.002788938	-			-										
N. al Danier Dal	BaseC	Volume	0.00021205		0.00021205	0.002200019				1/3 x Basement roads A,B,C 1/3 x Basement roads A,B,C										
% of Serving Rd Out of 500m	801-820	Volume	0.00021205	0.0022	U.UUU21205	0.002200019				1	1/3 x basement roads A,b,C									
Out of 500m	901-903	Volume						-		<u> </u>	1 x Tunel 7									
Out of 500m Out of 500m	901-903	Volume		1	-			-			T A TURNET Z									
Out of 500m	V1	Point								from 1-4										
Out or soom	V I	r one								nom 1-4										
	1	1	-		-			-		1										

Top Openings and Ventilation Exhaust (Hr02-03)

													н	r 02-03 (2015 E	EIA_19-12-201	1.xls)								Rate (g/km-		Emission (g/s	s)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC :	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73		56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0003043	0.0037416
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272		56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0011339	0.0139413
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110		56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0004585	0.0056380
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3	176		56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0007337	0.0090208
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	110	59%	0%	27%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0882718	0.9397428	0.0004181	0.0044507
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		59%	0%	27%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0882718	0.9397428	0.0004639	0.0049389
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121		56%	0%	22%	0%	4%	0%	7%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1024286	1.2617028	0.0004648	0.0057250
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173		30%	1%	52%	0%	1%	1%	5%	2%	1%	1%	0%	0%	1%	1%	1%	2%	100%	0.1425085	1.5675662	0.0030133	0.0331453
I ₍₁₎		Austin Rd W (depressed)	Eastbound	3	194	120	33%	0%	54%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	4%	100%	0.1364513	1.2514258	0.0008824	0.0080926
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194		34%	0%	52%	0%	0%	0%	3%	3%	0%	0%	0%	0%	0%	0%	3%	3%	100%	0.1300228	1.5319528	0.0010160	
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95		75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0551335	0.4595877	0.0000291	0.0002426
L ^(r)	112	Lin Cheung Rd (depressed)	Northbound	3	95		54%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1010261	1.1767331	0.0004932	0.0057447
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	100	60%	0%	25%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0864728	0.9467793	0.0001345	0.0014728
N ⁽ⁱ⁾	77	Lin Cheung Rd	Northbound	3	56		55%	0%	24%	0%	4%	2%	5%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0962872	1.2157264	0.0004119	0.0052006
0"	111	Austin Rd W (depressed)	Eastbound	3	52		30%	1%	51%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	1%	1%	100%	0.1422522	1.6214943	0.0007192	0.0081976
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52		26%	3%	53%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	0%	3%	3%	100%	0.1473824	1.7098931	0.0004045	0.0046927
W ^{cc}	98	West Kowloon Highway (WKH)	Northbound	2	1970		55%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0372391	1.0434813	0.0111061	0.3112038
	A	Internal Rd A	Bothbound	4	404		100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0057955	0.0567367	0.0000033	0.0000318
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1048959	1.1361667	0.0001578	0.0017090
	С	Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.3088922	3.3517635	0.0002235	0.0024254
X**	144	Reprovision of Gascoigne Rd Flyover		3	180	645	34%	1%	12%	1%	7%	4%	12%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1178284	2.5455230	0.0038000	0.0820931

Let | 1944 | Responsion of Listocopies her bytypeer | Westbourch | 3 | 1940 | 1945 | 34% | 17% |

Scenario 2			20%										
					Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA It West	Volume source by number of po involved	irtal/opening	Area source - c divided by area	alculated by emis	ssion rate		
					Emission Ra Opening (g/s)		Emission Ra Portal/ Oper (g/s) - Volun	ning	Emission Ra		Opening		
						NOx			PM	NOx	(Area)	Formula	
			Portal/ opening		1	HOX	11	HOX	1	NOX	(Alea)	from	
			ID.	Source Type								Scenario	
			A	Area	6.0861E-05			-	1.23904E-07	1.52345E-06	491.2	1	0.2 x Tunnel Section A
	80.935	0.873	В	Area	0.00120225	0.0147822		-	3.51637E-06	4.32355E-05	341.9	1	2/3 x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
			CE	Area	0.00021033				3.31077E-07	3.85366E-06	635.3	1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 0.2 x Tunnel Section E
			D1-D7		0.00124055	0.0152532			-	-			
			D8-D14	Volume			5.90739E-05	0.000726342	-	-		1	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			F	Area	0.00015967				5.75402E-07	6.12573E-06	277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
			11-14	_	0.00524667	0.0566141		0.009435687	-			1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal
			15-18	Volume			0.000437223	0.004717843	-	-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of Tunnel
				Area	0.00037767				2.44812E-07	2.82173E-06	1542.7	1	0.2 x Tunnel Section 1 + 0.2 x (1 + 0.14) x Tunnel Section K + 0.2 x Tunnel Section 0 + 0.2 x 1/3 x (Tunnel Section Internal Poad A + Tunnel Section Internal Poad B + 1 x Tunnel Section I + 0.8 x 0.2 x Tunnel Section I + 0.4 x 0.4 x 1/3 x (Tunnel Section I + 0.4 x 0.4 x 1/3 x (Tunnel Section I + 0.4 x 1/3 x (Tunnel Section Internal Poad A + Tunnel Section Internal Poad B + 1 x 1/3 x (Tunnel Section Internal Poad A + Tunnel Section Internal Poad B + 1 x 1/3 x (Tunnel Section Internal Poad A + Tunnel Section Internal Poad B + 1 x 1/3 x (Tunnel Se
			L1-L5	_	0.0010833	0.0126372		0.001684964	-			1	
			L6-L10	Volume				0.000842482	-	-		1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P))
			M1-M4	1	0.0002732	0.0033367		0.000556115	-			4	
			M5-M8	Volume	0.0000700	0.000007		0.000278057	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4	4	0.0002732	0.0033367		0.000556115	-			4	85 (T. 10 (1 M T. 10 (1 M
			N5-N8	Volume	0.00108158	0.0400040	2.2767E-05	0.000278057	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N) 1 x Tunnel Section M + Tunnel Section N + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Poad A + Tunnel Section Internal Poad B +
			P1-P4 P5-P8	l	0.00108158	0.0123948		0.002065/98	-			4.	Tunnel Section In the Association of the Associatio
			W1-W8	Volume	0.01110605	0.0440000			-	-		-	Turner Section Internal Hoad C) X (Barillo now of Turner Section F / (Barillo now of Turner Section F + Barillo now of Turner Section F + Barillo now of Turner Section F
			W1-W8 W9-W16	Volume	0.011110605	0.3112036		0.025933649	-		-	+.	1 x Tunnel W
			701-710	volume	0.00379997	0.0000031		0.005472875	-		-	-	1 X Turner vv
			711-720	Volume	0.00379997	0.0020931		0.005472875	-		-	-	1 x Tunnel X
			BaseA	Volume	0.00012818	0.0013887		0.002/3643/	_	-	-	-	13 x Sasement roads A.B.C
	9/ of 5	Serving Rd	BaseC	volume		0.0013887		0.001388731				_	1/3 x Basement roads A.B.C
	70 UI V		801-820	Volume	0.00012010	0.0013007	0.000128184	0.001366731	_		_	1	To X besome Young Y, 5, 5
			901-903	* Oldrid				_			_		1 x Timel 1
		Out of 500m	904-906	Volume							L	,	
		Out of 500m	V1	Point								from 1-4	
			i .										

Top Openings and Ventilation Exhaust (Hr03-04)

													н	r 03-04 (2015 E	EIA_19-12-201	1.xls)								Rate (g/km-		Emission (g/s	s)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC :	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0001174	0.0012855
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0004373	0.0047897
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0001768	0.0019370
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3	176		58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0002829	
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0970091	1.1690494	0.0005012	0.0060401
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0970091	1.1690494	0.0005562	0.0067025
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121		50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1089485	1.3270861	0.0005493	0.0066907
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	225	27%	2%	53%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1423527	1.7284372	0.0015392	0.0186887
I ₍₁₎		Austin Rd W (depressed)	Eastbound	3	194	60	33%	0%	58%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1543550	1.4791575	0.0004991	0.0047826
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194		36%	0%	57%	0%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1472623	1.3912920	0.0005555	0.0052483
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0543449	0.4569923	0.0000287	0.0002412
L ^(r)	112	Lin Cheung Rd (depressed)	Northbound	3	95	85	59%	0%	29%	0%	0%	0%	6%	6%	0%	0%	0%	0%	0%	0%	0%	0%	100%		0.9520466	0.0002085	0.0021355
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	115	52%	0%	22%	0%	4%	4%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1036526	1.2775418	0.0001854	
N ⁽ⁱ⁾	77	Lin Cheung Rd	Northbound	3	56		50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1089485	1.3270861	0.0002542	0.0030965
0"	111	Austin Rd W (depressed)	Eastbound	3	52	180	22%	3%	53%	0%	3%	3%	6%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1489664	1.9219048	0.0003873	0.0049970
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1413646	1.2954102	0.0001940	0.0017776
W ^{cc}	98	West Kowloon Highway (WKH)	Northbound	2	1970	545	55%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0372391	1.0452387	0.0111061	0.3117279
	A	Internal Rd A	Bothbound	4	404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0057589	0.0568122	0.0000032	0.0000319
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1048837	1.1379078	0.0001578	0.0017116
	С	Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.3088921	3.3569111	0.0002235	0.0024291
X ^e	144	Reprovision of Gascoigne Rd Flyover		3	180	655	34%	1%	11%	1%	7%	5%	12%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1202185	2.5743785	0.0039372	0.0843109

PA Helprosiston of Listscognie for lynymer | Westbound | 3 | 1880 | 1800 | 34% | 17%

	20%										
			Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA at West	Volume source by number of po involved	rtal/opening	Area source - c divided by area	alculated by em	ission rate		
			Emission Ra	te - Portal/	Emission Ra						
			Opening		Portal/ Oper		Emission Ra		Opening		
			(g/s)		(g/s) - Volun		(g/m2-s) - A	rea source			
			PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
	Portal/ opening									from	The second secon
	ID.	Source Type Area	2.3471E-05	0.0000574			4 77838F-08	5.23396E-07	491.2	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0.873	A D		0.00046365			-	4.77838E-08 1.3561F-06	5.23396E-07 1.48539F-05	491.2 341.9	1	U. 2x Turmer Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
80.935 0.873		Area	0.00014911	0.0030788	-	-	2.34712E-07	2.74408E-06	635.3		27 x (0.5 x Tunnel Section C + 0.2 x (1/3 x (19.085 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
	D1-D7	rucu	0.00047842	0.0052404	4 5564F-05	0.000499082	-				Extramel decision of the Art for the Art f
		Volume	0.00017012	0.000E101	2.2782E-05	0.000249541	_	-	-	1,	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F	Area	0.00019143	0.0023069		-	6.89843E-07	8.31324E-06	277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
	11-14		0.00350067	0.0412301	0.000583445	0.006871686	-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section I
	15-18	Volume			0.000291723	0.003435843	-	-			Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
	JKO1		0.00021913				1.42044E-07	1.53542E-06	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	L1-L5		0.00054359	0.006129		0.000817205	-	-	-		1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	L6-L10	Volume			3.62394E-05	0.000408602	-		-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of
	M1-M4		0.00021982	0.002691		0.000448493	-		-	1	
	M5-M8	Volume			1.83182E-05	0.000224246		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4		0.00021982	0.002691	3.66364E-05	0.000448493		-	-	4	
	N5-N8 P1-P4	Volume	0.00059205	0.0054500	1.83182E-05	0.000224246	-			1	0.5 x (Tunnel Section M + Tunnel Section N) 11 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Road A + Tunn
	P1-P4 P5-P8	Volume	0.00059205	0.0054523	9.86/53E-05 4.93377E-05	0.000908709	-	-	-	1 .	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P, (traffic flow of Tunnel Section I) + traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow o
	W1-W8		0.01110605	0.2117270		0.000454355	-	-	-	,	Turner Section methal road C) x (trainer low or furner Section F / (trainer low or furner Section F + trainer low or furner low or
	W1-W8 W9-W16	Volume	0.01110003	0.0111219	0.000925504	0.025977327		E	-	┪,	1 x Tunnel W
	701-710		0.00393716	0.0843109		0.012500004	_	-	-	1	1.0 Million II
	711-720	Volume			0.000131239	0.002810363	_	-	_	i-	1 x Tunnel X
	BaseA	Volume		0.0013909	0.000128171	0.00139086					1/3 x Basement roads A,B,C
% of Serving Rd	BaseC		0.00012817	0.0013909	0.000128171	0.00139086					1/3 x Basement roads A,B,C
Out of 500m	801-820	Volume			**	-	-	-	-	1	1 x Tunnel Y
Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
Out of 500m	904-906	Volume					-			1	
Out of 500m	V1	Point								from 1-4	

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr04-05)

													H	04-05 (2015 E	EIA_19-12-2011	l.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.	Road name		Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total			-	
A"	73	Lin Cheung Rd (underpass)	Northbound	3	73	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467	0.0001180	0.0012903
OIII	/3	Lin Cheung Rd (underpass)	Northbound	3		60	58%	0%		0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%		0.0970008	1.0605467	0.0004397	0.0048078
DIII	73	Lin Cheung Rd (underpass) Lin Cheung Rd (underpass)	Northbound Northbound	3	110	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467	0.0001778	0.0019443
E(I)	70	Lin Cheung Rd (underpass)	Southbound	2	155		54%	0.0	25%	0.00	49/	0%	49/	49/	49/	0%	0%	0%	49/	0%	0%	0.00	100%	0.0976081	1.1735407	0.0005043	0.0060633
E(1)	72	Lin Cheung Rd (depressed)	Southbound	3	172		54%	0%	25%	0%	496	0%	4%	4%	496	0%	0%	0%	496	0%	0%	0%	100%	0.0976081	1.1735407	0.0005596	0.0067283
G ⁽ⁱⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121		50%	0%	23%	0%	394	394	7%	990	396	3%	0%	0%	396	0%	0%	096	100%	0.1095626	1.3316678	0.0005524	0.0067138
HIII	119	Austin Rd W (depressed)	Eastbound	3	173		26%	2%	54%	0%	2%	294	4%	2%	096	0%	0%	0%	096	296	2%	296	100%	0.1093020	1.7333541	0.0005324	0.0191584
(0)	117	Austin Rd W (depressed)	Eastbound	3	194		33%	096	58%	0%	0%	096	8%	0%	0%	0%	0%	0%	0%	0%	0%	096	100%	0.1555242	1.4858010	0.0005029	0.0048041
1(1)	116	Austin Rd W (depressed)	Westbound	3	194	65	31%	0%	62%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1594894	1.5012774	0.0005587	0.0052586
K ^{III}	114	Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0547480	0.4592040	0.0000289	0.0002424
L00	112	Lin Cheung Rd (depressed)	Northbound	3	95	85	59%	0%	29%	0%	0%	0%	6%	6%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0935337	0.9559042	0.0002098	0.0021441
M ⁽ⁱ⁾	84	Lin Cheung Rd	Southbound	3	56	120	50%	0%	25%	0%	4%	4%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1085232	1.2989946	0.0002026	0.0024248
N ^(I)	77	Lin Cheung Rd	Northbound	3	56	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1095626	1.3316678	0.0002556	0.0031072
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	180	19%	3%	56%	0%	3%	3%	6%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1556065	1.9736005	0.0004046	0.0051314
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1424472	1.3014426	0.0001955	0.0017859
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	535	54%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0379007	1.0648712	0.0110960	0.3117558
	A	Internal Rd A	Bothbound	4	404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0054188	0.0557154	0.0000030	0.0000313
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.0982316	1.0922400	0.0001478	0.0016429
	С	Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.2892760	3.2210045	0.0002093	0.0023308
X ^{p1}	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	315	35%	0%	11%	0%	6%	5%	13%	11%	2%	2%	2%	0%	0%	10%	5%	0%	100%	0.1205227	2.5939861	0.0018982	0.0408553

PA Heapprosison of Listscognie for Hypoter | Westbound | 3 | 1880 | 315 | 25% | 17%

		20%										
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA	Volume source by number of pr involved	ortal/onening	Area source - divided by area	calculated by emi	ission rate		
				Emission Ra	te - Portal/	Emission R	ate -					
				Opening		Portal/Ope			Rate - Portal/ (Opening		
				(g/s)		(g/s) - Volur						
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	is
		Portal/ opening									from	
			Source Type Area	2.3604E-05	0.0000004				5 25379F-07	491.2	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0	1.873	A		0.00046626		-				491.2 341.9	1	0.2 x turner section A 12 x Turner Section A + 1 x Turner Section B + 1/3 x (30.935 / 50) x (0.8 x Turner Section A + 1 x Turner Section B)
80.935	1.873	CF.	Area	0.00046626	0.0030976	-		2.3612F-07	2.75457E-06	635.3		23 x (U.S. Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
		D1-D7		0.00048112		4 58206F-05			2.73437E-00			0.2.X Turiner Gection 0.4.0.2.X (170.X) 13.0007.30 / X (10.0.X Turiner Gection A.7.1.X Turiner Gection B.7.) 4.0.2.X Turiner Gection B.7.1.4.X Turiner Gection B.7.4.X Turiner Gection B.7.1.4.X Turiner Gection B.7.1.4.X Turiner Gection B.7.1.4.X Turiner Gection B.7.1.4.X Turiner Gection B.7.4.X Turiner Gection B.7.1.4.X Turiner Gection B.7.1.4.X Turiner Gection B.7.4.X Turiner
			Volume	0.00010112	O.OOOLOOL	2.29103E-05		_	-	-	1	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F	Area	0.00019261	0.0023158			6.94102E-07	8.34518E-06	277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
		11-14		0.00357628	0.0418093	0.000596047	0.006968212	-	-	-	1	1 x lunnel Section I + 1 x lunnel Section G + 1 x lunnel Section H + 0.14 x lunnel Section K + 0.8 x 0.38 x lunnel Section O + 0.8 x (1/3 x (1unnel Section Intern
		15-18	Volume			0.000298023	0.003484106	-		-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
				0.00022162				1.4366E-07	1.54708E-06	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road
		L1-L5		0.00055174	0.006186	7.3566E-05	0.000824795	-	-	-		1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road
			Volume			3.6783E-05	0.000412397	-	-	-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I - traffic flow of
		M1-M4		0.00022911	0.002766	3.81852E-05	0.000461001	-	-	-		
			Volume	0.00022911	0.000700	1.90926E-05	0.000230501	-	-		1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4 N5-N8		0.00022911	0.002766	3.81852E-05 1.90926E-05	0.000461001	-	-	-	4.	0.5 x (Tunnel Section M + Tunnel Section N)
		N5-N8 P1-P4	Volume	0.00059302	0.0054549	1.90926E-05 9.88374E-05	0.000230501	-	-	-	1	1.5 X (Turnel Section Print Humel Section Print Humel Section J + 0.8 x 0.86 x Turnel Section K + 0.8 x (1/3 x (Turnel Section Internal Road A + Turnel Road A + Turn
			Volume	0.00033302	0.0054545	4.94187E-05	0.000303147	_			1	Tunnel Section Internal Poad C I x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow o
		W1-W8		0.01109596	0.3117558	0.000924664	0.025979653	_	_		-	Tallion Good of The Trade Co. A. C. Barrion Good of The Trade Co. C. C. Barrion Good of Tallion Good of Tallio
			Volume	0.01100000	0.0117000	0.000462332	0.012989827	_	_	_	1	1 x Tunnel W
		701-710		0.00189823	0.0408553		0.002723685	-	-	-	1	
		711-720	Volume				0.001361843	-	-	-	-	1 x Tunnel X
			Volume	0.00012004		0.00012004	0.001334976					1/3 x Basement roads A,B,C
% of Sen	ing Rd	BaseC		0.00012004	0.001335	0.00012004	0.001334976					1/3 x Basement roads A,B,C
	Out of 500m		Volume			-		-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903					-	-	-	-		1 x Tunnel Z
	Out of 500m		Volume					-	-	-	1	
	Out of 500m	V1	Point								from 1-4	

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr05-06)

													н	r 05-06 (2015	EIA_19-12-2011	1.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLR	PV4	PV5	NFR6	NFR7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	73	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0001082	0.0011465
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0004033	
C(I)	73	Lin Cheung Rd (underpass)	Northbound	3	110	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0001631	0.0017277
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0002610	0.0027643
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	130	54%	0%	23%	0%	4%	0%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.0939265	1.1335754	0.0005257	0.0063449
F ⁽¹⁾		Lin Cheung Rd (depressed)	Southbound	3	172	130	54%	0%	23%	0%	4%	0%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.0939265	1.1335754	0.0005834	0.0070408
G ⁽ⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1104808	1.3353208	0.0005570	0.0067322
H ^(l)	119	Austin Rd W (depressed)	Eastbound	3	173	230	26%	2%	54%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1490417	1.7540131	0.0016473	0.0193867
I ₍₁₎	117	Austin Rd W (depressed)	Eastbound	3	194	55	27%	0%	64%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1741529	1.6384512	0.0005162	0.0048562
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	70	29%	0%	57%	0%	0%	0%	7%	0%	0%	0%	7%	0%	0%	0%	0%	0%	100%	0.1665138	1.6021293	0.0006281	0.0060436
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	25	60%	0%	40%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0887268	0.7213419	0.0000585	
F ₆₀	112	Lin Cheung Rd (depressed)	Northbound	3	95	95	58%		26%	0%	0%	0%	5%	5%	5%	0%	0%	0%	0%	0%	0%	0%	100%	0.0872000	0.8773389	0.0002186	
M(1)	84	Lin Cheung Rd	Southbound	3	56	140	50%	0%	25%	0%	4%	4%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1042185	1.2227209	0.0002270	0.0026628
N ^(I)		Lin Cheung Rd	Northbound	3	56	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1104808	1.3353208	0.0002578	0.0031157
O ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3	52	190	18%		58%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1628554	1.9802526	0.0004469	0.0054347
P ^(l)	110	Austin Rd W (depressed)	Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1471108	1.3229804	0.0002019	0.0018154
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	525	53%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0385875	1.0858022	0.0110859	0.3119419
	A	Internal Rd A	Bothbound	4	404	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.0785591	0.9548754	0.0001322	
	В	Internal Rd B	Bothbound	4	361	20	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0602288	0.7299638	0.0001208	0.0014640
	С	Internal Rd C	Bothbound	4	521	10	50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1178386	1.4323130	0.0001705	
X ₍₁₎		Reprovision of Gascoigne Rd Flyover		3	180	315	35%	0%	11%	0%	6%	5%	13%	11%	2%	2%	2%	0%	0%	10%	5%	0%	100%	0.1200647	2.5928393	0.0018910	0.0408372

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 315 | 35% | 17% | 17% | 10% | Notic: (()) - Tunnel name is based on Portional 3 | 400 pergrosion of classcogine but hyber | Westbound 3 | 1880 | 315 | 35% | 17%

enario 2			20%																		
enario 2			20%		Calculated by the (extracted from the of Road Works at Kowloon)	he approved EIA It West	Volume source by number of p involved	ortal/opening	Area source - c divided by area	alculated by em	ission rate										
					Emission Rat Opening (g/s)		Emission R Portal/ Ope (g/s) - Volu	ning	Emission Ra		Opening										
						NOx	PM		PM		(Area)	Formula									
			Portal/ opening ID.	Source Type								from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)								
			A	Area	2.1649E-05	0.0002293		-	4.40744E-08	4.66831E-07	491.2	1	0.2 x Tunnel Section A								
	80.935	0.873	В	Area	0.00042766	0.0045297	-	-	1.25083E-06		341.9	1	2/3 x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)								
			CE		0.00015022		-	-	2.36458E-07	2.74897E-06	635.3	1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 0.2 x Tunnel Section E								
			D1-D7		0.00044128	0.004674	4.2027E-05	0.000445146	-		-										
			D8-D14	Volume			2.10135E-05	0.000222573	-		1 0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D										
			F		0.00020079		-	-	7.23582E-07	8.73273E-06	1 0.2 x 0.8 x Tunnel Section F + 0.2 x Tunnel Section F										
			11-14		0.0036931	0.0426939	0.000615517	0.007115647	-		-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal								
			15-18	Volume			0.000307758	0.003557824	-		-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of Tunnel								
			JKO1	Area	0.00025332		-		1.64206E-07	1.76344E-06	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +								
			L1-L5		0.00060469	0.0067063	8.06253E-05	0.00089418	-	-	-		1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +								
			L6-L10	Volume			4.03126E-05	0.00044709	-		-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)								
			M1-M4		0.00024238	0.0028893	4.03961E-05	0.000481547	-		-										
			M5-M8	Volume			2.01981E-05	0.000240773	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)								
			N1-N4		0.00024238	0.0028893	4.03961E-05	0.000481547	-	-	-										
			N5-N8	Volume			2.01981E-05	0.000240773	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)								
			P1-P4		0.00066784	0.0062316		0.001038594	-	-	-		1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +								
			P5-P8	Volume			5.56533E-05	0.000519297	-		-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I								
			W1-W8		0.01108588	0.3119419	0.000923823	0.02599516	-	-	-										
			W9-W16	Volume			0.000461911	0.01299758	-	-	-	1	1 x Tunnel W								
			701-710		0.00189102	0.0408372		0.002722481	-	-	-	1									
			711-720	Volume			6.3034E-05	0.001361241	-		-	-	1 x Tunnel X								
				Volume	0.00014119		0.000141191	0.001714744					1/3 x Basement roads A,B,C								
	% of Se		BaseC		0.00014119	0.0017147	0.000141191	0.001714744					1/3 x Basement roads A,B,C								
		Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y								
		Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z								
		Out of 500m	904-906	Volume			-	-	-	-	-	1									
		Out of 500m	V1	Point								from 1-4									

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr06-07)

													н	r 06-07 (2015	EIA_19-12-2011	1.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLR	PV4	PV5	NFR6	NFR7	NERR	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	73	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0003069	0.0038487
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0011436	
C(I)	73	Lin Cheung Rd (underpass)	Northbound	3	110	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0004625	0.0057994
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0007400	0.0092790
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	240	54%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0970157	1.2597501	0.0010025	0.0130174
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	240	54%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0970157	1.2597501	0.0011124	0.0144451
G ⁽ⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	285	53%	2%	25%	0%	2%	2%	5%	4%	4%	2%	0%	0%	2%	2%	0%	0%	100%	0.0933683	1.1684203	0.0008944	
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173	230	24%	2%	57%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1484276	1.7677545	0.0016405	0.0195386
I ₍₁₎	117	Austin Rd W (depressed)	Eastbound	3	194	55	27%	0%	64%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1682295	1.6125588	0.0004986	0.0047794
J ⁽¹⁾		Austin Rd W (depressed)	Westbound	3	194	70	29%		57%	0%	0%	0%	7%	0%	0%	0%	7%	0%	0%	0%	0%	0%	100%	0.1611435	1.5786187	0.0006079	0.0059549
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	55	64%		27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0943519	1.0162219	0.0001369	0.0014749
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	215	51%		23%	0%	2%	2%	7%	2%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1004855	1.3425969	0.0005701	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	255	53%		25%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0995059	1.2528920	0.0003947	
N ⁽ⁱ⁾		Lin Cheung Rd	Northbound	3	56	300	52%		25%	0%	2%	2%	7%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1014731	1.2752009	0.0004735	
O ⁽ⁱ⁾		Austin Rd W (depressed)	Eastbound	3	52	190	18%		58%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1574671	1.9567890	0.0004322	0.0053703
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	95	32%	0%	63%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1525056	1.3861474	0.0002093	0.0019021
W ¹⁷	98	West Kowloon Highway (WKH)	Northbound	2	1970	1060	51%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0606065	1.5378068	0.0351551	0.8920134
	A	Internal Rd A	Bothbound	4	404	20	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0602259	0.7300918	0.0001352	
	В	Internal Rd B	Bothbound	4	361	35	43%	0%	29%	0%	0%	0%	0%	0%	0%	0%	29%	0%	0%	0%	0%	0%	100%	0.0680821	0.8264940	0.0002389	0.0029008
		Internal Rd C	Bothbound	4	521	20	25%	0%	25%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1165277	1.4187265	0.0003373	0.0041064
X"		Reprovision of Gascoigne Rd Flyover		3	180	665	33%	1%	11%	1%	7%	5%	13%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1198887	2.5771269	0.0039863	0.0856895

		20%										
				Calculated by the (extracted from to of Road Works a Kowloon)	ne approved EIA	Volume source by number of po involved		Area source - divided by area	calculated by em	ission rate		
				Emission Ra Opening (g/s)		Emission Ra Portal/ Oper (g/s) - Volum	ning	Emission R	ate - Portal/	Opening		
		Portal/ opening						PM		(Area)	Formula from	
		ID.	Source Type Area	6.1383E-05	0.0007607			1 24966F-07	1 56705F-06	101.0	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0.873		A D	Area	0.00121256		-	-	3.54652E-06		341.9	1	2/3 x (U.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
00.000 0.070	•	CE	Area	0.00032831	0.0132033			5.16773E-07		635.3	1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065/50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
		D1-D7	riicu	0.00125119		0.000119161	0.001494259	-				SEX TAILING CONTROL TO LEXT TO X TO SECURITY TO X TAILING CONTROL TO X T
		D8-D14	Volume				0.00074713	_	-	-	1	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F	Area	0.00038289	0.0049718	_	-	1.37978E-06	1.79164E-05	277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
		11-14		0.00474423	0.0578084	0.000790705	0.009634734	-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.40
		15-18	Volume			0.000395352	0.004817367	-	-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow
			Area	0.00027899			-	1.80843E-07	2.0063E-06	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Road A + T
		L1-L5		0.00101292	0.0124966		0.001666212	-	-	-		1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Road A + T
		L6-L10	Volume			6.75283E-05	0.000833106	-		-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel
		M1-M4		0.00043412			0.000910062	-	-	-		
		M5-M8	Volume			3.6177E-05	0.000455031	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00043412			0.000910062	-	-		4	65 (T. 10 (1 H. T. 10 (1 H.
		N5-N8 P1-P4	Volume	0.00072245		3.6177E-05	0.000455031	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N) 1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Road A + Tun
		P1-P4 P5-P8	Volume	0.00072245	0.0071992	6.0204E-05	0.001199872		-	-	l,	Tunnel Section I + to \$0.000 ft tunnel Section 1 + to \$0.000 ft tunnel Section I + traffic flow of Tunnel Section I + tra
		W1-W8	volume	0.03515512	0.8020134		0.000399936		f	-	-	Totalina Goddon micritian road of / A Banic now of Totalina Goddon / A Banic now of Totalina Godd
		W9-W16	Volume	0.00010012	0.0320134	0.002929093	0.074334446		-		1,	1 x Tunnel W
		701-710	* Oldino	0.0039863	0.0856895		0.037107223	_	_	_	1	1.A. IMBROLIT
		711-720	Volume			0.000132877	0.002856316	_	-	-	Ė	1 x Tunnel X
			Volume	0.00023714	0.0028819	0.000237135	0.002881947					1/3 x Basement roads A.B.C
% of Serving F	Rd	BaseC		0.00023714	0.0028819	0.000237135	0.002881947					1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	

													H	r 07-08 (2015 E	BA_19-12-2011	I.xIs)								Rate (g/km-		Emission (g/s	s)
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0003791	0.0050443
B ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	272	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0014124	0.0187951
C ⁽ⁱ⁾	73	Lin Cheung Rd (underpass)	Northbound	3	110	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0005712	0.0076009
Dii)	73	Lin Cheung Rd (underpass)	Northbound	3	176	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0009139	0.0121615
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	615	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.0980281	1.2558395	0.0025957	0.0332536
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	615	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.0980281	1.2558395	0.0028804	0.0369007
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3	121	750	51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.0989166	1.2331750	0.0024935	0.0310863
His	119	Austin Rd W (depressed)	Eastbound	3	173	950	24%	2%	57%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1529852	1.7603536	0.0069842	0.0803650
pr	117	Austin Rd W (depressed)	Eastbound	3	194	280	25%	2%	55%	0%	2%	2%	4%	2%	2%	0%	0%	0%	2%	2%	2%	2%	100%	0.1486270	1.7441715	0.0022426	0.0263176
J ^(c)	116	Austin Rd W (depressed)	Westbound	3	194	280	25%	2%	54%	0%	2%	2%	4%	2%	2%	0%	2%	0%	2%	2%	2%	2%	100%	0.1483998	1.7608600	0.0022392	0.0265694
K ¹⁰	114	Lin Cheung Rd (depressed)	Southbound	3	95	165	45%	3%	24%	0%	3%	3%	6%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.1063910	1.4684505	0.0004632	0.0063939
r.m	112	Lin Cheung Rd (depressed)	Northbound	3	95	320	53%	2%	25%	0%	2%	2%	6%	3%	3%	2%	0%	0%	2%	2%	0%	0%	100%	0.0964757	1.1908753	0.0008147	0.0100563
M**	84	Lin Cheung Rd	Southbound	3	56	645	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1018044	1.2926960	0.0010214	0.0129700
N°	//	Lin Cheung Rd	Northbound	3	56	465	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1010955	1.2592016		
O.	111	Austin Rd W (depressed) Austin Rd W (depressed)	Eastbound Westbound	3	52	785 430	25%	1%	55%	0%	1%	1%	4%	2%	1%	1%	1%	0%	1%	1%	2%	3%	100%	0.1488055 0.1489656	1.6842114	0.0016873	0.0190971
SAPET	110	West Kowloon Highway (WKH)	Northbound	3	1970	1575	51%	176	17%	0%	176	176	0%	176	176	176	176	0%	176	176	276	276	100%	0.0613596	1.5130225	0.0009252	1.3040362
w		Internal Rd A	Northbound Bothbound	2	404	15/5	50%	0%	1/%	0%	2%	2%	6%	3%	3%	3%	2%	0%	5%	2%	3%	0%	100%	0.0613596	1.5130225	0.0528843	0.0041502
	6	Internal Rd B	Bothbound	1.	361	30	33%	0.76	25%	076	0.76	0.76	076	076	0.76	076	25%	0.70	0.76	0.70	076	0.76	100%	0.1730856	1.7471376	0.0004649	0.0105119
	0	Internal Hd B	Bothbound	4	521	25	20%	0%	20%	U% 09/	0%	U76 nor	U76	0% ne/	U% 09/	0%	20%	0%	U% 09/	0%	0%	0%	100%	0.1/30856	2.5515727	0.0010414	0.0105119
VP	144			*	180	1325	33%	0.76	20%	076	0.76	0.76	13%	10%	0.76	076	0076	0.70	0.76	0.76	076	0.70		0.1212756	2.6406536	0.0009274	0.0092317
^	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1325	33%	U76	11%	176	/%	576	13%	10%	2%	276	176	U%	176	9%	0%	176	100%	0.1212/00	2.0400030	0.0000345	0.1749433

At legislations of Uses of Line (1997) (Westbound 3 | 1880 | 1325 | 33% | 17% | 17% | 17% | 17% | 17% | 1882 | 1883 | 188

	20%										
			Calculated by th (extracted from to of Road Works a Kowloon)	he approved El		e - calculated portal/opening	Area source - divided by area		emission rate		
			Emission Ra	te - Portal/							
			Opening		Portal/ Op		Emission R				
			(g/s)				(g/m2-s) - A				
			PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
	Portal/ opening	_								from	Entries of the form to the state of the stat
	ib.	Source Type Area	7.5814E-05	0.0010080		_	1 54344F-07	2.05385F-06	401.2	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0.873	B		0.00149761			E	4.38025E-06	5.82881E-05		1	2/3 x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
0.070	CE		0.00067699			-	1.06563E-06	1.3775E-05		1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.085 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
	D1-D7		0.00154532	0.0205637	0.000147174	0.001958444	l –	-	-		
	D8-D14	Volume				0.000979222				1	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F		0.00099139			-	3.57258E-06	4.57684E-05	277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
	11-14		0.01644011	0.1968085					-	1	1 x Tunnel Section 1 + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x (Tunnel Section C + 0
	15-18	Volume	0.00100700	0.011000	0.001370009	0.016400706		-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow
	JKO1		0.00102722		0.000304417	-	6.65859E-07	7.66576E-06	3 1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road A
	L1-L5 L6-L10	Volume	0.00228313	0.0278938	0.000304417	0.003/1916/		-	-	4.	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / traffic flow of Tunnel Section I + traffic flow of Tunnel Section I - traffic flow of
	M1-M4	volume	0.00087635	0.0110301		0.001839856				-	Turner Section Internal Podu C) X (traine now or furnier Section E.7 (trainer now or furnier Section E.4 trainer now or furnier Section E.7
	M5-M8	Volume	0.00007000	0.0110031	7.3029E-05	0.001635636		E		٠,	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4		0.00087635	0.0110391				-	-		S.O. X (Tallion Good on In Tallion Good on In)
	N5-N8	Volume			7.3029E-05	0.000919928		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	P1-P4		0.00287632	0.0330904	0.000479386	0.005515063	3 -		-		1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Road A + T
	P5-P8	Volume			0.000239693	0.002757531		-	-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D / (traffic flow of
	W1-W8		0.05288432	1.3040362					-		
	W9-W16	Volume			0.002203513			-	-	1	1 x Tunnel W
	701-710		0.00803451	0.1749433	0.000535634			-	-	1	1 x Tunnel X
	711-720 BaseA	Volume Volume	0.00001124	0.0070646	0.00026/81/			-	-	-	13 x turner x 113 x Basement roads A.B.C
% of Serving Rd	BaseC	volume	0.00081124							+	1/3 x Basement roads A.B.C
Out of 500m	801-820	Volume	0.00001124	0.0073040	0.000811237	0.007904018	-			1	1x Junel Y
Out of 500m	901-903				_	-	-	-	_		1 x Tunnel Z
Out of 500m	904-906	Volume			-	-	-	-	-	1	
Out of 500m	V1	Point								from 1-4	
			I -		1	1	1	1		1	

							н	r 08-09 (2015 E	A_19-12-2011	.xls
Remarks (Tunnel name -										
Portal & top opening of										
underpass in EIA of Rd	WKCD									1

		al, Top Openings and Ventilation E											Н	08-09 (2015 E	EIA_19-12-201	1.xis)								Rate (g/km-		Emissio (g/	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(I)	73	Lin Cheung Rd (underpass)	Northbound	3	73	385	51%	1%	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0009380	0.0112480
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	385	51%	1%	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0034950	0.0419102
C ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	110	385	51%	1%	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0014134	0.0169490
DII)	73	Lin Cheung Rd (underpass)	Northbound	3	176	385	51%	1%	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0022615	0.0271184
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	1215	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167078	1.4026321	0.0061053	0.0733752
F(1)		Lin Cheung Rd (depressed)	Southbound	3	172	1215	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167078	1.4026321	0.0067749	0.0814228
3(1)	118	Lin Cheung Rd (depressed)	Southbound	3	121	1505	51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1148200	1.3773529	0.0058081	0.0696730
H ^(t)		Austin Rd W (depressed)	Eastbound	3	173	1435	23%	2%	58%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1719684	1.8790136	0.0118589	0.1295763
(1)	117	Austin Rd W (depressed)	Eastbound	3	194	400	24%	1%	58%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	3%	3%	100%	0.1687920	1.8971826	0.0036384	0.0408948
J ⁽¹⁾			Westbound	3	194	400	24%	1%	56%	0%	1%	1%	4%	1%	1%	0%	3%	0%	1%	1%	3%	3%	100%	0.1706781	1.9329541	0.0036791	0.0416659
K ⁽¹⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	295	53%	2%	25%	0%	2%	2%	7%	3%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1146854	1.3530218	0.0008928	0.0105329
_(F)	112	Lin Cheung Rd (depressed)	Northbound	3	95	685	50%	1%	24%	0%	2%	2%	7%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1172186	1.3964640	0.0021189	0.0252430
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	1305	51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167217	1.3848659	0.0023694	0.0281128
N ^(I)		Lin Cheung Rd	Northbound	3	56	960	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1184768	1.4240655	0.0017693	0.0212660
D ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3	52	1205	23%	2%	58%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1699619	1.8582016	0.0029583	0.0323430
P ⁽¹⁾			Westbound	3	52	645	23%	2%	57%	0%	2%	2%	5%	2%	1%	196	1%	0%	1%	1%	2%	2%	100%	0.1719585	1.8928938	0.0016021	0.0176355
N ^{oo}		West Kowloon Highway (WKH)	Northbound	2	1970	4145	51%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0631257	1.5196290	0.1431840	3.4468774
	A	Internal Rd A	Bothbound	4	404	50	40%	0%	30%	0%	0%	0%	0%	10%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1729363	1.4952900	0.0009704	0.0083902
	В	Internal Rd B	Bothbound	4	361	85	35%	0%	24%	0%	6%	0%	6%	6%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.2081043	2.0551660	0.0017738	0.0175174
		Internal Rd C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2364946	2.3544629	0.0011979	0.0119260
C)		Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1680	33%	1%	11%	1%	7%	5%	13%	10%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1407950	2.8390978	0.0118268	0.2384842

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 1980 | 183% | 17%

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr08-09)

			20%																								
					Calculated by the (extracted from ti of Road Works a Kowloon)	ne approved EIA t West	Volume source - by number of po involved	rtal/opening	Area source - o divided by area	calculated by em	nission rate																
					Emission Rat		Emission Ra																				
					Opening		Portal/ Oper			ate - Portal/	Opening																
					(g/s)		(g/s) - Volun		(g/m2-s) - A																		
					PM	NOx	PM	NOx	PM	NOx	(Area)	Formula															
			Portal/ opening									from															
			ID.	Source Type	0.0004070	0.000100						Scenario	Emission ca		ormula (Ex	ctracted fro	m the appr	oved EIA o	Road Wo	rks at Wes	t Kowloon)					
			A	Area	0.0001876		-	-	3.8192E-07	4.57979E-06		1	0.2 x Tunne			T 10	r 5)	110 100	005 (50)	/ O O T			T 10				
80.935	0.873		В	Area	0.0037058 0.00161166	0.0444381	-		1.08389E-05 2.53684E-06	0.000129974 3.04721F-05		1	2/3 x (0.8 x 0.2 x Tunne	Tunnel Sect	tion A + 1	x Tunnel Se	ction B) +	1/3 X (30.	335 / 50) :	X (U.8 X II	unnel Section	on A + 1 X	Tunnel Se	ction B)			
			CE	Area	0.00161166		0.000364179	0.004367045	2.53684E-06	3.04721E-05	635.3	1	0.2 x Tunne	Section C	+ 0.2 X (1	/3 X (19.06	5/50)X(0.8 x Tunn	el Section	A + 1 X IU	nnei Sectio	n B)) + (.2 x Tunne	Section E			
			D1-D7 D8-D14		0.00382388	0.045854		0.004367045	-	-		4.	0.8 x Tunne	0		m (10 00	F / F0 / 0	0 T	C# A	T.		D	. T	D			
			D6-D14	Volume Area	0.00233182	0.0000040	0.000182089	0.002183522	8 40296F-06	0.00010099			0.2 x 0.8 x					.o x ruririei	SECTION A	+ I X IUII	nei Section	16))+1	C TUITING SE	CHOILD			
			F 14	Area	0.00233182	0.0280246	0.005040004	0.061001695	8.40296E-06	0.00010099	2//.5	1	1 x Tunnel S	ection I ± 1	V Lunnel	Section G ±	. 1 y Tunne	Section H	± 0 14 v I	unnel Sec	tion K ± 0.3	R v n 38 v	unnel Sec	ion () ± ()	8 V / 1/3 V /	lunnel Sect	ion Internal
			15-18	Volume	0.03190009	0.3000102	0.002658341	0.030500848	_			-															low of Tunnel
			JKO1		0.00174383	0.0101357	0.002008341	0.030500848	1 13038F-06	1.2404E-05	1540.7		0.2 v Tunno	Section I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 0.14) v T	unnel Secti	ion K + 0.2	v Tunnel S	action O	0 2 v 1/3	v / Tunnal	Section Int	arnal Boad	A . Tunnel	Section Into	ernal Road B
			L1-L5	Alea	0.00470881		0.000827841	0.007267139	1.13030E-00	1.2404E-00	1042.7	-	1 x Tunnel S	ection I + (0.2 A 1 1	x Tunnel Se	ction J + 0	18 x 0 62 x	Tunnel Se	ction O + 0	1.8 x (1/3)	x (Tunnel:	Section Inte	ernal Boad	A + Tunnel	Section Inte	rnal Road B +
			L6-L10	Volume	0.00 17 0001	0.0010000	0.000313921	0.003633569	-	-		-															el Section P)
			M1-M4		0.00206935	0.0246894		0.004114902	_	_		f				((,
			M5-M8	Volume			0.000172446	0.002057451	_			٦,	0.5 x (Tunn	l Section M	1 + Tunnel	Section N)											
			N1-N4		0.00206935	0.0246894	0.000344892	0.004114902	_	-	-																
			N5-N8	Volume			0.000172446	0.002057451	-	-		1	0.5 x (Tunne														
			P1-P4		0.00484512	0.0526246		0.008770765	-	-	-																rnal Road B +
			P5-P8	Volume			0.00040376	0.004385383	-	-		1	Tunnel Sect	ion Internal	Road C):	x (traffic flo	ow of Tunn	el Section I	/ (traffic	flow of Tu	nnel Section	n I + traffi	c flow of Tu	innel Section	on L + traffic	flow of Tur	nnel Section
			W1-W8		0.14318403	3.4468774		0.287239783	-																		
			W9-W16	Volume			0.005966001	0.143619891	-	-	-	1	1 x Tunnel V	V													
			701-710		0.01182678	0.2384842		0.015898948	-			1															
			711-720	Volume			0.000394226	0.007949474	-			-	1 x Tunnel >														
			BaseA	Volume	0.00131403		0.001314025	0.012611228					1/3 x Basen														
% of	Serving Rd		BaseC		0.00131403	0.0126112	0.001314025	0.012611228					1/3 x Basen		A,B,C												
		ut of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel			ļ		1			1	1	ļ				
		ut of 500m	901-903				-	-	-	-			1 x Tunnel 2					1			1				-		
		ut of 500m	904-906	Volume			-	-	-	-		1						1			1	1			-		
	0	ut of 500m	V1	Point								from 1-4	-					1			1	1			-		

Appendix 3.18b - Emission Rates of Portal	. Top Openings and	Ventilation Exhaust (Hr09-10)

													н	r 09-10 (2015 E	BA_19-12-2011	I.xIs)								Rate (g/km-		Emissio (g/s	's)
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0009631	0.0113947
B ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	272	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0035886	0.0424570
C ⁽ⁱ⁾	73	Lin Cheung Rd (underpass)	Northbound	3	110	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0014513	0.0171701
Dii)	73	Lin Cheung Rd (underpass)	Northbound	3	176	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0023220	0.0274722
E.	72	Lin Cheung Rd (underpass)	Southbound	3	155	986	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1211567	1.4332808	0.0051448	0.0608630
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	986	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1211567	1.4332808	0.0057091	0.0675383
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3	121	1230	50%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1199153	1.4192033	0.0049575	0.0586722
Hea	119	Austin Rd W (depressed)	Eastbound	3	173	1456	22%	2%	59%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1781594	1.9129040	0.0124670	0.1338584
pro		Austin Rd W (depressed)	Eastbound	3	194	406	23%	1%	58%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1750981	1.9417582	0.0038325	0.0425002
J ^(c)		Austin Rd W (depressed)	Westbound	3	194	401	22%	1%	57%	0%	1%	1%	4%	1%	1%	0%	4%	0%	1%	1%	2%	2%	100%	0.1794183	2.0092829	0.0038767	0.0434145
K ^{ey}		Lin Cheung Rd (depressed)	Southbound	3	95	284	51%	2%	25%	0%	3%	2%	6%	3%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1178027	1.4026281	0.0008842	0.0105279
F.	112	Lin Cheung Rd (depressed)	Northbound	3	95	705	51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1196141	1.3978110	0.0022256	0.0260089
M°7	84	Lin Cheung Rd	Southbound	3	56 Ec	1088	51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	0%	100%	0.1211000	1.4093701	0.0020499	0.0238565
N°	//	Lin Cheung Rd	Northbound	3	30	975	50%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1217139	1.4371498		
oll .	111	Austin Rd W (depressed) Austin Rd W (depressed)	Eastbound Westbound	3	52	1233	22%	2%	59%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1762200	1.8941014	0.0031389	0.0337386
SAI(0)		West Kowloon Highway (WKH)	Northbound	3	1970	3591	50%	276	17%	0%	2%	276	D76	2%	176	176	176	0%	176	176	276	276	100%	0.1792959	1.5391149	0.1265607	3.0245239
w		Mest Kowtoon Highway (WKH) Internal Rd A	Northbound Bothbound	2	1970	3591	36%	0%	17%	0%	2%	2%	/%	3%	3%	3%	2%	0%	5%	2%	3%	0%	100%	0.0644040	1.5391149	0.1265607	0.0168388
	2	Internal Rd B	Bothbound	-	361	134	34%	0.76	20%	170	0.76	170	070	076	170	170	1070	0.76	0.76	170	0.70	0.76	100%	0.1905963	1.9763877	0.0016852	0.0168388
	D C	Internal Rd C	Bothbound	4	521	134	22%	U76	2976	176	99/	176	3%	6%	176	176	23%	0%	U% 09/	176	0%	0%	100%	0.19/1908	2.5507236	0.0026450	0.0265100
VP	144			9	180	1685	33%	0.76	1196	076	370	1 /0	13%	10%	170	170	3076	0.76	0.76	170	0.70	407			2.5507236	0.0021918	0.0223770
^	144	reprovision of Gascoigne Hd Flyover	Westbound	J	100	1000	33%	176	1176	176	/76	576	13%	1076	2%	176	176	U76	176	976	076	176	100%	0.1463557	2.0043031	0.0123305	0.2430025

PA Heapprosists of classcogne for Hypoer (Westbound 3 | 1980 | 1985 | 33% | 1% | 17% | 17% | 17% | Notic (I): Tunnel name is based on Portal 3 to opening of undergass in EUA of Pack Morks in West Kowtoon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutarits multiplied by traffic flow of each roads.

	20%									_	
			Calculated by the (extracted from ti of Road Works a Kowloon)	he approved EIA	Volume source by number of po involved		Area source - divided by area		emission rate		
			Emission Rat Opening (g/s)		Emission Ra Portal/ Oper (g/s) - Volun	ning	Emission F (g/m2-s) - A				
	Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
		Source Type	0.00019262	0.0000790			3 92148F-07	4 63954F-0	. 404.0	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0.873			0.00019262		-	-	3.92148E-07	0.00013167		1	0.2 x furnier section A = 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
80.833 0.873			0.00143002			_	2.25094E-06			-	20 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
	D1-D7		0.00392628			0.00442402	-				
	D8-D14 \	/olume			0.000186966	0.00221201	-	-	-	1	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F /		0.00196499		-		7.08103E-06	8.37684E-0	5 277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
	11-14		0.0305959	0.3439232			-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x 0.38 x Tunnel Section C + 0.8 x 0.38
		/olume				0.028660263	-		-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
			0.00199	0.0216231			1.28995E-06	1.40164E-0	5 1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel
	L1-L5 L6-L10		0.00522302	0.0604113		0.008054838	-		-	Į.	Turnel Section L+ to 3 v.2.4 x turnel Section 1 + to 5 v.5.2 x turnel Section 0 + to 5 v.7 (7.3 x (7
	M1-M4	/olume	0.00194803	0.0228278		0.003804634	_	-	-	-	Tuliner Section Internal road C) X (Ballic now of Tuliner Section E7 (Ballic now of Tuliner Section E + Ballic now of Tuliner E + Ballic now
		/olume	0.00134003	0.0220270		0.003804634	Ē		_	┪,	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4		0.00194803	0.0228278		0.003804634	_	-	-	ľ	and A (Tarrier Goods III Tarrier Goods III)
	N5-N8 \	/olume				0.001902317	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	P1-P4		0.0052916	0.055914		0.009318999	-		-		1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel Road B +
		/olume				0.0046595	-	-	-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow o
	W1-W8		0.12656074	3.0245239		0.25204366	-	-		1	L
		/olume	0.01233047	0.0100005	0.005273364	0.12602183	-	-		1	1 x Tunnel W
	701-710 711-720	/olume	0.01233047	0.2430025		0.016200169	-	-	-	1	1 x Tunnel X
		/olume /olume	0.00217401	0.0219086		0.008100084	-	-	-	-	1/3 x Basement roads A.B.C
% of Serving Rd	BaseC	dunc	0.00217401			0.021908614		+	+	<u> </u>	1/3 x Basement roads A.B.C
Out of 500m		/olume					-	-	-	1	1x Tunnel Y
Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
Out of 500m	904-906	/olume			-	-	-	-		1	
Out of 500m	V1 F	Point								from 1-4	-

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr10-11)	
---	--

														Hr 10-11 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emissio (g/:	's)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0008576	0.0103088
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0031956	0.0384110
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0012923	0.0155339
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3	176	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0020677	0.0248542
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	735	52%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1224588	1.4292669	0.0038753	0.0452303
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	735	52%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1224588	1.4292669	0.0043003	0.0501911
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound				51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1204179	1.4169757	0.0036629	0.0431016
H ^(l)			Eastbound	3			24%	2%	58%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1763572	1.8766803	0.0120768	0.1285135
I ⁽¹⁾	117	Austin Rd W (depressed)	Eastbound	3		405	25%	1%	57%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1724208	1.9217716	0.0037631	0.0419427
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	405	25%	1%	56%	0%	1%	1%	4%	1%	1%	0%	2%	0%	1%	1%	2%	2%	100%	0.1743272	1.9588750	0.0038047	0.0427524
K ⁽ⁱ⁾			Southbound	3	95		49%	2%	24%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1189213	1.4490713	0.0006433	
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	555	51%	2%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1181199	1.3881040	0.0017300	0.0203299
M ⁽¹⁾	84		Southbound	3	56		51%	1%	25%	0%	2%	3%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1235803	1.4164610	0.0014994	0.0171864
N ^(l)			Northbound	3	56	790	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	1%	0%	1%	100%	0.1237291	1.4379412	0.0015205	0.0176707
O ⁽¹⁾			Eastbound	3	52		24%	2%	58%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	3%	100%	0.1750260	1.9054963	0.0030085	0.0327534
P ^(t)	110		Westbound	3			23%	2%	57%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1775428	1.9422847	0.0016413	0.0179553
W ⁽¹⁾	98		Northbound	2			50%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0632495	1.5224591	0.1086801	2.6160077
	A		Bothbound		404	55	36%	0%	27%	0%	9%	0%	0%	9%	0%	0%	18%	0%	0%	0%	0%	0%	100%	0.1746258	1.6526518	0.0010778	0.0102005
	В		Bothbound	4	361	95	37%	0%	26%	0%	5%	0%	5%	5%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.2030834	1.9538961	0.0019347	
	С		Bothbound	4	521		29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2371532	2.3500970	0.0012012	0.0119039
X**	144	Reprovision of Gascoigne Rd Flyover		3	180	1670	33%	1%	11%	1%	7%	4%	13%	10%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1487671	2.9494200	0.0124221	0.2462766

PA | Medical Representation of Listancians and
			20%									_	
					Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA	Volume source by number of p involved		Area source divided by an	- calculated by	y emission rat	е	
					Emission Ra	te - Portal/	Emission F	ate -	Emission	Rate - Port	al/		
					Opening		Portal/Op		Opening				
					(g/s)		(g/s) - Volu	me source	(g/m2-s) -	Area sourc	e		
					PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
			Portal/ opening									from	
			ID.	Source Type								Scenario	
			A	Area	0.00017153			-		4.19741E-06		1	0.2 x Tunnel Section A
-	90.935 0.87	73	В	Area	0.00338831			-		0.000119122		1	2/3 x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
			CE	Area	0.0011322 0.00349626	0.0133389		-		2.09962E-05	635.3	1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 0.2 x Tunnel Section E
			D1-D7 D8-D14	Mat	0.00349626	0.0420255	0.000332977	0.004002425			-	4.	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			D8-D14	Volume Area	0.00148012	0.0470754		0.002001212		6 22525F-05		1	0.6 x turmer section C + 0.6 x (1/3 x (1/3 x (1/3 x C) x 0.6 x turmer section A + 1 x turmer section B)) + 1 x turmer section B 0.2 x 0.8 x turner section C + 0.6 x (1/3 x (1/3 x C) x 0.6 x turmer section B))
			F 14	Area	0.00148012			0.049401271	5.33376E-06	6.22525E-05	2//.5	1	0.2 x 0.6 x Turner Section E + 0.2 x Turner Section F + 1.2 x Turner Section H + 0.14 x Tunner Section K + 0.8 x 0.38 x Tunner Section O + 0.8 x (1/3 x (Tunner Section H + 0.14 x Tunner Section K + 0.8 x 0.38 x Tunner Section O + 0.8 x (1/3 x (Tunner Section H + 0.14 x Tunner Section K + 0.8 x 0.38 x Tunner Section O + 0.8 x (1/3 x (Tunner Section H + 0.14 x Tunner Section H + 0.
			11-14 15-18	Volume	0.020/1231	0.2304076	0.002226026	0.049401271		-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / traffic flow of Tunnel Section I / traffic flow
			JKO1	Area	0.00175421	0.010164	0.002226026	0.024700635	1 1271E 00	1.24224E-05	1540.7		0.2 x Turnel Section J + 0.2 x (1 - 0.14) x Turnel Section K + 0.2 x Turnel Section O + 0.2 x 1/3 x Turnel Section Internal Poad A + Turnel Section Internal
			L1-L5	Aica	0.00434245		0.000578993	0.006718535		1.242240-00	1042.7	-	1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x 1/3 x (Tunnel Section Internal Road A + Tunnel Road A +
			L6-L10	Volume	0.00101210	0.000000	0.000289497	0.003359267		_	_	٠,	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow
			M1-M4	* Oldino	0.00150997	0.0174285		0.002904758	_	_	_	-	Trainer decident microal reduction of trainer decident 2 / state new or trainer decident 1 state new or trainer
			M5-M8	Volume	0.00100007	0.0174200	0.000251031	0.001452379		_	_	1,	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00150997	0.0174285	0.000251661	0.002904758		-	-		
			N5-N8	Volume			0.000125831	0.001452379		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00484661	0.0519003	0.000807769	0.008650048	-	-	-		1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
			P5-P8	Volume			0.000403884	0.004325024		-	-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D + traffic flow D + traff
			W1-W8		0.10868014	2.6160077	0.009056679	0.218000641	-	-	-		
			W9-W16	Volume			0.004528339	0.10900032	-	-	-	1	1 x Tunnel W
			701-710		0.01242206	0.2462766	0.000828137	0.016418438	-	-	-	1	
			711-720	Volume			0.000414069	0.008209219	-	-	-	-	1 x Tunnel X
				Volume	0.00140458			0.013572667					1/3 x Basement roads A,B,C
	% of Serving	g Rd	BaseC		0.00140458	0.0135727	0.001404576	0.013572667					1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-	+	-	-	-	1	1 x Tunnel Y
		Out of 500m	901-903					-	-	-	-		1 x Tunnel Z
		Out of 500m	904-906	Volume				-	-	-	-	1	
		Out of 500m	V1	Point								from 1-4	

														Hr 11-12 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.			Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	0.1149823	1 3998324	0.0006179	0.0075222
PIII	73		Northbound Northbound	3	272	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0006179	0.00/5222
C(l)	73		Northbound	3	110	265	51%	276	23%	0%	476	276	0%	476	2%	270	2%	076	2%	276	076	0%	100%	0.1149823	1.3998324	0.0023022	0.0280278
D _(i)	73		Northbound	3			51%	276	23%	0%	4%	276	6%	4%	2%	270	2%	0%	2%	276	0%	0%	100%	0.1149823	1.3998324	0.0009310	0.0113348
E(I)	70		Southbound	3	155	735	53%	10/	24%	0.00	99/	29/	69/	20/	29/	20/	10/	0%	20/	10/	0%	19/	100%	0.1151255	1.3383639	0.0036432	0.0423536
E(I)	72		Southbound	3			53%	196	24%	0%	2%	2%	6%	3%	2%	2%	190	0%	2%	194	0%	196	100%	0.1151255	1.3383639	0.0030432	0.0469989
G ^(t)	118		Southbound	3		885	51%	196	24%	1%	2%	296	6%	3%	3%	294	196	0%	2%	296	0%	196	100%	0.1137843	1.3521385	0.0033846	0.0402205
H ^(t)	119		Eastbound	3	173		25%	1%	56%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1688537	1.8055075	0.0112384	0.1201691
(ii)	117		Fastbound	3	194		26%	1%	55%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	3%	3%	100%	0.1649965	1.8596684	0.0035566	
J ⁽¹⁾	116		Westbound	3	194	420	27%	1%	54%	0%	1%	1%	4%	1%	1%	0%	2%	0%	1%	1%	2%	2%	100%	0.1644221	1.8491397	0.0037214	0.0418522
KIII	114	Lin Cheung Rd (depressed)	Southbound	3	95	200	48%	3%	25%	0%	3%	3%	5%	5%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.1182355	1.4507647	0.0006240	0.0076568
L ⁽⁰⁾	112		Northbound	3	95	430	51%	1%	23%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1166714	1.3612459	0.0013239	
M ^(t)	84	Lin Cheung Rd	Southbound	3	56	750	52%	1%	25%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1160938	1.3369325	0.0013544	0.0155975
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	605	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1163359	1.3867050	0.0010949	0.0130504
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	1145	25%	2%	56%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1693787	1.8231642	0.0028013	0.0301531
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	635	26%	2%	54%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1677059	1.8604224	0.0015382	0.0170642
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	3195	51%	0%	16%	0%	2%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0617470	1.4910877	0.1079569	2.6069805
	A		Bothbound				40%	0%	30%	0%	0%	0%	0%	10%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1735904	1.4895423	0.0009740	
	В		Bothbound		301	95	37%	0%	26%	0%	5%	0%	5%	5%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.2030667	1.9541474	0.0019345	
	С		Bothbound		521		29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2370515	2.3486783	0.0012007	0.0118967
X ⁽ⁱ⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1655	34%	1%	11%	1%	7%	5%	13%	11%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1416055	2.8319594	0.0117179	0.2343446

PA | Medical Representation of Listancians and Listancians and Physics | Medical Representation | 1881 | 1965 | 184% | 1976 | 19

		20%																					
				Calculated by th (extracted from to of Road Works a Kowloon)	the approved EIA at West	Volume source by number of po involved	ortal/opening	divided by are			e												
				Emission Ra		Emission Ra			Rate - Port	al/													
				Opening		Portal/Ope	ning	Opening															
				(g/s)		(g/s) - Volun	ne source	(g/m2-s) -	Area sourc	e													
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula												
		Portal/ opening	ı								from												
		ID.	Source Type								Scenario	Emission calculation		Extracted from the ap	proved EIA of F	Road Works	at West	Kowloon)					
		A	Area	0.00012357			-		3.06277E-06		1	0.2 x Tunnel Section A											
80.935 0.87	73	В	Area	0.00244106			-		8.6921E-05		1	2/3 x (0.8 x Tunnel Se	ction A +	1 x Tunnel Section B)	+ 1/3 x (30.93	15 / 50) x (0.8 x Tun	nnel Section A	1 + 1 x	Tunnel Sec	tion B)		
		CE		0.00098594			-	1.55193E-06	1.8264E-05	635.3	1	0.2 x Tunnel Section (C + 0.2 x (1/3 x (19.065 / 50) x	(0.8 x Tunnel	Section A +	· 1 x Tuni	nel Section B))+0).2 x Tunnel	Section E		
		D1-D7		0.00251884	0.0306652	0.000239889	0.002920491			-	1												
		D8-D14	Volume			0.000119945	0.001460245			-	1	0.8 x Tunnel Section () + 0.8 x (1/3 x (19.065 / 50 x)	0.8 x Tunnel S	ection A +	1 x Tunne	el Section B)) + 1)	x Tunnel Sec	ction D		
		F		0.00139148			-	5.01435E-06	5.82932E-05	277.5	1	0.2 x 0.8 x Tunnel Sec	ction E + 0).2 x Tunnel Section F									
		11-14		0.02498368	0.2780512		0.04634187	-	-	-	1			el Section G + 1 x Tuni									
		15-18	Volume			0.002081974	0.023170935	-		-		Road A + Tunnel Sec											
		JKO1		0.00168583		-	-	1.09278E-06	1.18684E-05	1542.7	1			1 - 0.14) x Tunnel Se									
		L1-L5		0.00374951	0.043567	0.000499934	0.00580893	-	-	-	4			4 x Tunnel Section J +									
		L6-L10	Volume			0.000249967	0.002904465			-	1	+ Tunnel Section Inter	rnai Hoad (C) x (traffic flow of Tu	innel Section L.	/ (traffic fic	w of Tun	inel Section I	+ tram	IC TIOW OT TU	nnei Sectio	on L + tran	TIC TIOW O
		M1-M4		0.00122464	0.014324	0.000204106	0.002387332	-	-	-	4	05 (7 10 1		10 / 10									
		M5-M8	Volume	0.00100101	0.011001	0.000102053	0.001193666			-	1	0.5 x (Tunnel Section	M + Tunne	el Section N)									
		N1-N4		0.00122464	0.014324	0.000204106	0.002387332			-	4	0.5 x (Tunnel Section		10 / 10									
		N5-N8 P1-P4	Volume	0.00470516	0.0500004	0.000102053	0.001193666	-	-	-	1	1 v Tunnel Section B	. nevne	6 x Tunnel Section J -	. 00 v 000 v T	unnal Cantie	n V . 0	0 0 / 1/2 0 / 1	unnol	Continu Into	rnol Bood	A . Tunno	Conting
		P1-P4 P5-P8		0.00470516	0.0503831		0.00839719			-	4.	Turnel Castina Inter	+ U.O X U. /	C) x (traffic flow of 7	F U.O X U.OO X 11	D / / to affice d	JII N + U.	0 X (1/3 X (1	uniner.	Gection inte	mai noau	A + Turrie	-46 - 41
			Volume	0.10795692	0.000000	0.000392096		-	-	-	1	+ Turinei Section Inter	nai Hoad (C) x (trailic llow of	runner Section i	P/(tranici	IOW OI TU	Jimei Section	ı + ıra	IIIC HOW OI I	unnei Sec	tion L + tra	AHIC HOW
		W1-W8 W9-W16		0.10/95692	2.0069805	0.00899641	0.217248371	-	-	-	4.	1 x Tunnel W											
		W9-W16 701-710	Volume	0.01171785	0.2242446	0.004498205	0.108624185	-	-	-	1	I X TUTILIEI VV											
		701-710	Volume	0.011/1/85	0.2343446	0.00078119	0.015622976	-	-	-	1	1 x Tunnel X											
		/11-/20 BaseA	Volume	0.00136975	0.0120560	0.000390595	0.00/811488		-	-	-	1/3 x Basement roads	ARC										
% of Servino	. Dal	BaseC	voiumė	0.00136975			0.012956888					1/3 x Basement roads											
7₀ of Serving	Out of 500m	801-820	Volume	0.00136975	0.0129569	0.001369/53	U.U12956888				1	1/3 X Basement roads	M,D,C	1									
	Out of 500m	901-903	volund								-	1 x Tunnel Z	-				_		_				
	Out of 500m	901-903	Volume			-	-	-	_	_	- .	1 x runner Z	-				_		_				
	Out of 500m	904-906 V1	Point								from 1-4			+ + + - + - + - + + + + + + + + + + + +			_						
	Out or Sount	v I	r on a								nom 1-4	-											-

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr12-13)	
---	--

																								Rate		Emission	
														Hr 12-13 (201	5 EIA_19-12-2	011.xls)								(g/km-		(g/s	
																								PM	NOx	PM	NOx
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total				
A ⁽¹⁾	73		Northbound	3	73	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0006219	0.0075405
B ⁽¹⁾	73		Northbound	3		275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0023172	0.0280961
C ⁽ⁱ⁾	73		Northbound	3		275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0009371	0.0113624
Div)	73		Northbound	3		275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0014993	0.0181798
E ⁽ⁱ⁾	72		Southbound	3		620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1148323	1.3586054	0.0030654	0.0362672
F ^(r)	72		Southbound	3		620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1148323	1.3586054	0.0034016	0.0402449
G**	118		Southbound	3		720	52%	1%	23%	1%	2%		6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1132003	1.3205377	0.0027394	0.0319570
H ^o	119		Eastbound	3	173	1145	27%	1%	54%	0%	1%		4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1655421	1.7884494	0.0091087	0.0984069
P'			Eastbound	3			28%		53%	0%	1%		4%	3%	1%	0%	0%	0%	1%	1%	1%	1%	100%	0.1661145		0.0030436	
J ⁽¹⁾	116		Westbound	3		365	29%	1%	52%	0%	1%	1%	4%	1%	1%	0%	3%	0%	1%	1%	1%	1%	100%	0.1664142	1.7891971	0.0032733	0.0351925
K**	114		Southbound				64%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0981950	0.8909022	0.0002850	0.0025861
L ₀ /	112		Northbound	3		415	51%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1185754	1.3887175	0.0012986	0.0152084
M ^e	84		Southbound	3		620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1172912	1.3848692	0.0011312	0.0133563
N ⁽ⁱ⁾	11		Northbound	3	56	590	52%	1%	24%	0%	3%	2%	6%	3%	3%	2%	1%	0%	3%	2%	0%	1%	100%	0.1173109	1.3980316	0.0010767	0.0128308
-m	111		Eastbound	3		935	27%	2%	54%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1644126	1.7735435	0.0022205	0.0239527
Pro-	110		Westbound	3		525	28%	1%	52%	0.0	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1673237	1.8281113	0.0012689	0.0138632
W ^{**}	98		Northbound	2		2710	53%	0%	16%	0%	2%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0598529	1.4669904	0.0887602	2.1755061
	A		Bothbound		404	45	44%	0%	33%	0%	0%	0%	0%	0%	0%	0%	22%	0%	0%	0%	0%	0%	100%	0.1699591	1.4821729	0.0008583	0.0074850
	R		Bothbound		301	80	38%	0%	25%	0%	6%	0%	0%	6%	U%	0%	25%	0%	0%	0%	0%	0%	100%	0.1802252	1.7106099	0.0014458	
	C		Bothbound		521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2369078	2.3433221	0.0012000	0.0118696
X"	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1635	34%	1%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1401460	2.8205301	0.0114569	0.2305783

		20%																							
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA	Volume source by number of p involved		Area source divided by are	- calculated b	oy emission ra	te														
				Emission Ra	te - Portal/	Emission R	ate -	Emission	Rate - Por	tal/															
				Opening		Portal/Ope		Opening																	
				(g/s)		(g/s) - Volu	me source	(g/m2-s) -	Area sour	ce															
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula														
		Portal/ opening ID.	Source Type								from Scenario	Emission calculation	formula (I	extracted fr	om the anni	roved EIA	of Road Wo	rks at We	st Kowloor	n)					
		A		0.00012438	0.0015081		_	2.53211E-07	3.07023E-0	6 491.2	1	0.2 x Tunnel Section A								,					_
80.935 0.87	3	В		0.00245693		-	-	7.1861E-06	8.71328E-0	5 341.9	1	2/3 x (0.8 x Tunnel Se													_
		CE	Area	0.00087204	0.0103935	-	-	1.37265E-06	1.63599E-0	5 635.3	1	0.2 x Tunnel Section C	+ 0.2 x (1/3 x (19.0	165 / 50) x i	0.8 x Tun	nel Section	A + 1 x Tu	unnel Secti	on B)) + (0.2 x Tunr	nel Section	E		_
		D1-D7		0.00253521	0.0307399	0.000241448	0.002927607	-	-	-															
		D8-D14	Volume			0.000120724	0.001463804			-	1	0.8 x Tunnel Section C				0.8 x Tunne	el Section A	4 + 1 x Tun	nel Section	n B)) + 1	x Tunnel S	Section D			
		F		0.00117078		-	-	4.21902E-06	4.99162E-0	5 277.5	1	0.2 x 0.8 x Tunnel Sec	tion $E + 0$	2 x Tunnel	Section F										
		11-14		0.02053802	0.2286662		0.038111033		-	-	1	1 x Tunnel Section I +													
		15-18	Volume	0.00100100	0.011170	0.001711501	0.019055517			-		Road A + Tunnel Sect	ion Interna	I Hoad B +	Tunnel Sec	tion Interna	al Hoad C)	x (traffic	flow of Tun	nel Section	n I / (traff	ic flow of 1	unnel Secti	on I + traffic	2 flo
		JKO1		0.00138139			0.005073366	8.95434E-07	9.3855E-06	1542.7	1	0.2 x Tunnel Section J 1 x Tunnel Section L +	+ 0.2 X (1 - 0.14) X	Tunnel Sec	100 K + U.	2 X Tunnel	Section O	+ 0.2 X 1/3	x (Tunnel	Section I	nternal Hoa	d A + Tunn	lei Section in	nter
		L1-L5 L6-L10	Volume	0.00333135	0.0380502	0.00044418	0.005073366	-	-	-	4.	+ Tunnel Section Inter													
		M1-M4		0.00110393	0.0120026		0.002536683		-	-	-	+ Turiner Section mer	ilai nuau v) X (II alliic	now or run	i lei Sectioi	IIL/ (u aiii	C HOW OF T	uririer secti	10111 + 11 411	IIC HOW OI	Turriner Sec	UUII L + U d	IIIC IIOW OI I	Tun
		MI-M4 M5-M8	Volume	0.00110393	0.0130936	9 19943F-05	0.00218226		-	-	٠,	0.5 x (Tunnel Section	M . Tunne	Section N											
		N1-N4		0.00110393	0.0130936		0.00109113			E	-	U.S X (Turrier Section	VI T TUTTIC	OCCUONT	,										_
		N5-N8	Volume	0.00110000	0.0100000	9 19943F-05	0.00109113		-	_	١,	0.5 x (Tunnel Section	M + Tunne	Section N)										
		P1-P4		0.00383839	0.0393342	0.000639732	0.006555703		-	-	T	1 x Tunnel Section P +				0.8 x 0.86	x Tunnel S	ection K +	0.8 x (1/3	x (Tunnel	Section I	nternal Roa	d A + Tunn	el Section In	nter
		P5-P8	Volume			0.000319866	0.003277852			-	1	+ Tunnel Section Inter	nal Road (C) x (traff	ic flow of Tu	nnel Section	on P / (tra	ffic flow of	Tunnel Sec	ction I + tra	affic flow o	of Tunnel Se	ection L + t	raffic flow of	f Τι
		W1-W8		0.08876023	2.1755061	0.007396686	0.181292173		-	-															_
		W9-W16	Volume			0.003698343	0.090646086	-	-	-	1	1 x Tunnel W													
		701-710		0.01145693	0.2305783		0.015371889	-	-	-	1														
		711-720	Volume			0.000381898	0.007685945	-	-	-	-	1 x Tunnel X													
		BaseA	Volume	0.00116803		0.001168035	0.011025814					1/3 x Basement roads													
% of Serving		BaseC		0.00116803	0.0110258	0.001168035	0.011025814					1/3 x Basement roads	A,B,C												
	Out of 500m	801-820	Volume			-	-		-	-	1	1 x Tunnel Y													
	Out of 500m	901-903				-	-		-	-	4	1 x Tunnel Z				ļ							<u> </u>		_
	Out of 500m	904-906	Volume			-	-	-	-	-	1			1	1	-						1	-	1	-
	Out of 500m	V1	Point								from 1-4	-		1	-							1	-	-	-

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr13-14)

														Hr 13-14 (201	5 EIA_19-12-20	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A19	73		Northbound	3	73	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0008675	0.0103001
B ⁽¹⁾	73		Northbound	3		355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0032324	0.0383784
C ⁽ⁱ⁾	73		Northbound	3	110	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0013072	0.0155207
D19	73		Northbound	3		355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0020915	0.0248331
E.	72		Southbound	3		620	54%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1107060	1.2881744	0.0029552	
F"	/2		Southbound	3		620	54%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1107060	1.2881744	0.0032794	0.0381586
G ^r	118		Southbound	3	121	705	53%	1%	23%	1%	3%	1%	6%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1124899	1.3189998	0.0026655	
H	119		Eastbound	3	173	1110	29%	1%	53%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1614658	1.6962797	0.0086129	0.0904824
T.			Eastbound	3		335	30%	1%	52%	0%	1%		4%	3%	1%	0%	U%	0%	0%	1%	1%	1%	10070	0.1581962	1.6706572	0.0028559	
Jin	116		Westbound	3		375	31%	1%	51%	0%	1%		4%	3%	1%	0%	3%	0%	0%	1%	1%	1%	100%	0.1579677	1.6500713	0.0031923	
- 40	114		Southbound	3			63%	0%	32%		0%	0.00	5%	0%	0%	2%	1%	0%	0%	0%	0%	0%	100%	0.1013909	0.9325919	0.0002542	
E-11	112		Northbound	3		470	53%	1%	23%	0%	2%	2%	5%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1127223	1.2877637	0.0013981	0.0159718
M1.	84		Southbound	3		585	53%	1%	24%	0%	3%	2%	5%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1111367	1.2941094	0.0010113	0.0117764
IN.	//		Northbound	3		715 890	52%	176	23%	9.10	3%	276	0%	4%	2%	2%	176	U%	2%	176	U76	176	100%	0.1144628	1.3362032		
DIII	111		Eastbound Westbound	3		505	27% 28%	2%	53%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1642927	1.7922519	0.0021121	0.0230404
IAI ⁽²⁾	110		Northbound	3		2770	53%	176	15%	0%	276	276	6%	4%	176	176	1%	076	176	176	2%	2%	100%		1.8466717	0.0012234	0.0134704 2.1818415
**	98		Bothbound	2	404		43%	076	29%	0%	3%	276	0%	476	376	276	29%	0%	0%	276	376	0%	100%	0.1785564	1.6120202	0.0007013	0.0063317
	n		Bothbound	*	361	00	38%	0.76	29%	0%	076	0.00	076	0.70	076	070	23%	0.76	076	0.70	076	0.76	100%	0.1785564	1.5729374	0.0007013	0.0063317
	D C		Bothbound	4	361 521	30	38%	U76	3176	0%	U76	U76	0%	0%	U% 09/	U76	50%	0%	0%	0%	0%	09/	100%	0.1805212	2.1353673	0.0011766	0.0102525
V ²	144		Westbound	9	180	1620	34%	0.76	17.70	0.70	076	407	12%	110/	076	070	0076	0.76	076	10%	0.76	0.76	100%	0.2189680	2.7864835	0.0009507	0.0092711
^	144	reprovision of Gascoigne Hd Flyover	vvestoound	3	100	1020	34%	U%	1176	176	/%	4%	1270	1176	2%	170	176	U76	176	10%	076	176	100%	U. 139/600	2.7864835	0.0113206	0.225/052

		20%																							
				Calculated by the (extracted from to of Road Works a Kowloon)	ne approved EIA	Volume source by number of p involved	- Anti-	Area source - divided by are	- calculated by	emission rat	e														
				Emission Ra	e - Portal/	Emission R	ate -	Emission	Rate - Port	al/	Ī														
				Opening		Portal/Ope		Opening																	
				(g/s)		(g/s) - Volu		(g/m2-s) -	Area sourc	e															
		Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula														
		ID.	Source Type								Scenario	Emission calculation for	rmula (I	Extracted fr	om the appr	oved EIA	of Road Wo	rks at Wes	t Kowloor	n)					
		A	Area	0.0001735				3.53221E-07	4.19385E-06	491.2	1	0.2 x Tunnel Section A													_
80.935 0.873	3	В		0.00342734		-			0.000119021		1	2/3 x (0.8 x Tunnel Sec													
		CE		0.0009523		-	-	1.49897E-06	1.75769E-05	635.3	1	0.2 x Tunnel Section C	+ 0.2 x (1/3 x (19.0	65 / 50) x (0.8 x Tunr	nel Section	A + 1 x Tu	nnel Section	on B)) + I	0.2 x Tunr	nel Section	E		
		D1-D7		0.00353653	0.0419898		0.003999031		-	-	1														
		D8-D14	Volume			0.000168406	0.001999515	-	-		1	0.8 x Tunnel Section C).8 x Tunne	el Section A	4 + 1 x Tun	nel Section	n B)) + 1	x Tunnel S	Section D			
		F		0.00112871		-		4.06742E-06	4.73285E-05	277.5	1	0.2 x 0.8 x Tunnel Sect	on E + 0.	2 x Tunnel	Section F										
		11-14		0.01951967	0.2136215		0.035603583		-	-	1	1 x Tunnel Section I + 1													
		15-18	Volume		0.0101000	0.001626639	0.017801791		-	-		Road A + Tunnel Section	n Interna	I Hoad B +	Tunnel Sect	tion Interna	al Hoad C)	x (traffic	llow of Tun	nel Section	n I / (traff	ic flow of I	unnel Sect	on I + traffic	2 11
		JKO1		0.00129316		-		8.38247E-07	8.68797E-06	1542.7	1	0.2 x Tunnel Section J 1 x Tunnel Section L +	+ 0.2 X (1 - U.14) X	Tunnel Sect	ion K + 0.2	2 x Tunnel	Section U	+ 0.2 x 1/3	x (Tunnel	Section I	nternal Hoa	ad A + Tuni	nel Section II	nte
		L1-L5 L6-L10		0.0033292	0.03/1131		0.004948418			-	.	+ Tunnel Section Intern													
		M1-M4	Volume	0.00114221	0.040040	0.000221947	0.0024/4209		-	-	1	+ Turinei Section Intern	ai Hoad () x (trailic	now or Turn	nei Sectior	TL/(traili	C HOW OF TE	innei Secii	ion i + trail	IC HOW OI	runner Sec	CUON L + US	HIIC HOW OF	Iur
		M1-M4 M5-M8	Volume	0.00114221	0.013319	9.51844F-05	0.002219829		-	-	₹.	0.5 x (Tunnel Section M	I . Tunno	I Continu M											
		N1-N4		0.00114221	0.013310	0.000190369	0.001109914	-	-	-		U.S X (TUITIEL SECTION IN	i + Turine	I SECTION IN											_
		N5-N8	Volume	0.00114221	0.013313	9.51844E-05	0.002219029				┪,	0.5 x (Tunnel Section N	1 ± Tunne	Section N											
		P1-P4		0.00363	0.0370785		0.006179746		-	-		1 x Tunnel Section P +				0.8 x 0.86	x Tunnel Se	ection K +	0.8 x (1/3	x (Tunnel	Section In	nternal Roa	d A + Tunr	el Section In	nte
		P5-P8	Volume			0.0003025	0.003089873		-	-	1	+ Tunnel Section Intern													
		W1-W8		0.08836937	2.1818415		0.181820121	-	-	-			,	, (000.											-
		W9-W16	Volume			0.003682057	0.090910061		-	-	1	1 x Tunnel W													
		701-710		0.01132056	0.2257052		0.015047011		-	-	1														
		711-720	Volume			0.000377352	0.007523506		-	-	-	1 x Tunnel X													
		BaseA		0.00094289		0.000942888	0.008618401					1/3 x Basement roads A													
% of Serving		BaseC		0.00094289	0.0086184	0.000942888	0.008618401					1/3 x Basement roads A	I,B,C												
	Out of 500m		Volume			-	-	-	-	-	1	1 x Tunnel Y													
	Out of 500m	901-903				-	-	-	-	-	1	1 x Tunnel Z													\perp
	Out of 500m	904-906	Volume			-	-	-	-	-	1											<u> </u>	1		_
	Out of 500m	V1	Point								from 1-4	-												_	_

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr14-15)

														Hr 14-15 (201	5 EIA_19-12-20	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(f)	73		Northbound	3	73	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0006521	0.0077959
B ^(l)	73		Northbound	3		290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0024298	0.0290476
CIII	73		Northbound	3	110	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0009826	0.0117472
D ₍₁₎	73		Northbound	3		290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0015722	0.0187955
E ⁽ⁱ⁾	72		Southbound	3			55%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1097523	1.2790129	0.0029770	0.0346932
F ⁽¹⁾	72		Southbound	3			55%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1097523	1.2790129	0.0033035	0.0384983
G ^(r)	118		Southbound	3		690	54%	1%	22%	1%	3%	1%	5%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1105299	1.2991527	0.0025634	0.0301295
H ^(t)	119		Eastbound	3	173	1090	31%	1%	51%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1582427	1.6918077	0.0082888	0.0886178
p)			Eastbound	3		335	33%	1%	49%	0%	1%		4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1515504	1.6320511	0.0027359	0.0294631
J ⁽¹⁾	116		Westbound	3		390	33%	1%	49%	0%	1%		4%	3%	1%	0%	3%	0%	0%	1%	1%	1%	100%	0.1522437	1.6011564	0.0031997	0.0336510
K ⁽ⁱ⁾	114		Southbound	3	50	95	63%		32%	0%	0%	0.00	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1017280	0.9382234	0.0002550	0.0023521
L ⁽⁰⁾	112		Northbound	3		365	52%	1%	22%	0%	3%	3%	5%	4%	3%	1%	1%	0%	1%	1%	0%	1%	100%	0.1116124	1.2940595	0.0010750	
M ^(r)	84		Southbound	3		570	54%	1%	23%	0%	3%	2%	5%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1106405	1.3065727	0.0009810	0.0115849
N ^(t)	77		Northbound	3		550	53%	1%	23%	0%	3%		5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1124187	1.3362689	0.0009618	0.0114325
0"	111		Eastbound	3		860	31%	1%	51%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1574999	1.6848836	0.0019565	
P ¹⁰	110		Westbound	3		500	29%	1%	50%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1651335	1.8474785	0.0011926	0.0133429
W ^(c)	98		Northbound	2			55%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%		1.4044621	0.1047235	2.5977088
	A		Bothbound		404	40	50%		25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1545602	1.4016274	0.0006938	0.0062917
	В		Bothbound		361	70	43%	0%	29%	0%	0%	0%	0%	7%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.1658985	1.4511260	0.0011645	
	C		Bothbound		521	30	33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2139628	2.1022106	0.0009290	0.0091271
X.,	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1930	35%	1%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	4%	1%	100%	0.1388937	2.7873581	0.0134032	0.2689801

		20%									_															Т
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA	Volume source by number of p involved		Area source divided by an		y emission rat	=															
				Emission Ra	te - Portal/	Emission R	ate -	Emission	Rate - Port	al/	Ī															
				Opening		Portal/ Ope		Opening																		
				(g/s)		(g/s) - Volu																				
		Portal/ opening	Source Type	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from Scenario	Emission calcul	lation for	rmula (Fs	tracted fro	um the anni	roved FIA	of Road W	arks at We	et Kowloo	m)					
				0.00013042	0.0015592		-	2.65518E-07	3.17421E-06	491.2	1	0.2 x Tunnel Se	ction A	11111111 (12)	in acteum.	ти спе прр	orca Dir	or reona iii	orac, at the	J. 140 11 10 0	***)					-
90.935 0.873	3	В		0.00257635			-	7.53538E-06	9.00839E-05	341.9	1	2/3 x (0.8 x Tuni	nel Section													_
		CE	Area	0.00086696	0.010185		-	1.36465E-06	1.60318E-05	635.3	1	0.2 x Tunnel Se	ction C +	- 0.2 x (1	/3 x (19.06	35 / 50) x i	0.8 x Tun	nel Section	A + 1 x Ti	unnel Sect	ion B)) +	- 0.2 x Tuni	nel Section	ιE		_
		D1-D7		0.00265843	0.031781	0.000253184	0.003026761	-	-	-																
		D8-D14	Volume			0.000126592	0.00151338	-	-	-	1	0.8 x Tunnel Se					0.8 x Tunne	el Section A	4 + 1 x Tur	nel Sectio	n B))+	1 x Tunnel	Section D			
		F		0.00113703		-	-	4.09742E-06	4.77498E-05	277.5	1	0.2 x 0.8 x Tunn	nel Sectio	n E + 0.2	x Tunnel S	Section F										Ξ
		11-14		0.01897423	0.2098733		0.03497888		-	-	1	1 x Tunnel Secti														
			Volume			0.001581186	0.01748944	-	-	-		Road A + Tunne														
				0.00126091		-			8.44477E-06	1542.7	1	0.2 x Tunnel Se														
		L1-L5		0.00288588	0.0324274		0.004323649		-	-	4.	1 x Tunnel Secti + Tunnel Sectio	ION L + U.	.8 X U.24	x runner 5	SCHOOL 2 +	U.8 X U.62	x Turriei Si	ection O +	U.8 X (1/3	x (Tunne	er Section I	Turnal Ploa	AC A + TUN	iei Section II	of I
		L6-L10	Volume	0.00097141	0.0445007	0.000192392	0.002161825		-	-	1	+ Turinei Sectio	n interna	II HOAD C	x (trailic	now or Turi	nei Sectioi	it/(trail	C HOW OF I	unnei Sec	nou i + ira	IIIC IIOW OI	Turriner Se	CUON L + II	arric now or	_
		M1-M4 M5-M8	Volume	0.00097141	0.0115087	8.09507F-05	0.001918122	-	-	-	+.	0.5 x (Tunnel Se	action M	Tunnel	Continu NI											
		N1-N4		0.00097141	0.0115087	0.000161901	0.000959061		-	-		U.S X (Turriner Se	BCIIOII IVI -	+ runner	Section in											_
		N5-N8	Volume	0.00037141	0.0113007	8.09507E-05	0.000959061	_		E	1,	0.5 x (Tunnel Se	ection M.	⊥ Tunnel	Section M											
		P1-P4		0.00362318	0.0371595		0.006193255		_	-		1 x Tunnel Secti	ion P + 0	.8 x 0.76	x Tunnel S	ection J +	0.8 x 0.86	x Tunnel S	ection K +	0.8 x (1/3	x (Tunne	el Section I	nternal Roa	ad A + Tun	nel Section I	In
		P5-P8	Volume			0.000301931	0.003096627	-	_	-	1	+ Tunnel Sectio														
		W1-W8		0.10472346	2.5977088	0.008726955	0.216475731		-	-					, , , ,											-
		W9-W16	Volume			0.004363478	0.108237866	-	-	-	1	1 x Tunnel W														
		701-710		0.01340324	0.2689801	0.000893549	0.017932004		-	-	1															
		711-720	Volume			0.000446775	0.008966002		-	-	-	1 x Tunnel X														
				0.00092909		0.000929091	0.008534982					1/3 x Basement														
% of Serving		BaseC		0.00092909	0.008535	0.000929091	0.008534982					1/3 x Basement	roads A,	,B,C												
	Out of 500m		Volume			-	-	-	-	-	1	1 x Tunnel Y									1	1	1			
	Out of 500m	901-903				-	-	-	-	-	1	1 x Tunnel Z					ļ				1	1	1			_
	Out of 500m	904-906	Volume				-	-	-	-	1						-				1		1			_
	Out of 500m	V1	Point								from 1-4	-									1	-	-		-	_

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr15-16)	

													H	r 15-16 (2015	EIA_19-12-201	1.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr) PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0008315	0.0100702
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0030981	0.0375219
C(I)	73	Lin Cheung Rd (underpass)	Northbound	3	110	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0012529	0.0151743
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0020047	0.0242789
E(I)	72	Lin Cheung Rd (underpass)	Southbound	3	155	640	55%	1%	22%	1%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1004353	1.1996396	0.0027675	0.0330567
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	640	55%	1%	22%	1%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	196	100%	0.1004353	1.1996396	0.0030711	0.0366823
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	675	54%	1%	22%	1%	3%	1%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1021868	1.2116609	0.0023184	0.0274896
H ^(l)	119	Austin Rd W (depressed)	Eastbound	3	173	1280	33%	1%	49%	0%	2%	2%	4%	3%	1%	1%	0%	0%	0%	2%	1%	2%	100%	0.1458971	1.5789733	0.0089743	0.0971244
I ⁽¹⁾	117	Austin Rd W (depressed)	Eastbound	3	194	400	35%	1%	48%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	1%	1%	100%	0.1419147	1.5273814	0.0030591	0.0329236
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	500	35%	1%	45%	0%	2%	2%	4%	2%	1%	1%	3%	0%	0%	2%	1%	196	100%	0.1417755	1.5644763	0.0038201	0.0421539
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	95	63%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970331	0.9105323	0.0002433	0.0022827
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	420	55%	1%	23%	0%	2%	2%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1006229	1.1568494	0.0011152	0.0128217
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	560	54%	1%	23%	0%	3%	2%	4%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1030646	1.2325114	0.0008978	0.0107365
N ^(I)	77	Lin Cheung Rd	Northbound	3	56	665	54%	1%	23%	0%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1049602	1.2438549	0.0010858	0.0128670
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	990	33%	2%	49%	0%	2%	2%	5%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1474459	1.5816576	0.0021085	0.0226177
P ⁽¹⁾		Austin Rd W (depressed)	Westbound	3	52	590	33%	1%	47%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1468227	1.6763221	0.0012513	0.0142860
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	3445	55%	0%	14%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0555149	1.3914694	0.1046557	2.6231710
	A	Internal Rd A	Bothbound	4	404	50	50%	0%	30%	0%	0%	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1547026	1.3396760	0.0008681	0.0075171
	В	Internal Rd B	Bothbound	4	361	90	39%	0%	28%	0%	6%	0%	0%	6%	0%	0%	22%	0%	0%	0%	0%	0%	100%	0.1760864	1.6307366	0.0015892	0.0147174
	С	Internal Rd C	Bothbound	4	521	45	33%	0%	22%	0%	0%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	100%	0.2116818	2.0191565	0.0013786	0.0131498
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover		3	180	1900	35%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	1%	100%	0.1297838	2.6714914	0.0123295	0.2537917

Note: (ii): Turnel name is based on Portal & top opening of underpass in EIA of Road Works in West Kowloon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutants multiplied by traffic flow of each roads.

		20%	6									
				Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA	Volume source by number of p involved		Area source - c divided by area		nission rate		
				Emission Ra	te - Portal/	Emission R	ate -					
				Opening		Portal/ Ope		Emission Ra		Opening		
				(g/s)		(g/s) - Volu						
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
		Portal/ opening									from Scenario	The state of the s
		ID.	Source Type Area	0.0001663	0.000014			3.38549E-07	4.10025E-06	404.0	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0.873		A D		0.00328497		-	-	9.60799E-06	0.000116365			0.2.2 x Turning Section A + 1 x Turnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Turnel Section A + 1 x Turnel Section B)
00.000		CF		0.00089975		_		1.41627E-06	1.70074E-05		1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
		D1-D7		0.00338963		0.000322822	0.003909783	-	-			
		D8-D14	Volume			0.000161411	0.001954892	-	-		1	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F		0.00105703				3.8091E-06	4.54974E-05	277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
		11-14		0.01954502	0.2179241		0.036320683	-		-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x 0.38 x Tunnel Section C + 0.8 x 0.38 x 0.38 x Tunnel Section C + 0.8 x 0.38 x 0.3
		15-18	Volume			0.001628752		-	-			Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow
		JKO1		0.00148327		-		9.61476E-07	1.01808E-05	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal 1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Roa
		L1-L5 L6-L10	Volume	0.00319918	0.0363411	0.000426558	0.004845478	-	-			Tunnel Section L+ to 3 x x x x x x x x x x x x x x x x x x
		M1-M4		0.00099178	0.0110010		0.002422739	-	-	-	-	Torrier Section Internal road C) X (traine now or runner Section E / traine now or runner Section E + traine now or runner
		M1-M4 M5-M8	Volume	0.00099176	0.0110016	8.26485E-05	0.001900901			-	٠,	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00099178	0.0118018		0.001966961	_				S. A. Tallion Containing Training Containing
		N5-N8	Volume				0.000983481	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00416923	0.0440254	0.000694871	0.007337562	-		-		1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		P5-P8	Volume			0.000347436	0.003668781	1	-	-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of
		W1-W8		0.10465568	2.623171		0.218597581	-		-	1	
		W9-W16	Volume		0.000017	0.004360654	0.109298791	-	-	-	1	1 x Tunnel W
		701-710	-	0.01232946	0.2537917	0.000821964	0.016919446	-	-	-	1	1 x Tunnel X
		711-720 BaseA	Volume Volume	0.0012786	0.0117947		0.008459723	-	-		-	11x Tunner x 1/3 x Basement roads A.B.C
% of Serving Rd		BaseC		0.0012786			0.011794742		-	_	_	173 x Basement roads A,B,C
	(500m	801-820	Volume	0.0012700	0.0117347			_			1	To X classification Totals A, B, C
	(500m	901-903				_	-	_	-	_		1x Tunnel Z
	f 500m	904-906	Volume			-		-		-	1	
Out of	f 500m	V1	Point								from 1-4	

Annendix 3.18b - Emission R		

													F	r 16-17 (2015 i	EIA_19-12-201	1.xls)								Rate (g/km-		Emission (g/s	s)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC :	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0009323	0.0117771
B ^(f)	73		Northbound	3	272		54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0034736	0.0438818
C _(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0014048	
D ^(l)	73		Northbound	3	176			1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0022476	
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155		55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0994555	1.1909776	0.0027406	0.0328180
F ⁽¹⁾	72		Southbound	3	172			1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0994555	1.1909776	0.0030411	0.0364174
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121		55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.1023337	1.2244056	0.0022529	0.0269556
H ^(t)	119		Eastbound	3	173		35%	1%	47%	0%	2%	2%	4%	3%	1%	1%	0%	0%	0%	2%	1%	2%	100%	0.1410136	1.5105051	0.0085045	0.0910981
I ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3	194		38%	1%	46%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1378342	1.3635899	0.0029711	0.0293929
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	520	36%	1%	43%	0%	2%	2%	5%	3%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1416634	1.5803407	0.0039697	0.0442847
K ⁽ⁱ⁾	114		Southbound	3	95	75	67%	0%	33%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0772351	0.6202375	0.0001529	0.0012276
L ^(r)	112		Northbound	3	95		55%	1%	22%	0%	3%	2%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1000858	1.1605299	0.0012678	0.0147000
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56		55%	1%	23%	0%	3%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1033641	1.2487185	0.0008683	0.0104892
N ⁽¹⁾	77		Northbound	3	56		55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.1017174	1.2006051	0.0012183	0.0143806
0"	111	Austin Rd W (depressed)	Eastbound	3	52		36%	1%	46%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1396371	1.5234272	0.0019262	0.0210148
P ⁽¹⁾	110		Westbound	3	52		36%	1%	46%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1435693	1.5721295	0.0011924	0.0130574
W ^{c,}	98		Northbound	2	1970		56%	0%	14%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0543383	1.3756115	0.1043703	2.6422058
	A		Bothbound	4	404		50%	0%	30%	0%	0%	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1521985	1.3253152	0.0008540	0.0074365
	В		Bothbound	4	361	85	41%	0%	29%	0%	0%	0%	0%	6%	0%	0%	24%	0%	0%	0%	0%	0%		0.1726185	1.5172152	0.0014713	
	С	Internal Rd C	Bothbound	4	521	45	33%	0%	22%	0%	0%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	100%	0.2061317	1.9849207	0.0013424	0.0129268
X"	144	Reprovision of Gascoigne Rd Flyover		3	180	1885	36%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	1%	100%	0.1271305	2.6322257	0.0119821	0.2480873

PA | Medical Properties | 1944 | Medical Properties | Medical Properties | Medical | 1940 | 1980 | 1985 | 1985 | 1976 | 1776 | 1

	20%										
			Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA it West	Volume source by number of po involved	rtal/opening	Area source - c divided by area	alculated by em	ission rate		
			Emission Ra		Emission Ra						
			Opening		Portal/Oper		Emission Ra		Opening		
			(g/s)		(g/s) - Volun		(g/m2-s) - A	rea source			
			PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
	Portal/ opening									from	The state of the s
	ID.	Source Type	0.00018645	0.0000554			3 79586F-07	4.79524E-06	491.2	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0.873	A D		0.00368316		-	-	3.79586E-07 1.07726E-05	4.79524E-06 0.000136088	491.2 341.9	1	U.2.x furnier Section A 12/3 x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
80.935 0.873			0.00093633		-	-	1.47383E-06	1.80511E-05	635.3		23 X (U.S. X tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section B)
	D1-D7		0.00380051			0.004572485	1.47303E-00	1.80011E-03	030.3		0.2 x Tullifer decision 0 + 0.2 x 1/3 x 13.0007 307 x 0.6 x Tullifer decision 2 + 1 x Tullifer decision 2) + 0.2 x Tullifer decision 2
		Volume	0.00000001		0.000180977	0.002286243	_	-	-	1,	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F		0.00104671				3.77194E-06	4.51689E-05	277.5	1	0.2 x 0.8 x Tunnel Section F + 0.2 x Tunnel Section F
	11-14		0.0187912		0.003131866	0.034456414	_	-		1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section I
	15-18	Volume			0.001565933	0.017228207	-	-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow
	JKO1			0.0154907	-		9.39909E-07	1.00413E-05	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	L1-L5		0.00330801	0.0374449	0.000441068	0.004992647	-	-	-		1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	L6-L10	Volume			0.000220534	0.002496324	-	-	-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow
	M1-M4		0.0010433	0.0124349		0.002072485	-		-	1	
	M5-M8	Volume			8.6942E-05	0.001036242	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4		0.0010433	0.0124349		0.002072485	-	-	-	4	AS (7) 10 (1) 17 10 (1)
	N5-N8 P1-P4	Volume	0.00409771	0.0400004	8.6942E-05	0.001036242	-			1	0.5 x (Tunnel Section M + Tunnel Section N) 11 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Road A + Tunn
	P5-P8	Volume	0.00409771	0.0432331	0.000341476	0.007215521	-	-	-	┧,	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow o
	W1-W8		0.10437029	2 6/22058		0.00300776		_	-		Tallier Section file that Fload O / X (Bartier flow of Tallier Section 1 / 1 Bartier flow of Tallier Section 1 + Bartier flow of Tallier Section 1 + Bartier flow of Tallier Section 1 - Bartier flow of Tallier flow of Tallier Section 1 - Bartier flow of Tallier flow of Tall
	W9-W16	Volume	0.10407023	2.0422030	0.004348762	0.110091909			_	1	1 x Tunnel W
	701-710		0.01198205	0.2480873		0.016539152		_	_	1	TA CONTOCT TO
	711-720	Volume			0.000399402	0.008269576	-	-	-	-	1 x Tunnel X
	BaseA	Volume	0.00122259	0.0110985	0.00122259	0.01109848					1/3 x Basement roads A,B,C
% of Serving Rd	BaseC		0.00122259	0.0110985	0.00122259	0.01109848					1/3 x Basement roads A,B,C
Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
Out of 500m	904-906	Volume			-		-			1	
Out of 500m	V1	Point								from 1-4	

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr17-18)

														Hr 17-18 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.		Bound	Road Type		Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A19	73		Northbound	3		540	55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0011107	0.0137570
Bio	73		Northbound	3			55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0041384	0.0512591
C ⁽ⁱ⁾	73		Northbound	3			55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0016736	0.0207298
D19	73		Northbound	3			55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0026778	0.0331677
E.	72		Southbound	3			55%		22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0980087	1.1726445	0.0027851	0.0333226
F"	/2		Southbound	3	172	000	55%		22%	1 /0	3%		5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0980087	1.1726445	0.0030905	0.0369774
G ^r	118		Southbound	3			55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0977730	1.1767631	0.0021361	0.0257090
H	119		Eastbound	3		1215	38%	1%	45%	0%	2%	2%	5%	3%	1%	1%	0%	0%	0%	19/	1%	1%	100%	0.1359502	1.4655880	0.0079378	0.0855720
T.			Eastbound	3		395	39%	1%	44%	0%	1%		5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	10070	0.1335938	1.3374192	0.0028437	
J. ·	116		Westbound	3		540	37%	1%	43%	0%	2%	2%	5%	3%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1382649	1.5407643	0.0040235	0.0448362
- 40	114		Southbound		90	80	65%		35%		0%	0%	5%	0%	0%	1%	1%	0%	0%	0%	0%	0%	100%	0.0813252	0.6538889	0.0001824	0.0014667
E-11	112		Northbound	3		510	57%	1%	22%	0%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0973764	1.1253061	0.0013105	
M1.	84		Southbound	3		525 860	55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1017097	1.2512942	0.0008306	0.0102189
IN.	//		Northbound	3			55%	176	22%	- 10	3%		0.70	0%	176	176	176	U%	176	176	U%	176	100%	0.0999051	1.1785577		
DIII	111		Eastbound Westbound	3		925 575	39% 39%	1%	44%	0%	2%		4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1348947	1.4432168	0.0018023	0.0192830
IAI ⁽²⁾	110		Northbound	3		4165	39% 57%	176	13%	0%	2%		4% 5%	3% 4%	176	1%	1%	0%	176	276	176	176	100%	0.1330976	1.5135493	0.1210767	
**	98		Bothbound	2	404		46%	076	31%	0%	3%	276	0%	476	2%	276	23%	076	4%	276	376	0%	100%	0.1638192	1.4453496	0.0011950	0.0105430
	<u></u>		Bothbound			105	43%	0.76	29%	0%	076	0.76	076	0.70	0.76	070	24%	076	076	0.70	0.76	0.76	100%	0.1686630	1.4954378	0.0017759	0.0105430
	D C		Bothbound			105	36%	U76	18%	0%	U% 09/	076	0%	0%	U% 09/	U76	45%	U76	0%	0%	09/	U% 09/	100%	0.1686630	1.4954378	0.0017759	0.015/45/
V ²	144		Westbound		180	1865	36%	0.76	1070	197	076	407	4007	12%	0.76	070	4070	076	076	10%	407	0.76	100%	0.1245703	2.6362905	0.0015756	0.0154471
^	144	Reprovision of Gascoigne Hd Flyover	vvestoound	3	100	1000	<i>3</i> 0%	U%	1176	176	676	476	10%	12%	176	170	176	U76	176	10%	476	U%	100%	U. 1245/U3	2.0362905	0.0116162	0.∠458341

		20%										۱									-	-	-	-
				Calculated by the (extracted from to of Road Works a Kowloon)	ne approved EIA t West	Volume source by number of po involved	ortal/opening	divided by ar																
				Emission Rat	e - Portal/				Rate - Port	al/	1													
				Opening		Portal/Ope		Opening			ı													
				(g/s)		(g/s) - Volun																		
		Portal/ opening ID.	Source Type		NOx					(Area)	ŀ	Formula from Scenario	from Scenario Emission calculation formu	from Scenario Emission calculation formula (Extr	from Scenario Emission calculation formula (Extracted fro	from Scenario Emission calculation formula (Extracted from the appro	from Scenario Emission calculation formula (Extracted from the approved EIA o	from Scenario Emission calculation formula (Extracted from the approved EIA of Road W	from Scenario Emission calculation formula (Extracted from the approved EIA of Road Works at Wo	from Scenario Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloo	from Scenario Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)	from Scenario Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)	from Scenario Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)	from Scenario Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
		A		0.00022214			-		5.6014E-06		Ī	1	 0.2 x Tunnel Section A 											
80.935 0.873	3	В	Area	0.00438803	0.0543509		-	1.28343E-05			1												2/3 x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)	
				0.00101953			-		1.95077E-05	635.3		1	1 0.2 x Tunnel Section C + 0.7	1 0.2 x Tunnel Section C + 0.2 x (1/3	1 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.06	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel 	 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section 	1 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x T	1 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section A	 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 	 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 0.2 x Tunnel 	1 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 0.2 x Tunnel Section	1 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 0.2 x Tunnel Section E
		D1-D7		0.00452784	0.0560826		0.005341196			-	1													
			Volume				0.002670598		-	-	1	1											1 0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D	
				0.00106372					4.58634E-05	277.5	4	1	1 0.2 x 0.8 x Tunnel Section E	1 0.2 x 0.8 x Tunnel Section E + 0.2 >	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel S	1 0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F	1 0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F	1 0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F	1 0.2 x 0.8 x lunnel Section E + 0.2 x lunnel Section F	1 0.2 x 0.8 x lunnel Section E + 0.2 x lunnel Section F	1 0.2 x 0.8 x lunnel Section E + 0.2 x lunnel Section F	1 0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F	1 0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F	1 (0.2 x 0.8 x lunnel Section E + 0.2 x lunnel Section F 1 x lunnel Section I + 1 x lunnel Section G + 1 x lunnel Section H + 0.14 x lunnel Section K + 0.8 x 0.38 x lunnel Section O + 0.8 x (1/3)
		11-14		0.01806947	0.1999547		0.033325783		-		4	1												
			Volume	0.00110001	0.0450505		0.016662891		-		_													Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic
				0.00149964			-	9.72089E-07	1.02797E-05	1542.7	4	1												1 0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section D + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section D + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section D + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section D + 0.2 x 1/3 x (Tunnel Section D + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section D + 0.2 x 1/3 x (Tunnel Section D +
		L1-L5		0.00339478	0.0379974		0.00506632			-	1													1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road A + Tunnel Section Internal Road In
			Volume			0.000226319	0.00253316		-	-	1	1	+ Tunnel Section Internal Ho	 + Tunnel Section Internal Hoad C) > 	 + Tunnel Section Internal Hoad C) x (traffic f 	 + Tunnel Section Internal Hoad C) x (traffic flow of Tunn 	 + Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section 	 + Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section L / (traffic 	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section L / (traffic flow of	 + Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Sec 	 + Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + tra 	 + Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of 	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + tra
		M1-M4		0.00108357	0.0129927		0.002165449		-	-	4													
			Volume				0.001082724		-	-		1	1 0.5 x (Tunnel Section M + Ti	1 0.5 x (Tunnel Section M + Tunnel S	 0.5 x (Tunnel Section M + Tunnel Section N) 	1 0.5 x (Tunnel Section M + Tunnel Section N)	1 0.5 x (Tunnel Section M + Tunnel Section N)	1 0.5 x (Tunnel Section M + Tunnel Section N)	1 0.5 x (Tunnel Section M + Tunnel Section N)	1 0.5 x (Tunnel Section M + Tunnel Section N)	1 0.5 x (Tunnel Section M + Tunnel Section N)	1 0.5 x (Tunnel Section M + Tunnel Section N)	1 0.5 x (Tunnel Section M + Tunnel Section N)	1 0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00108357	0.0129927		0.002165449		-	-	4													
			Volume				0.001082724		-	-	1	1			 0.5 x (Tunnel Section M + Tunnel Section N) 									
		P1-P4		0.00416904	0.0440608		0.007343464			-	1													1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Road A + Tun
			Volume				0.003671732		-	-	1	1	+ Tunnel Section Internal Ho	+ Tunnel Section Internal Hoad C)	+ Tunnel Section Internal Hoad C) x (traffic	+ Tunnel Section Internal Hoad C) x (traffic flow of Tun	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section P / (tra	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section P / (traffic flow of	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Se	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + ti	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of	+ Tunnel Section Internal Hoad C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel S	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I - traffic flow
		W1-W8		0.12107666	3.0955598		0.257963314		-	-	4									l				
			Volume			0.005044861	0.128981657		-	-	1	1	1 X Tunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W	1 1 x lunnel W
		701-710		0.01161618	0.2458341		0.016388939		-	-	4	1	1	1	1	1	1	1	1	1	1	1	1	1
			Volume				0.00819447		-	-	ŀ		- 1 x Tunnel X											
			Volume	0.00151548		0.001515481	0.013911962				1			1/3 x Basement roads A,B,C										
% of Serving		BaseC		0.00151548	0.013912	0.001515481	0.013911962		1		1			1/3 x Basement roads A,B,C										
	Out of 500m		Volume				-	-	-	-	1		1 x Tunnel Y											
	Out of 500m	901-903				-	-	-	-	-	1		1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z	1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-		ĺ													
	Out of 500m	V1	Point								1	rom 1-4	rom 1-4	rom 1-4	rom 1-4	rom 1-4 -	rom 1-4	rom 1-4	rom 1-4	rom 1-4	rom 1-4	rom 1-4	rom 1-4 -	rom 1-4 -
											Т													

													н	r 18-19 (2015 I	EIA_19-12-2011	1.xls)								Rate (g/km-		Emissio (g/	
emarks (Tunnel name - ortal & top opening of aderpass in EIA of Rd orks in WK)	WKCD section no.	Road name	Round	Road Type	Length (m)	Total (veh/hr)	PC	taxi									NERS	NFR7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
)	section no.	Lin Cheung Rd (underpass)	Northbound	noau Type	Zo.	rotal (veli/iii)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NF DO	NFD/	NFDO	FBSD	FBUU	MC MC	100%	0.0963072	1.2124485	0.0010741	0.0135
	73	Lin Cheung Rd (underpass)	Northbound	3	272	550	55%	176	21%	0%	476	276	5%	5%	196	176	1%	0%	2%	2%	0%	176	100%		1.2124485	0.0010741	0.0135
	73	Lin Cheung Rd (underpass)	Northbound	3	110	550	00%	176	21%	0%	476	276	D76	D76	176	176	176	0%	2%	276	076	176	100%	0.0963072	1.2124485	0.0040021	0.0503
	73	Lin Cheung Rd (underpass)	Northbound	3	176		55%	176	21%	0%	476	276	D76 E6/	5%	1%	176	1%	0%	2%	2%	0%	176	100%		1.2124485	0.0025896	
	70	Lin Cheung Rd (underpass)	Southbound	0	155		56%	170	22%	076	970	40/	370	576	170	170	170	0%	270	40/	076	170	100%		1.0975200	0.0023896	0.0320
	72	Lin Cheung Rd (depressed)	Southbound	3	172		56%	176	22%	1%	3%	176	470	5%	196	176	1%	0.76	1%	176	0%	176	100%	0.0924923	1.0975200	0.0032957	0.0391
	110	Lin Cheung Rd (depressed)	Southbound	3	121		56%	19/	21%	19/	370	170	470 E0/	5%	190	170	1%	0%	190	10/	076	170	100%		1.1226330	0.0030572	0.0433
	110	Austin Rd W (depressed)	Eastbound	3	173		41%	196	42%	0%	2%	296	5%	3%	190	196	094	0%	0%	2%	0%	196	100%		1.3521806	0.0023300	0.0284
	117	Austin Rd W (depressed)	Fastbound	3	194		12%	196	42%	0%	196	196	5%	3%	1%	196	0%	0%	0%	196	0%	196	100%		1.2485652	0.00748876	0.0293
	116	Austin Rd W (depressed)	Westbound	3	194		38%	196	40%	0%	2%	296	4%	3%	196	196	6%	0%	0%	2%	194	196	100%		1.5150395	0.0042085	0.0477
	114	Lin Cheung Rd (depressed)	Southbound	3	95		58%	096	34%	0%	2%	096	096	2%	1%	196	0%	0%	0%	196	094	096	100%		0.7951788	0.0003982	0.0037
	112	Lin Cheung Rd (depressed)	Northbound	3	95	494	57%	1%	22%	0%	3%	2%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%		1.0758783	0.0011943	
	84	Lin Cheung Rd	Southbound	3	56	650	56%	1%	23%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	196	100%		1.1495555	0.0009583	
	77	Lin Cheung Rd	Northbound	3	56		56%	1%	22%	1%	4%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%		1.1350154	0.0012441	0.0148
	111	Austin Rd W (depressed)	Eastbound	3	52	1003	42%	1%	40%	0%	2%	2%	4%	3%	196	196	1%	0%	0%	2%	0%	196	100%	0.1225279	1.3427378	0.0017748	0.0194
	110	Austin Rd W (depressed)	Westbound	3	52		42%	1%	40%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%		1.4357436	0.0010807	0.0123
,	98	West Kowloon Highway (WKH)	Northbound	2	1970	4849	58%	0%	13%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0519319	1.3418356	0.1377960	3,5604
	A	Internal Rd A	Bothbound	4	404		46%	0%	29%	0%	2%	0%	0%	2%	1%	1%	18%	0%	0%	1%	0%	0%	100%		1.3134771	0.0028631	0.0256
	В	Internal Rd B	Bothbound	4	361	262	43%	0%	27%	0%	1%	0%	0%	2%	1%	1%	23%	0%	0%	1%	0%	0%	100%	0.1569175	1.4449279	0.0041243	0.0379
	С	Internal Rd C	Bothbound	4	521	143	32%	0%	20%	0%	1%	0%	0%	1%	1%	1%	42%	0%	0%	0%	0%	0%	100%	0.1912270	1.8942337	0.0039439	
	144	Reprovision of Gascoigne Rd Flyove	Monthound	9	180	1845	379/	ner	1196	10/	00/	40/	100/	100/	10/	10/	10/	00/	10/	110/	40/	ne/	100%	0.1172952	2.5348958	0.0108205	0.2338

	20%										
			Calculated by th (extracted from to of Road Works a Kowloon)	the approved EIA	Volume source by number of pr involved		Area source - divided by area		emission rate		
			Emission Ra Opening		Portal/Ope	ning	Emission B				
			(g/s)		(g/s) - Volur						
	Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
	ID.	Source Type	0.00021482	0.0027044			4 37334F-07	5.50577E-0	0 404.0	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0.873	R /		0.00021402		_		1.24115F-05	0.00015625			3.2.3 x Turline Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
0.070			0.00110642				1.74157E-06	2.11748E-0		1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.085 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
	D1-D7		0.0043787	0.0551251	0.000417019	0.005250007	-	-	-		
	D8-D14 \	/olume				0.002625004	-		-	1	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F /		0.00125875			-	4.53604E-06	5.38249E-0	5 277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
	11-14		0.01914704				-		-	1	1 x Tunnel Section 1 + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section C + 0.8 x 0.38 x Tunnel Section C + 0.8 x 0.38 x Tunnel Section O + 0.8 x 0.38 x 0.38 x Tunnel Section O + 0.8 x 0.38
		/olume	0.00100000		0.001595587	0.017657827	-	-			Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
	JKO1 /	Area	0.00199389	0.0209176	-	-	1.29247E-06	1.35591E-0	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section I x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section I
		/olume	0.00302003			0.005852997	_	-	-		Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of
	M1-M4		0.00110117			0.002320436		-			Tallier decision internal road of x (same now or runner decision E / same now or runner decision = + same now or runner decis
		/olume	0.00110117	O.O TOLOGE		0.001104681	_	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4		0.00110117	0.0132562		0.002209361	-	-			
	N5-N8 \	/olume				0.001104681	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	P1-P4		0.00504984	0.051994		0.008665663	-		-		1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section I
		/olume			0.00042082	0.004332831	-		-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of
	W1-W8		0.13779605			0.296702009	-	-	-	1	1 x Tunnel W
	W9-W16 \\ 701-710	/olume	0.01082048			0.148351005	-	-	-	1	1 x runner vv
		/olume	0.01082048	0.2338441		0.015589609	_	-	-E	_	1 x Tunnel X
		/olume	0.00364375	0.0342158		0.007794805	-	-	-		1/3 x basement roads A.B.C
% of Serving Rd	BaseC			0.0342158		0.034215791		+	+		1/3 x Basement roads A.B.C
Out of 500m		/olume			-	-	-	-	-	1	1x Tunnel Y
Out of 500m	901-903				-		-	-	-		1 x Tunnel Z
Out of 500m	904-906	/olume			-	-	-		-	1	
Out of 500m	V1	Point								from 1-4	

														Ir 19-20 (2015	EIA_19-12-2011	l.xls)								Rate (g/km-		Emission (g/s	
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
	73	Lin Cheung Rd (underpass)	Northbound	3	73	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	196	1%	0%	2%	2%	0%	1%	100%		1.2553367	0.0009473	0.011
	73	Lin Cheung Rd (underpass)	Northbound	3	272	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%		1.2553367	0.0035297	0.044
	73	Lin Cheung Rd (underpass)	Northbound	3	110	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	196	1%	0%	2%	2%	0%	1%	100%		1.2553367	0.0014274	0.018
	73	Lin Cheung Rd (underpass)	Northbound	3	176	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0022839	0.02
	72	Lin Cheung Rd (underpass)	Southbound	3	155	810	56%	1%	23%	1%	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0946940	1.1070114	0.0033025	0.03
	72	Lin Cheung Rd (depressed)	Southbound	3	172	810	56%	196	23%	1%	3%	196	4%	5%	1%	196	1%	0%	1%	1%	0%	1%	100%	0.0946940	1.1070114	0.0036647	0.04
	118	Lin Cheung Rd (depressed)	Southbound	3	121	765	56%	1%	22%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0943951	1.1249346	0.0024271	0.02
	119	Austin Rd W (depressed)	Eastbound	3	173	1230	39%	1%	44%	0%	2%	2%	4%	3%	1%	1%	0%	0%	0%	2%	0%	1%	100%	0.1307413	1.3764898	0.0077279	0.08
	117	Austin Rd W (depressed)	Eastbound	3	194	425	41%	1%	44%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1272482	1.2708359	0.0029143	0.02
	116	Austin Rd W (depressed)	Westbound	3	194	570	37%	1%	40%	0%	2%	2%	4%	3%	1%	1%	6%	0%	0%	2%	1%	1%	100%	0.1374107	1.5469820	0.0042208	0.04
	114	Lin Cheung Rd (depressed)	Southbound	3	95	165	61%	0%	33%	0%	3%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0837406	0.7390958	0.0003646	0.00
	112	Lin Cheung Rd (depressed)	Northbound	3	95	445	56%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0951883	1.1252717	0.0011178	0.013
	84	Lin Cheung Rd	Southbound	3	56	650	56%	1%	24%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0965061	1.1424376	0.0009758	0.01
	77	Lin Cheung Rd	Northbound	3	56	745	55%	1%	21%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0972510	1.1633760	0.0011270	0.01
	111	Austin Rd W (depressed)	Eastbound	3	52	1000	41%	1%	43%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1284244	1.3757389	0.0018550	0.01
	110	Austin Rd W (depressed)	Westbound	3	52	590	40%	1%	42%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1316538	1.4708751	0.0011220	0.01
1)	98	West Kowloon Highway (WKH)	Northbound	2	1970	3605	57%	0%	13%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0526031	1.3506539	0.1037721	2.66
	A	Internal Rd A	Bothbound	4	404	160	47%	0%	28%	0%	3%	0%	0%	3%	0%	0%	19%	0%	0%	0%	0%	0%	100%	0.1500838	1.3633630	0.0026948	0.02
	В	Internal Rd B	Bothbound	4	361	245	43%	0%	27%	0%	2%	0%	0%	2%	2%	0%	24%	0%	0%	0%	0%	0%	100%	0.1581700	1.4628400	0.0038859	0.03
	С	Internal Rd C	Bothbound	4	521	130	35%	0%	19%	0%	0%	0%	0%	0%	0%	0%	46%	0%	0%	0%	0%	0%	100%	0.1930660	1.9136558	0.0036323	0.03
	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1850	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	1%	11%	4%	0%	100%	0.1202781	2.5526715	0.0111257	0.23

| DT | Auslin RW (depressed) | Eastbound | 3 | \$2 | \$1000 | \$41% | \$11% | \$49% | \$0% | \$0% | \$11% | \$14% |

	20%									_										
			Calculated by th (extracted from to of Road Works a Kowloon)	he approved EIA	Volume source by number of p involved		Area source - o divided by area		mission rate											
			Emission Ra Opening (g/s)	te - Portal/	Portal/ Ope	ning	Emission R (g/m2-s) - A													
	Portal/ opening	Source Type	PM	NOx	PM	NOx	PM	NOx	(-11)	Formula from Scenario	mission calculation	formula (Extracted fro	m the appr	oved FIA of Road V	orks at West K	owloon)			
	A	Area	0.00018946	0.0023928		-	3.8571E-07	4.87136E-06	491.2		2 x Tunnel Section A									
0.935 0.873	В	Area	0.00374258	0.0472672		-	1.09464E-05	0.000138249	341.9	1 2	3 x (0.8 x Tunnel Se	ction A +	1 x Tunnel S	ection B)+	1/3 x (30.935 / 50) x (0.8 x Tunn	el Section A + 1	x Tunnel Se	ction B)	
	CE	Area	0.00105497	0.0127035		-	1.66058E-06	1.99961E-05	635.3	1 0	2 x Tunnel Section (C + 0.2 x (1/3 x (19.0	35 / 50) x (0.8 x Tunnel Section	n A + 1 x Tunne	Section B))+	0.2 x Tunne	el Section E	
	D1-D7		0.00386182	0.0487732		0.004645067	-		-											
	D8-D14	Volume				0.002322534	-	-	-	1 0	8 x Tunnel Section (C + 0.8 x (1/3 x (19.0	35 / 50 x (0	1.8 x Tunnel Section	A + 1 x Tunnel:	Section B)) + 1	I x Tunnel S	ection D	
	F	Area	0.00126132			-	4.54531E-06	5.31365E-05	277.5	1 0	2 x 0.8 x Tunnel Sec	ction E + 0).2 x Tunnel \$	Section F						
	11-14	_	0.01952243	0.2125833		0.035430554	-				x Tunnel Section I +									
	15-18	Volume			0.00162687	0.017715277	-	-	-		oad A + Tunnel Sect									
	JKO1	Area	0.00195875		-	-	1.26969E-06	1.32622E-05	1542.7	1 0	2 x Tunnel Section L x Tunnel Section L +	J + 0.2 x (1 - 0.14) x	unnel Sect	ion K + 0.2 x Tunne	Section O + 0.	2 x 1/3 x (Tunne	Section In	ternal Hoad A + I	unnel Section
	L1-L5		0.00367839	0.0427237		0.00569649	-				unnel Section Interna									
	L6-L10 M1-M4	Volume	0.00105141	0.0405400		0.002848245	-	-	-	1 1	innei Section interna	ai Hoad C)	x (traine ne	woi iurine	Section L / (traine	now or runner	Section I + traili	C HOW OF TU	inei Section L + tr	anic now or
	M1-M4 M5-M8	Volume	0.00105141	0.0125168		0.002086129	-	-	-		5 x (Tunnel Section	M . Tuppe	ol Contino M							
	N1-N4	volume	0.00105141	0.0125168						, ,	3 X (Turriner Section	IVI + TUTTIR	BI SECHOIT IN)							
	N5-N8	Volume	0.00100141	0.0120100	8.76173E-05		_	_	-	1 lc	5 x (Tunnel Section	M + Tunne	el Section N							
	P1-P4		0.00503968	0.0511056		0.008517597	_	-		ì	x Tunnel Section P -	+ 0.8 x 0.7	6 x Tunnel S	ection J + (0.8 x 0.86 x Tunnel :	Section K + 0.8	x (1/3 x (Tunne	Section In	ernal Road A + Ti	unnel Section
	P5-P8	Volume				0.004258799	-	-	-	1 ₁ 1 ₁	unnel Section Interna	al Road C) x (traffic t	low of Tunn	el Section P / (traf	ic flow of Tunne	Section I + traf	ffic flow of T	unnel Section L +	traffic flow
	W1-W8		0.10377213	2.6644837	0.008647678	0.222040306	-	-							. ,					
	W9-W16	Volume				0.111020153	-		-	1 1	x Tunnel W									
	701-710		0.01112573	0.2361221		0.015741474	-		-	1										
	711-720	Volume				0.007870737	-	-	-		x Tunnel X									
		Volume	0.00340436			0.032140794					3 x Basement roads									
% of Serving Rd	BaseC		0.00340436	0.0321408	0.003404363	0.032140794			1		3 x Basement roads	A,B,C								
Out of 500m	801-820	Volume			-	-	-		-		x Tunnel Y	1								
Out of 500m	901-903				-	-	-	-	-	1	x Tunnel Z	<u> </u>		<u> </u>						
Out of 500m	904-906	Volume				-	-	-	-	1		-							1	
Out of 500m	V1	Point								from 1-4 -										

Appendix 3.18b - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr20-21)	
---	--

														Hr 20-21 (201	5 EIA_19-12-20	011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(f)	73		Northbound	3	73	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0008810	0.0114222
B ^(l)	73		Northbound	3	272	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0032827	0.0425594
CIII	73		Northbound	3	110	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0013276	0.0172115
D(1)	73		Northbound	3		460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0021241	0.0275384
E ⁽ⁱ⁾	72		Southbound	3			56%	1%	23%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0906412	1.0507031	0.0021074	0.0244288
F ⁽¹⁾	72		Southbound	3			56%	1%	23%	1%	3%	- 10	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0906412	1.0507031	0.0023385	0.0271081
G ^(r)	118		Southbound	3			55%	1%	21%	1%	3%		5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0929131	1.1244962	0.0016083	0.0194647
H ^(t)	119		Eastbound	3	173	1035	38%	1%	45%	0%	1%		4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1275903	1.3494626	0.0063460	0.0671189
p)			Eastbound	3		355	39%	1%	44%	0%	1%		4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1231362	1.2569750	0.0023557	0.0240466
J ⁽¹⁾	116		Westbound	3		475	35%	1%	41%	0%	2%		4%	2%	1%	1%	6%	0%	0%	2%	1%	1%	100%	0.1336804	1.5647378	0.0034218	0.0400529
K ⁽ⁱ⁾	114		Southbound	3		130	58%		35%	0%	4%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0855512	0.7767962	0.0002935	0.0026648
L ⁽⁰⁾	112		Northbound	3			56%	1%	22%	0%	3%	2%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0914883	1.0890215	0.0010985	0.0130758
M ⁽¹⁾	84		Southbound	3		455	56%	1%	23%	0%	3%		4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0908042	1.0737254	0.0006427	0.0075996
N ^(t)	77		Northbound	3			55%	1%	22%	1%	3%		5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0958090	1.1643613	0.0011178	0.0135842
0"	111		Eastbound	3		845	38%	1%	44%	0%	2%		4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1283496	1.4139561	0.0015666	0.0172581
P ^(t)	110		Westbound	3		505	39%	1%	43%	0%	2%		4%	2%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1276585	1.4798679	0.0009312	0.0107948
W ⁽¹⁾	98		Northbound	2		2370	57%	0%	14%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%		1.3754610	0.0702149	1.7838583
	A		Bothbound				44%	0%	28%	0%	4%	0%	0%	4%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1511370	1.4181344	0.0021201	0.0198933
	В		Bothbound			185	43%	0%	27%	0%	3%	0%	0%	3%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1573047	1.4827939	0.0029182	0.0275079
	С		Bothbound			95	32%	0%	21%	0%	0%	0%	0%	0%	0%	0%	47%	0%	0%	0%	0%	0%	100%	0.2026860	2.0048960	0.0027867	0.0275645
X ⁽ⁱ⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1245	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	0%	10%	4%	0%	100%	0.1159785	2.4957565	0.0072197	0.1553608

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1881 | 1745 | 38% | 17%

		20%										
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA	Volume source by number of p involved	nortal/ananina	Area source divided by are		y emission rate		
				Emission Ra Opening (g/s)		Emission F Portal/ Op (g/s) - Volu	ening	Opening	Rate - Port			
		Portal/ opening	Source Type		NOx	PM				(Area)	Formula from Scenario	Emission calculation formula (Extracted from the approved ELA of Road Works at West Kowloon)
		A	Area	0.0001762	0.0022844		-	3 58723F-07	4.65073E-06	491.2	1	0.2 x Turnel Section A
80.935 0.873	1	R		0.00348072			_		0.000131987		1	2/3 x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
		CE		0.00078836				1.24092E-06	1.51774E-05	635.3	1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 0.2 x Tunnel Section E
		D1-D7		0.00359162	0.0465642	0.000342059	0.004434689	-	-	-		
		D8-D14	Volume			0.00017103	0.002217344		-	-	1	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F	Area	0.00080489	0.0093302		-	2.90052E-06	3.36225E-05	277.5	1	0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
		11-14		0.01461021	0.15945	0.002435035	0.026574998	-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (Tunnel Section K + 0.8 x 0.8 x 0.8 x Tunnel Section O + 0.8 x (Tunnel Section K +
		15-18	Volume			0.001217517	0.013287499		-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
		JKO1		0.00156983			-	1.01759E-06	1.09667E-05	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section In
		L1-L5		0.00325451	0.0376811	0.000433935	0.005024142		-	-		1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section In
		L6-L10	Volume			0.000216968	0.002512071			-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow
		M1-M4		0.00088023	0.0105919	0.000146705		-	-	-		
		M5-M8	Volume			7.33527E-05	0.000882659		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00088023	0.0105919		0.001765317		-	-		
		N5-N8	Volume			7.33527E-05	0.000882659		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00401494	0.042737	0.000669157	0.007122831		-	-		1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section In
		P5-P8	Volume			0.000334579			-	-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of
		W1-W8		0.07021488	1.7838583		0.148654861	-	-	-	1	
			Volume			0.00292562	0.07432743		-	-	1	1 x Tunnel W
		701-710		0.00721966	0.1553608	0.000481311	0.01035739	-	-	-	1	4
			Volume			0.000240655	0.005178695		-	-	-	1 x Tunnel X
		BaseA	Volume	0.00260833		0.002608329	0.024988565		ļ	<u> </u>		1/3 x Basement roads A,B,C 1/3 x Basement roads A,B,C
% of Serving F		BaseC		0.00260833	0.0249886	0.002608329	0.024988565			1	1	1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume				-		-	-	1	1 x Tunnel Z
	Out of 500m	901-903				-	-	-	-	-	4.	I X Turinet Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	VI	Point								from 1-4	

	Top Openings and Ventilation Exhaust (Hr21-22)	

														Hr 21-22 (201	5 EIA_19-12-2	011.xls)								Rate (g/km-		Emissio (g/s	's)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(t)	73		Northbound	3	73		54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	196	0%	1%	1%	0%	196	100%	0.0940925	1.1669996	0.0007250	0.0089924
B ^(l)	73		Northbound	3	272	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0027015	0.0335059
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0010925	0.0135502
D ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	176	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0017480	0.0216803
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	540	55%	1%	23%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0945830	1.1215795	0.0021991	0.0260767
F(1)	72	Lin Cheung Rd (depressed)	Southbound	3	172	540	55%	1%	23%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0945830	1.1215795	0.0024402	0.0289367
G ^(t)	118	Lin Cheung Rd (depressed)	Southbound	3	121	530	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0948913	1.1392194	0.0016904	0.0202939
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	1050	36%	1%	46%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	1%	1%	100%	0.1321211	1.4500809	0.0066666	0.0731687
In)	117	Austin Rd W (depressed)	Eastbound	3		355	38%	1%	45%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1260448	1.2793054	0.0024113	0.0244738
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	465	34%	1%	42%	0%	2%	2%	4%	2%	1%	1%	5%	0%	0%	2%	196	1%	100%	0.1345154	1.5696270	0.0033707	0.0393322
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	115	61%	0%	35%	0%	0%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0818698	0.6878634	0.0002485	
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	405	54%	1%	22%	0%	2%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0955293	1.1445932	0.0010210	0.0122328
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	455	54%	1%	23%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	1%	0%	1%	100%	0.0982598	1.1898591	0.0006955	0.0084216
N ^(f)	77	Lin Cheung Rd	Northbound	3	56	645	54%	1%	22%	196	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0969162	1.1919187	0.0009724	0.0119589
O ⁽¹⁾			Eastbound	3			36%	1%	45%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1320770	1.5074457	0.0016025	0.0182903
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3			36%	1%	45%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1332813	1.5280592	0.0009626	0.0110360
W ^(t)	98		Northbound	2		1765	57%	0%	14%	0%	3%	2%	5%	4%	3%	2%	1%	0%	4%	2%	3%	0%	100%	0.0533533	1.3774921	0.0515311	1.3304470
	A	Internal Rd A	Bothbound	4	404	100	45%	0%	30%	0%	0%	0%	0%	5%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1526722	1.3576760	0.0017133	
	В		Bothbound	4	361	160	41%	0%	28%	0%	3%	0%	0%	3%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1653254	1.5557151	0.0026526	0.0249606
	С		Bothbound	4	521	80	31%	0%	19%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2096886	2.0813385	0.0024277	0.0240973
X ^{eq}	144	Reprovision of Gascoigne Rd Flyover		3	180	1250	36%	0%	11%	1%	7%	4%	11%	12%	1%	1%	1%	0%	0%	10%	4%	0%	100%	0.1159747	2.5378733	0.0072484	0.1586171

PA Heapmonison of classcogne for hypoer | Westbound | 3 | 1980 | 12-00 | 36% | 17% | 17% | 17% | 1. Note: (I): Tunnel name is based on Portal 3 to opening of undergass in EUA of Pad Works in West Kowtoon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutarits multiplied by traffic flow of each roads.

											_															
				Calculated by the (extracted from ti of Road Works a Kowloon)	ne approved EIA	Volume source by number of pr involved		Area source divided by an		y emission rat	e															
				Emission Rat	e - Portal/	Emission Ra	ate -	Emission	Rate - Port	al/	Ī															
				Opening		Portal/ Ope		Opening																		
				(g/s)		(g/s) - Volur				e																
		Portal/ opening	Source Type	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from Scenario	Emission ca	l l 6:	barrada (I	Contracted 6	4		-cD4 W	andro at W	est Verele						
				0.00014501	0.0017985		_	2 9521F-07	3.66139F-06	491.2	1	0.2 x Tunne	Section A	ormuia (r	extracted II	ош ше арр	roveu EIA	oi Roau vv	orks at w	est Kowio	OII)					_
80.935 0.873				0.00286445				8.37802E-06			1	2/3 x (0.8 x		tion A + 1	1 x Tunnel S	ection B)	+ 1/3 x (3	.935 / 50	x (0.8 x	Tunnel Se	ction A +	1 x Tunnel	Section B)		
		CE .	Area	0.00074173	0.00896		-	1.16753E-06	1.41035E-05	635.3	1	0.2 x Tunnel	Section C	+ 0.2 x (1/3 x (19.0	65 / 50) x	(0.8 x Tun	nel Section	1 A + 1 x T	unnel Sec	ction B))	+ 0.2 x Tu	nnel Section	on E		
		D1-D7		0.00295571	0.0366587	0.000281496	0.003491309		-	-																
		D8-D14	Volume			0.000140748	0.001745654		-	-	1	0.8 x Tunnel					0.8 x Tunn	el Section .	4 + 1 x Tu	nnel Secti	ion B)) +	1 x Tunne	Section [)		
		F		0.0008399		-	-		3.58905E-05	277.5	1	0.2 x 0.8 x T	unnel Secti	tion E + 0.	.2 x Tunnel	Section F										
		11-14		0.01516026	0.1687073		0.028117881		-	-	1	1 x Tunnel S														
			Volume	0.00149029		0.001263355	0.014058941	-	 1 04815F-05	-		Road A + Tu 0.2 x Tunne														
		JKO1		0.00149029		0.000400040	0.004815055		1.04815E-05	1542.7	1	1 x Tunnel S														
			Volume	0.00304332	0.0301129	0.000406042	0.002407528		-	-	┥.	+ Tunnel Se	ction Intern	nal Boad (C) v (traffic	flow of Tu	anal Sactio	al//traff	ic flow of	Tunnal Sa	ction L tr	offic flow o	of Tunnal 9	Caction I	traffic flo	ow of
		M1-M4		0.00083393	0.0101902		0.002407328					+ Turner Se	CHOIT III(GITI	iai i ioau c	O) X (Ballic	HOW OF TUI	1101 000110	IL/ (uaii	C HOW OI	iuiiiei oe	CUOITTE	dilic liow c	/ Turrior c	JOCHOIT L	T II GITTO TIC	/W OI
			Volume	0.00000000	0.0101002	6 94939F-05	0.001030375	-	_	-	1	0.5 x (Tunne	Section N	M + Tunne	el Section N	١										
		N1-N4		0.00083393	0.0101902	0.000138988	0.001698373	-	-	-																
		N5-N8	Volume			6.94939E-05	0.000849186	-	-	-	1	0.5 x (Tunne	Section N	M + Tunne	el Section N)										
		P1-P4		0.00390183	0.0411951	0.000650304	0.00686585		-	-		1 x Tunnel S														
			Volume			0.000325152	0.003432925	-	-	-	1	+ Tunnel Se	ction Intern	nal Road (C)x(traff	c flow of Ti	unnel Secti	on P / (tra	ffic flow o	f Tunnel S	ection I +	traffic flow	of Tunnel	Section	L + traffic	flow of
		W1-W8		0.05153115	1.330447	0.004294262	0.110870581		-	-	4	l														
			Volume	0.00724842	0 1500171	0.002147131	0.05543529	-	-	-	1	1 x Tunnel V	V													
		701-710 711-720		0.00724842	0.15861/1	0.000483228	0.010574472		-	-	1	1 x Tunnel X														
			Volume Volume	0.00226453	0.0214313	0.000241614	0.005287236		-	-	-	1/3 x Basen		ARC												
% of Serving R	Bd	BaseC		0.00226453			0.021431334			+		1/3 x Basen														
	Out of 500m		Volume	0.00220100	0.0214010			-	_	-	1	1 x Tunnel Y	UNIT TOUGOT	,,,,,,,	1	1	т —			1						
	Out of 500m	901-903				_	-	_	_	-	<u> </u>	1 x Tunnel Z														_
	Out of 500m		Volume			-	-	-	-	-	1															
	Out of 500m	V1	Point								from 1-4	-														

	Ton Openings and Ventilation Exhaust (Hr22-23)

													н	lr 22-23 (2015 i	EIA_19-12-201	I1.xIs)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0005798	0.0073014
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0021605	0.0272051
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0008737	0.0110021
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0013980	0.0176033
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	410	55%	1%	23%	0%	2%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0925218	1.1036981	0.0016333	0.0194833
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	410	55%	1%	23%	0%	2%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0925218	1.1036981	0.0018124	0.0216202
G ⁽ⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	400	55%	1%	23%	0%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0921177	1.1094109	0.0012385	0.0149154
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	860	35%	1%	47%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	1%	2%	100%	0.1358599	1.5011441	0.0056148	0.0620389
lo.	117	Austin Rd W (depressed)	Eastbound	3	194	280	38%	2%	46%	0%	2%	2%	4%	2%	2%	0%	0%	0%	0%	2%	0%	2%	100%	0.1256163	1.2766566	0.0018954	0.0192633
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	360	35%	1%	43%	0%	1%	1%	4%	3%	1%	0%	6%	0%	0%	1%	1%	1%	100%	0.1326806	1.5171168	0.0025740	0.0294321
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	110	59%	0%	32%	0%	5%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0811531	0.7553685	0.0002356	0.0021927
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	335	54%	1%	22%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0921965	1.1342608	0.0008150	0.0100272
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	355	55%	1%	24%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	0%	100%	0.0929667	1.1149716	0.0005134	0.0061571
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	525	54%	1%	23%	0%	3%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0956100	1.1435129	0.0007808	0.0093387
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	705	36%	1%	46%	0%	1%	1%	4%	3%	1%	1%	1%	0%	1%	1%	1%	1%	100%	0.1321463	1.4324072	0.0013457	0.0145867
P ^(l)	110	Austin Rd W (depressed)	Westbound	3	52	410	35%	1%	45%	0%	196	1%	5%	2%	1%	1%	1%	0%	1%	1%	1%	196	100%	0.1351002	1.5335894	0.0008001	0.0090823
W ^(t)	98	West Kowloon Highway (WKH)	Northbound	2	1970	1755	56%	0%	14%	0%	3%	2%	5%	4%	3%	2%	1%	0%	4%	2%	3%	0%	100%	0.0535651	1.3757223	0.0514425	
	A	Internal Rd A	Bothbound	4	404	105	43%	0%	29%	0%	5%	0%	0%	5%	0%	0%	19%	0%	0%	0%	0%	0%	100%	0.1513914	1.4363008	0.0017839	0.0169244
	В	Internal Rd B	Bothbound	4	361	155	42%	0%	26%	0%	3%	0%	0%	3%	0%	0%	26%	0%	0%	0%	0%	0%	100%	0.1631965	1.5598607	0.0025366	
	С	Internal Rd C	Bothbound	4	521	75	33%	0%	20%	0%	0%	0%	0%	0%	0%	0%	47%	0%	0%	0%	0%	0%	100%	0.2107940	2.0557596	0.0022880	0.0223136
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1575	36%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	0%	100%	0.1165184	2.5438244	0.0091758	0.2003262

Note: (ii): Turnel name is based on Portal & top opening of underpass in EIA of Road Works in West Kowloon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutants multiplied by traffic flow of each roads.

	20%										
		(c	Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA It West	Volume source by number of po involved	rtal/opening	Area source - c divided by area	alculated by em	ission rate		
		1	Emission Ra		Emission Ra						
		(Opening		Portal/Oper		Emission Ra		Opening		
		((g/s)		(g/s) - Volun		(g/m2-s) - A	rea source			
)	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
	Portal/ opening									from	
		Source Type	0.00011597	0.0014000			2.36089E-07	2.97287E-06		Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.2 x Tunnel Section A
80.935 0.873			0.00011597		-	-	6.70019E-06	8.43697F-05	341.9	1	0.2 x Turnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B)
80.935 0.873			0.0022508		-	-	8.70019E-06 8.94238E-07	1.09194E-05	635.3	1	23 X (U.S. X tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
	D1-D7		0.00236378		0.000225122	0.002834769	8.54230E-07	1.09154E-03	030.3		0.2 x Tullifer decision 0 + 0.2 x 1/3 x 13.0007 307 x 0.6 x Tullifer decision 2 + 1 x Tullifer decision 2) + 0.2 x Tullifer decision 2
		Volume	0.00200070	0.0207001		0.001417384	_	-	-	┪,	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			0.0006238	0.0074414			2.24794E-06	2.68158E-05	277.5	1	0.2 x 0.8 x Tunnel Section F + 0.2 x Tunnel Section F
	11-14		0.01216735		0.002027891	0.022623182	_	-	_	1	1x Tunnel Section T + 1x Tunnel Section G + 1x Tunnel Section H + 0.14 x Tunnel Section K + 0.8 x 0.38 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x 0.38 x Tunnel Section D + 0.8 x (1/3 x (Tunnel Section D + 0.8 x 0.38 x Tunnel S
	15-18	Volume			0.001013945	0.011311591	-	-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow
	JKO1		0.00126502		-		8.20004E-07	8.69455E-06	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section O + 0.2 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	L1-L5	0	0.00255267	0.0300982	0.000340356	0.00401309	-	-	-		1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	L6-L10	Volume			0.000170178	0.002006545	-	-	+	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow
	M1-M4		0.0006471	0.0077479		0.001291317	-		-	1	
		Volume			5.39249E-05	0.000645659		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4		0.0006471	0.0077479		0.001291317	-	-	-	4	AS (T. 10 (1 H T. 10 (1 H)
	N5-N8 P1-P4	Volume	0.00323206	0.00004.47	5.39249E-05	0.000645659	-			1	0.5 x (Tunnel Section M + Tunnel Section N) 11 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Road A + Tunn
		Volume	0.00323206	0.0332147	0.000538677	0.005535782	-	-	-	- .	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L + traffic flow of
	W1-W8		0.05144254	1 2212002		0.002/6/891	-	-	-	-	Tulling Section internal road C) X (Ballic flow of Tulling Section F / (Ballic flow of Tulling Section I + Ballic flow
		Volume	0.03144234	1.0212093	0.002143439	0.055050386		E	E	┧,	1 x Tunnel W
	701-710		0.00917582	0.2003262		0.033030303	_	-	-	1	P. A. TORROOT TE
		Volume		5.2550E0E	0.000305861	0.006677539	_	-	-	Ė	1 x Tunnel X
		Volume		0.021161		0.02116099					1/3 x Basement roads A,B,C
% of Serving Rd	BaseC		0.00220282	0.021161	0.00220282	0.02116099					1/3 x Basement roads A,B,C
Out of 500m		Volume			-	-	-	-	-	1	1 x Tunnel Y
Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
Out of 500m	904-906	Volume			-		-			1	
Out of 500m	V1	Point								from 1-4	

	Top Openings and Ventilation Exhaust (Hr23-00)	

														Hr 23-00 (2015	5 EIA_24-06-13.	.xis)								Rate (g/km-		Emission (g/s	s)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0005680	0.0072495
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0021162	0.0270117
C ⁽ⁱ⁾	73	Lin Cheung Rd (underpass)	Northbound	3	110	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0008558	0.0109238
D(i)	73	Lin Cheung Rd (underpass)	Northbound	3	176	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0013693	0.0174781
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	425	56%	1%	24%	0%	2%	1%	5%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0887885	1.0621039	0.0016247	0.0194350
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	425	56%	1%	24%	0%	2%	1%	5%	4%	1%	1%	1%	0%	196	1%	0%	1%	100%	0.0887885	1.0621039	0.0018029	0.0215666
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3	121	405	54%	1%	22%	0%	2%	1%	5%	5%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.0895458	1.0911759	0.0012189	0.0148536
H ⁽ⁱ⁾	119	Austin Rd W (depressed)	Eastbound	3	173	680	35%	1%	48%	0%	1%	1%	4%	2%	1%	1%	1%	0%	196	1%	1%	1%	100%	0.1335898	1.4637242	0.0043654	0.0478313
P ²	117	Austin Rd W (depressed)	Eastbound	3	194	245	37%	2%	45%	0%	2%	2%	4%	2%	2%	0%	0%	0%	0%	2%	0%	2%	100%	0.1238049	1.3101097	0.0016346	0.0172971
J ⁽ⁱ⁾	116	Austin Rd W (depressed)	Westbound	3	194	295	32%	2%	41%	0%	2%	2%	3%	2%	2%	0%	10%	0%	0%	2%	2%	2%	100%	0.1314081	1.5991364	0.0020890	0.0254218
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	170	56%	0%	35%	0%	3%	0%	3%	3%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0948358	0.9132334	0.0004254	0.0040969
L ^o	112	Lin Cheung Rd (depressed)	Northbound	3	95	355	54%	1%	23%	0%	3%	1%	6%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0939261	1.1694007	0.0008799	0.0109550
M°7	84	Lin Cheung Rd	Southbound	3	56	400	54%	1%	25%	0%	4%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	0%	100%	0.0918391	1.0991535	0.0005714	0.0068392
N ⁽ⁱ⁾	77	Lin Cheung Rd	Northbound	3	56	545	54%	1%	23%	0%	3%	2%	6%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0958762	1.1629589	0.0008128	0.0098593
0"	111	Austin Rd W (depressed)	Eastbound	3	52	610	35%	1%	46%	0%	2%	2%	3%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1287058	1.4387418	0.0011340	0.0126769
P	110	Austin Rd W (depressed)	Westbound	3	52	330	32%	2%	47%	0%	2%	2%	5%	2%	2%	2%	2%	0%	2%	2%	2%	2%	100%	0.1374171	1.6234948	0.0006550	0.0077387
W	98	West Kowloon Highway (WKH)	Northbound	2	1970	1170	56%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0544161	1.3969034	0.0348399	0.8943674
	A	Internal Rd A	Bothbound	4	404	1/5	43%	0%	29%	0%	3%	0%	3%	3%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1597945	1.5484876	0.0031382	0.0304106
	R	Internal Rd B	Bothbound	4	361	285	39%	0%	26%	0%	4%	0%	2%	4%	2%	2%	23%	0%	0%	0%	0%	0%		0.1588280	1.5535335	0.0045392	0.0443987
MII	C		Bothbound	4	521	140	29%	0%	18%	0%	4%	0%	0%	4%	0%	0%	46%	0%	0%	0%	0%	0%	100%	0.2034716	2.0812462	0.0041226	0.0421684
Α.	144	Reprovision of Gascoigne Rd Flyover		3	180	1265	35%	0%	11%	1%	/%	4%	11%	11%	2%	1%	1%	0%	0%	10%	4%	0%	100%	0.1142516	2.4953576	0.0072264	0.1578314

Proceedings of the processing
enario 2		_	20%										
mano 2			20 %		Calculated by the (extracted from ti of Road Works a Kowloon)	he approved EIA at West	Volume source by number of p involved	ortal/opening	Area source - divided by area	alculated by em	ission rate		
					Emission Rat		Emission R						
					Opening (g/s)		Portal/ Ope (g/s) - Volu		(g/m2-s) - A	ate - Portal/	Opening		
										NOx	(Area)	Formula	
			Portal/ opening				••	.,,,,	• •••		(from	
			ID.	Source Type									
			A		0.00011359				2.31251E-07		491.2	1	0.2 x Tunnel Section A
	80.935 0.	.873	В	Area	0.00224385	0.0286409			6.56289E-06 8.83754E-07		341.9	1	2/3 x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) 0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
			D1-D7		0.00056145		-	0.002814615	8.83754E-07	1.08702E-05	635.3	1	0.2 x Tunnel Section C + 0.2 x (1/3 x (19.065 / 50) x (0.8 x Tunnel Section A + 1 x Tunnel Section B) + 0.2 x Tunnel Section E
			D1-D7 D8-D14	Volume	0.00231534		0.000220509		-	-	-	1.	0.8 x Tunnel Section C + 0.8 x (1/3 x (19.065 / 50 x (0.8 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			D8-D14		0.00062053		0.000110254		2.23616E-06	0.07400F.0F	277.5		0.2 x 10.11mg Section E + 0.2 x Tunnel Section F 0.2 x 0.8 x Tunnel Section E + 0.2 x Tunnel Section F
			11-14		0.01093433		0.001822388	0.020581329	2.23010E-00	2.0/493E-05	2//.5	1	0.2 x 0.5 x 0.5 x 0.0 mer section E + 0.2 x 10miner Section E + 0.2 x
			15-18	Volume	0.01035455	0.120400		0.020381325	-	_			Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
			JKO1		0.00150445	0.0161229			9.75206E-07	1 04511F-05	1542.7	1	0.2 x Tunnel Section J + 0.2 x (1 - 0.14) x Tunnel Section K + 0.2 x Tunnel Section Internal Road A + Tunnel Section Internal Road B +
			L1-L5		0.00304462		0.000405949	0.004773361	-		-		1 x Tunnel Section L + 0.8 x 0.24 x Tunnel Section J + 0.8 x 0.62 x Tunnel Section O + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +
			L6-L10	Volume			0.000202975	0.002386681	-		-	1	Tunnel Section Internal Poad C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)
			M1-M4		0.00069213	0.0083492	0.000115355	0.00139154	-		-		
			M5-M8	Volume			5.76775E-05	0.00069577	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00069213	0.0083492	0.000115355	0.00139154	-		-		
			N5-N8	Volume			5.76775E-05	0.00069577	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.0033344	0.0341444	0.000555734	0.005690732	-	-	-		1 x Tunnel Section P + 0.8 x 0.76 x Tunnel Section J + 0.8 x 0.86 x Tunnel Section K + 0.8 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +
			P5-P8	Volume			0.000277867	0.002845366	-		-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D + traffic flow
			W1-W8		0.0348399	0.8943674	0.002903325	0.074530618	-		-		
			W9-W16	Volume	0.00700010	0.4570044	0.001451662	0.037265309	-	-	-	1	1 x Tunnel W
			701-710		0.00722642	0.15/8314		0.010522091	-		-	1	1 x Tunnel X
			711-720	Volume	0.00393331	0.0000000	0.000240881	0.005261046	-		-	-	1 X Turinet X 1/3 x Basement roads A.B.C
	% of Servi	P4	BaseA BaseC	Volume	0.00393331		0.003933306	0.038992543			-	1	1/3 x Basement roads A,B,C 1/3 x Basement roads A,B,C
	% of Servi	Out of 500m	801-820	Volume	0.00393331	0.0009925	0.003933306	0.038992543				1	ITS x Basement roads A,b,c 1 x Tunnel Y
		Out of 500m	901-920	volume									1 x Turnel 7
		Out of 500m	904-906	Volume					_		L	1	
		Out of 500m	V1	Point								from 1-4	
			T										

- Emission Rates of Portal.		

													Hr 00-01	(2015 EIA_19-	12-2011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)		Road name	Bound	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
A ^(l)	73	Lin Cheung Rd (underpass)	Northbound	73	215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0004165	0.0053642
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	272	215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0015517	0.0199873
C(I)	73	Lin Cheung Rd (underpass)	Northbound	110		53%	0%	23%	0%	2%	2%		5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0006275	0.0080831
D(I)	73		Northbound			53%	0%	23%	0%	2%	2%		5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0010041	0.0129330
E ⁽¹⁾	72		Southboun			55%	0%	23%	0%	2%	2%		4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0936651	1.1839523	0.0010687	0.0135086
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southboun	172	265	55%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0936651	1.1839523	0.0011859	0.0149902
G (I)	118		Southboun			53%	2%	22%	0%	4%	2%		4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0924976	1.2001108	0.0008550	0.0110927
H ^(l)	119		Eastbound		435	32%	1%	51%	0%	1%		5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1342209	1.4577666	0.0028058	0.0304734
I ⁽¹⁾	117		Eastbound			36%	0%	56%	0%	0%	0%		4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1379285	1.2475830	0.0009291	0.0084039
J ⁽¹⁾	116		Westbound			33%	0%	45%	0%	3%		3%	3%	0%	0%	6%	0%	0%	3%	0%	0%	100%	0.1363135	1.5185645	0.0012121	0.0135026
K ^(I)	114		Southboun				0%	30%	0%	0%	0%		0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0648138	0.5373284	0.0000855	0.0007090
L ⁽¹⁾	112		Northbound			54%	2%	23%	0%	2%	2%		4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0950957	1.2108087	0.0006525	0.0083075
M ⁽¹⁾	84		Southboun			54%	0%	24%	0%	2%	2%		4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0939613	1.1887411	0.0003362	0.0042531
N ^(I)	77		Northbound			52%	1%	22%	0%	2%	2%		5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0963301	1.2034973	0.0006144	0.0076756
O ⁽ⁱ⁾	111		Eastbound			34%	1%	49%	0%	1%		4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1312810	1.4683894	0.0006732	0.0075296
P ⁽¹⁾	110		Westbound			32%	0%	49%	0%	2%	2%		2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1373062	1.7179691	0.0004066	0.0050871
W ⁽¹⁾	98		Northbound			55%	0%	14%	0%	3%	2%		4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0546631	1.4126668	0.0342503	0.8851339
	A		Bothbound			50%	0%	25%	0%	0%	0%		0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1480281	1.3796668	0.0006645	0.0061932
	В		Bothbound			38%	0%	31%	0%	0%	0%		8%	0%	0%	23%	0%	0%	0%	0%	0%	100%	0.1676717	1.5226167	0.0010929	0.0099245
	С		Bothbound			33%	0%	17%	0%	0%	0%		0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2147230	2.1257746	0.0009323	0.0092294
X"	144		Westbound	180	965	35%	1%	11%	1%	7%	4%	11%	11%	2%	1%	1%	0%	1%	10%	5%	1%	100%	0.1170200	2.5587013	0.0056462	0.1234573

Scenario 2	30%									
		Calculated by the for (extracted from the a Road Works at Wes Emission Rate -	pproved EIA of t Kowloon)	of portal/open involved Emission I	number ing	divided	by area	Iculated by emission rate		
		Opening						te - Portal/ Opening		
		(g/s) PM	NOx	(g/s) - Volu PM				ea source (Area)	Ь,	
	Portal/ opening ID.	PM	NOX	PM	NOX	PM	NOX	(Area)	For mu la fro m Sc en ari o	
	A		0.0016093	-	-	3E-07	3E-06	491.2	1	0.3 x Tunnel Section A
80.935 0.873	В		0.0207246	-	-		6E-05		1	2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
		0.000579153	0.0073828	-	-	9E-07	1E-05	635.3	1	0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 0.3 x Tunnel Section E
		0.001607331	0.0207035			-	-	-		
	D8-D14			7.65396E-05		-	-	-		0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F	0.000580197	0.0073338	-			3E-05	277.5		0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F
		0.006267632	0.070936			-	-	-		1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section D + 0.7 x
	I5-I8			0.000522303		-	-	-		Internal Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
		0.000856597	0.0090273			6E-07	6E-06	1542.7	1	0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		0.001424808	0.0164637			-	-	-		1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	L6-L10			9.49872E-05		-	-	-	1	Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic
		0.000475272	0.0059643			-	-	-	1	
	M5-M8			3.9606E-05	0.0005	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		0.000475272	0.0059643			-	-	-	1 1	
	N5-N8				0.0005		-	-		0.5 x (Tunnel Section M + Tunnel Section N)
		0.001320932	0.01424	0.000220155			-	-		1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
	P5-P8	* ** ***		0.000110078			-	-	1	Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of
		0.034250253	0.8851339			-	-	-	1 1	
	W9-W16					-	-	-	1	1 x Tunnel W
		0.005646217	0.1234573			-	-	-	1	
	711-720					-	-	-		1 x Tunnel X
	BaseA	0.000896544	0.008449	0.000896544	0.0084					1/3 x Basement roads A,B,C
% of Serving Rd	BaseC	0.000896544	0.008449	0.000896544	0.0084					1/3 x Basement roads A,B,C
Out of 500m	801-820			-	-	-	-	-		1 x Tunnel Y
Out of 500m	901-903			-	-	-	-	-		1 x Tunnel Z
Out of 500m	904-906			-	-	-	-	-	1	
Out of 500m	V1								from	

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr01-02)

														Hr 01-02 (2	015 EIA_19-1	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of																								PM	NOx	PM	NOx
underpass in EIA of Rd Works in WK)	WKCD section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3		210	55%		21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0004016	0.0052242
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3		210	55%		21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0014965	0.0194656
C _{II}	73	Lin Cheung Rd (underpass)	Northbound	3			55%		21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0006052	0.0078721
D(1)	73	Lin Cheung Rd (underpass)	Northbound	3		210	55%		21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0009683	0.0125954
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3		115	61%		26%	0%	4%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0856195	0.9034429	0.0004239	0.0044733
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3		115	61%		26%	0%	4%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0856195	0.9034429	0.0004704	0.0049639
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3		130	58%		23%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0920525	1.0899955	0.0004022	0.0047627
H	119	Austin Rd W (depressed)	Eastbound	3		425	31%	1% 5	52%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1397561	1.5027165	0.0028543	0.0306909
F"	117	Austin Rd W (depressed)	Eastbound	3		115	35%	0% 5	57%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1433709	1.2930617	0.0008885	0.0080134
J ^(r)	116		Westbound	3		155	32%		48%	0%	3%	3%	3%	3%	0%	0%	3%	0%	0%	3%	0%	0%	100%	0.1409186	1.5411581	0.0011771	0.0128730
K**	114	Lin Cheung Rd (depressed)	Southbound	3			60%		40%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0867808	0.7080664	0.0000573	0.0004671
E CONTRACTOR OF THE CONTRACTOR	112	Lin Cheung Rd (depressed)	Northbound	3			54%		24%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0969609	1.2051710	0.0006908	0.0085868
M.	84	Lin Cheung Rd	Southbound	3		105 420	62%		24%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0835398	0.9063790	0.0001364	0.0014804
N°	//	Lin Cheung Rd	Northbound	3			52%		23%	0%	2%	2%	6%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1014759	1.2541069	0.0006630	0.0081935
DIII	110	Austin Rd W (depressed) Austin Rd W (depressed)	Eastbound Westbound	3		340 195	28%		53%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1423837	1.5668165	0.0006993	0.0076948
IAI ⁽³⁾	110	West Kowloon Highway (WKH)	Northbound	3			56%		15%	076	376	3%	5%	376	076	2%	0%	076	4%	376	3%	3%	100%	0.0376112	1.0372349	0.0004130	0.3178549
yv .	96	Internal Rd A	Northbound Bothbound	2	1970		33%		33%	076	37s	0%	0%	476 nor	3%	276	33%	0%	4%	276	3%	0%	100%	0.03/6112	1.03/2349	0.0115257	0.3178549
	n D	Internal Rd B	Bothbound	4	361	20	50%		25%	076	U/0	076	0.76	076	076	0.70	25%	0.76	0.76	0.76	0.76	0.76	100%	0.0901715	0.9342677	0.0001989	0.0020643
———	C	Internal Rd C	Bothbound	7	521	10	50%	0.00	2070	070	U 70 NO7	076	0.70	0.76	070	0.70	50%	076	0.70	0.76	0.76	0.76	100%	0.0901715	1.8394369	0.0001808	0.0016737
Y**	144		Westbound	2		650	35%	10/6	12%	10/	79/	407	12%	11%	20/	10/	10/	0%	10/	100/	0 % Ee/	10/	100%	0.11771997	2.5744043	0.0038487	0.0836681
r	1144	neprovision of Gascoigne Hd Flyover	A L G 2 L D G I L G	Jo	1100	000	JJ 70	1170	14/0	1 /0	/ /6	470	14.70	1170	£ 70	1 70	170	0.76	170	1076	0.76	1 70	100%	0.1164204	2.0744043	0.0038487	U.U030001

PA | Medical Representation of Lastocogine Por Hypoter | Westbournd | 3 | 1980 | 1900 | 25% | 1% | 17%

Scenario 2			30%																							
					of Road Works at Kowloon)	e approved EV West	calculated by no of portal/opening involved	umber /	Area source divided by are	calculated by emission a	rate															
					Emission Rat	e - Portal/																				
					Opening					Rate - Portal/ Open	ing															
					(g/s)	*10	(g/s) - Volun				_	_														
			Portal/ opening		PM	NOx	PM P	NOx	PM NO	(Area)	Formula															
Length of opening			ID.	Source Type							Scenario	Emission c	alculation f	ormula (E:	xtracted fro	m the appr	oved EIA o	f Road Wo	rks at Wes	st Kowloo	n)					
			A	Area	0.00012049				2E-07 3E-0		1	0.3 x Tunne	Section A													
80.935	5 0.873		В	Area	0.00155166	0.0201837			5E-06 6E-0		1	2/3 x (0.7 >														
			CE	Area	0.00037652				BE-07 7E-0	635.3	1	0.3 x Tunne	Section C	+ 0.3 x (1	/3 x (19.06	35 / 50) x (0.7 x Tunn	el Section	A + 1 x Tu	unnel Sec	ion B)) +	0.3 x Tunn	el Section E			
			D1-D7		0.00155007	0.0201631				-																
			D8-D14	Volume			7.38131E-05 0			-	1	0.7 x Tunne					.7 x Tunne	I Section A	+ 1 x Tuni	nel Section	n B)) + 1	x Tunnel S	ection D			
			F	Area	0.00023016				BE-07 9E-0	3 277.5	1	0.3 x 0.7 x	Tunnel Sect	ion E + 0.3	3 x Tunnel S	Section F										
			11-14		0.00490552	0.0517049					1														(Tunnel Section	
			15-18	Volume			0.000408794 0																		on I + traffic flo	
			JKO1	Area	0.00064128				4E-07 5E-0	8 1542.7	1	0.3 x Tunn	Section J	+ 0.3 x (1	- 0.14) x	unnel Secti	ion K + 0.3	x Tunnel S	Section O -	+ 0.3 x 1/3	3 x (Tunne	Section In	iternal Road	A + Tunn	el Section Inter	rnal Road B +
			L1-L5	1	0.00126117	0.0147978				-															el Section Inter	
			L6-L10	Volume			8.40781E-05 0				1	Tunnel Sec	tion Interna	Road C) >	(traffic flo	w of Tunnel	Section L	/ (traffic f	low of Tuni	nel Section	n I + traffic	flow of Tu	nnel Section	n L + traffi	c flow of Tunne	Section P))
			M1-M4		0.00039971	0.004837				-		I														
			M5-M8	Volume			3.33093E-05 0				1	0.5 x (Tunn	el Section I	1 + Tunnel	Section N)											
			N1-N4		0.00039971	0.004837	6.66187E-05 0					I														
			N5-N8	Volume	0.00110050		3.33093E-05 0			-	1	0.5 x (Tunn					7000.	Toward Co	-E IZ	07/4//	or (Toward	C6 I-	n	A T	el Section Inter	and Daniel D
			P1-P4		0.00112356	0.0126156																			fic flow of Tuni	
			P5-P8	Volume	0.04450574	0.0470540	9.36297E-05 0				1	Tunnel Sec	tion Interna	Hoad C)	x (traffic f	low of Tunn	el Section	P/(traffic	TIOW OT TU	innei Sec	ion i + trafi	IC TIOW OT I	unnel Secti	on L + trai	TIC TIOW OT TUNE	nei Section
			W1-W8		0.01152574	0.3178549	0.000960479 0					1 x Tunnel														
			W9-W16 701-710	Volume	0.00384866	0.0000001					- !	i x iurinei	rv .													
			711-720	Volume	0.00384866	0.0836681	0.000256578 0			-	1	1 x Tunnel	,													
			BaseA	Volume	0.00021205	0.0022	0.000128289 0					1/3 x Base		A D C												
	% of Serving F	tel.	BaseC	volume	0.00021205		0.00021205 0		_		_	1/3 x Base														
		Out of 500m	801-820	Volume	0.00021203	0.0022	0.00021203	.0022				1 x Tunnel		н, Б, С		1	1	т —	1	1		1	1	_	_	
		Out of 500m	901-903	* Oldring								1 x Tunnel			1	1	+	 	 	+	+	+	+	+		++
		Out of 500m	904-906	Volume								1 x Turriner			1	<u> </u>	+	1	<u> </u>	+	+	+	+	+	+	+
		Out of 500m	V1	Point							from 1-4				1	+	+	_	†	+	+	+	-	+	_	+
		Out or occur	·-	- Onia							month 1-4				1	+	+	_	†	+	+	+	-	+	_	+
										_1					1				1					-		

Top Openings and Ventilation Exhaust (Hr02-03)

														Hr 02-03	(2015 EIA_19-12	2-2011.xls)								Rate (g/km-		Emissic (g/	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LOVA	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73		56%		22%	094	A94.	4%	7%	494	096	096	0%	096	494	0%	0%	0%	100%	0.1111624	1 3667947	0.0003043	0.0037416
B ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	272		56%		22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0011339	0.0139413
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110		56%		22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0004585	0.0056380
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176		56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0007337	0.0090208
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	110	59%	0%	27%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0882718	0.9397428	0.0004181	0.0044507
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	110	59%	0%	27%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0882718	0.9397428	0.0004639	0.0049389
G ⁽ⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	135	56%	0%	22%	0%	4%	0%	7%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1024286	1.2617028	0.0004648	0.0057250
H ^(I)	119	Austin Rd W (depressed)	Eastbound	3	173	440	30%	1%	52%	0%	1%	1%	5%	2%	1%	1%	0%	0%	1%	1%	1%	2%	100%	0.1425085	1.5675662	0.0030133	0.0331453
(¹⁾	117	Austin Rd W (depressed)	Eastbound	3	194	120	33%	0%	54%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	4%	100%	0.1364513	1.2514258	0.0008824	0.0080926
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	145	34%	0%	52%	0%	0%	0%	3%	3%	0%	0%	0%	0%	0%	0%	3%	3%	100%	0.1300228	1.5319528	0.0010160	0.0119705
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0551335	0.4595877	0.0000291	0.0002426
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	185	54%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1010261	1.1767331	0.0004932	0.0057447
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	100	60%	0%	25%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0864728	0.9467793	0.0001345	0.0014728
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	275	55%	0%	24%	0%	4%	2%	5%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0962872	1.2157264	0.0004119	0.0052006
0"	111	Austin Rd W (depressed)	Eastbound	3	52	350	30%	1%	51%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	1%	1%	100%	0.1422522	1.6214943	0.0007192	0.0081976
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	190	26%	3%	53%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	0%	3%	3%	100%	0.1473824	1.7098931	0.0004045	0.0046927
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	545	55%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0372391	1.0434813	0.0111061	0.3112038
	A	Internal Rd A	Bothbound	4	404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0057955	0.0567367	0.0000033	0.0000318
	В	Internal Rd B	Bothbound		361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1048959	1.1361667	0.0001578	0.0017090
	С	Internal Rd C	Bothbound		521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.3088922	3.3517635	0.0002235	0.0024254
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover			180	645	34%	1%	12%	1%	7%	4%	12%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1178284	2.5455230	0.0038000	0.0820931

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 180 | 1645 | 34% | 17% | 12% | 17% |

Scenario 2		30%																									
Scenario 2		30 %		(extracted from to food Works a Kowloon)	it West	calculated by of portal/openi involved	number	Area source divided by	ce - cali area	iculated by emission rate																	
				Opening (g/s)		Portal/ Op (g/s) - Volu	ening me	(g/m2-s)) - Are	e - Portal/ Opening ea source																	
		Portal/ opening	Source Type	PM				PM N			Formula from Scenario	Emission ca			a (Extracted	from the	approved	EIA of F	Road Wor	ks at Wes	t Kowloon)					
		A	Area	9.1292E-05				2E-07 29			1	0.3 x Tunne															
80.935	0.873	В	Area	0.00117568				3E-06 48			1	2/3 x (0.7 x															
		CE	Area	0.00031434				5E-07 68	E-06	635.3	1	0.3 x Tunne	Section C	C + 0.3	x (1/3 x (19	9.065 / 50) x (0.7 x	Tunnel	Section A	i + 1 x Tur	nnel Sectio	n B))+().3 x Tunn	I Section E			
		D1-D7		0.00117448						-																	
		D8-D14	Volume			5.59279E-05				-	1	0.7 x Tunne						lunnel S	ection A	+ 1 x Iunr	nel Section	B))+1:	x Tunnel S	ection D			
		F	Area	0.00022697				8E-07 98	E-06	277.5	1	0.3 x 0.7 x T	unnel Sect	ction E +	+ 0.3 x Tunn	el Section	F								· · · · · · · · · · · · · · · · · · ·	. /	at a state and
		11-14		0.00510713						-	1																ction Internal
		15-18	Volume			0.000425595				-																	flow of Tunnel
		JKO1	Area	0.00056651				4E-07 48	E-06	1542.7	1																nternal Road B +
		L1-L5		0.00100954																							
		L6-L10	Volume			6.73027E-05					1	Tunnel Sect	ion interna	iai Hoad	C) x (traffic	TIOW OF TU	unnei Sect	Bon L / (traffic fic	w of Tunn	nei Section	I + traffic	TIOW OT TU	nnei Sectio	n L + tratt	C flow of Tur	nnel Section P))
		M1-M4		0.0002732						-																	
		M5-M8	Volume	0.0002732	0.0000007	2.2767E-05	0.0003				1	0.5 x (Tunne	el Section N	IM + Iur	nnel Section	N)											
		N1-N4		0.0002732																							
		N5-N8	Volume	0.00099694	0.044400	2.2767E-05	0.0003			-	1	0.5 x (Tunnel					1.07.0	1 00 v Ti	unnal Caa	tion V . C	7 / 1/9	/ Tunnol	Continu In	ornal Bood	A . Tues	ol Cootion I	nternal Road B +
		P1-P4	L	0.00099694		0.000166157 8.30787E-05					l.																unnel Section
		P5-P8	Volume	0.01110605						-	-	runnel Sect	ion interna	ai noau	C) x (trail	IC HOW OI	rurinel Se	CHOILE /	(u dilic i	IUW OI TUI	illei seciic	mı+tam	C HOW OF I	urmer 5ect	1011 L + (f2	THE HOW OF TH	unner Section
		W1-W8 W9-W16	L	0.01110605		0.000925504		-		-	l .	1 x Tunnel V	.,														
		701-710	Volume	0.00379997						-		i x iunnei v	v														
		711-720	Volume	0.003/999/		0.000253331				-	1	1 x Tunnel >	,														
		/11-/20 BaseA	Volume	0.00012818	0.0013887					-	-	1/3 x Basen		ARC													
9/ 0	Serving Rd	BaseC	volund		0.0013887				_			1/3 x Basen															
76 0	Out of 500m	801-820	Volume	0.00012010	0.0013007	0.000128184	0.0014			_	1	1 x Tunnel		0,0,0										1	_		
	Out of 500m	901-903	* Olding									1 x Tunnel 2		+	_	_	_	-			 	 	 	+	+		
	Out of 500m	901-903	Volume	—								1 A TUTTINET Z		+	_	_	_	-			 	 	 	+	+		
	Out of 500m	904-906 V1	Point								from 1-4			+	_	_	_	-			 	 	 	+	+		
			r one	H .							HUIII 1:4										1	1	1	1			

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr03-04)

														Hr 03-04 (2	015 EIA_19-1	2-2011.xls)								Rate (g/km-		Emissio (g/s	's)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0001174	
B ^(I)		Lin Cheung Rd (underpass)	Northbound	3	272	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0004373	0.0047897
C ^(f)		Lin Cheung Rd (underpass)	Northbound	3	110	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0001768	
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0002829	0.0030992
E ^(f)	72	Lin Cheung Rd (underpass)	Southbound	3	155	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0970091	1.1690494	0.0005012	0.0060401
F ⁽¹⁾		Lin Cheung Rd (depressed)	Southbound	3			54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0970091	1.1690494	0.0005562	0.0067025
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3		150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1089485	1.3270861	0.0005493	0.0066907
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3		225	27%	2%	53%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1423527	1.7284372	0.0015392	0.0186887
I ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3	194	60	33%	0%	58%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1543550	1.4791575	0.0004991	
J ⁽¹⁾		Austin Rd W (depressed)	Westbound	3	194	70	36%	0%	57%	0%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1472623	1.3912920	0.0005555	
KIII		Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0543449	0.4569923	0.0000287	0.0002412
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	85	59%	0%	29%	0%	0%	0%	6%	6%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0929589	0.9520466	0.0002085	
M ^(r)	84	Lin Cheung Rd	Southbound	3		115	52%	0%	22%	0%	4%	4%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1036526	1.2775418	0.0001854	
N ⁽ⁱ⁾	77	Lin Cheung Rd	Northbound	3	56	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1089485	1.3270861	0.0002542	0.0030965
0"	111	Austin Rd W (depressed)	Eastbound	3	52	180	22%	3%	53%	0%	3%	3%	6%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1489664	1.9219048	0.0003873	0.0049970
P10		Austin Rd W (depressed)	Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	U%	0%	0%	0%	100%	0.1413646	1.2954102	0.0001940	0.0017776
W ^{cc}		West Kowloon Highway (WKH)	Northbound	2		545	55%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0372391	1.0452387	0.0111061	
	A	Internal Rd A	Bothbound	4	404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0057589	0.0568122	0.0000032	0.0000319
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1048837	1.1379078	0.0001578	
		Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	J%	0%	0%	0%	0%	0%	100%	0%	0%	0%	U%	0%	100%	0.3088921	3.3569111	0.0002235	0.0024291
X"		Reprovision of Gascoigne Rd Flyover		3	180	655	34%	1%	11%	1%	7%	5%	12%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1202185	2.5743785	0.0039372	0.0843109

			30%																								
						the approved EIA	Volume source - calculated by nu of portal/opening involved	mber Area	a source - led by area	calculated I	by emission rate																
							Emission Ra					ĺ															
					Opening (g/s)		(g/s) - Volum			Kate - Por Area sour	rtal/Opening																
					PM					(Area		Formula	1														_
			Portal/ opening		PM	NOX	PM N	OX PN	I NOS	(Area)		from															
				Source Type									Emission c	alculation fo	rmula (Ex	tracted from	n the appro	ved EIA	of Road Wo	rks at Wes	t Kowloon)						
			A	Area	3.5207E-05	0.0003856				7 491.2		1	0.3 x Tunne	Section A													_
80	0.935 0.8	73	В			0.0049663			06 1E-05			1		Tunnel Secti													
						0.0026101			07 4E-06	635.3		1	0.3 x Tunne	Section C -	+ 0.3 x (1/	3 x (19.06	5/50)x(0).7 x Tun	nel Section	A + 1 x Tu	nnel Section	1B))+0	.3 x Tunnel	Section E			
			D1-D7		0.00045294		4.31375E-05 0.																				
				Volume			2.15687E-05 0.		-	-		1		Section C -				7 x Tunne	el Section A	t + 1 x Tun	nel Section	B))+1x	Tunnel Se	ction D			
						0.0032792			06 1E-05	5 277.5		1	$0.3 \times 0.7 \times$	Tunnel Section	on E + 0.3	x Tunnel S	ection F										
			11-14		0.00335195	0.039428	0.000558658 0.					1		Section I + 1													
				Volume	0.0003287	0.000550	0.000279329 0.		-	 3 1542.7			Hoad A +	unnel Section	n Internal I	40ad B + 1	unnel Section	on Interna	al Hoad C)	x (traffic)	now of Tunn	el Section	1 / (traffic	TIOW OT TUN	nei Section	1 + traffic fic	<u>wc</u>
			JKO1 L1-L5				6.68942E-05 0.		37 2E-06	5 1542.7		1		Section L + C													
				Volume	0.00030171	0.0030230	3.34471E-05 0			-				tion Internal I													
			M1-M4		0.00021982	0.002601	3.66364E-05 0.		_	-			Turiner oec	uon miema	iodu Oj x	(traffic flow	or runner	OGCION L	/ (wante i	IOW OF TUIT	nei dection	T U allic I	IOW OF TUIL	iei Section	L + traine i	low or runne	31 0
				Volume	0.00021302	0.002031	1.83182E-05 0.					,	0.5 v (Tupo	el Section M	⊥ Tunnel 9	Section M											
			N1-N4		0.00021982	0.002691	3.66364E-05 0		-				0.0 x (1011	or ocomorr ivi	1 10111101	3000001114)											_
				Volume			1.83182E-05 0.		-	-		1	0.5 x (Tunn	el Section M	+ Tunnel S	Section N)											
			P1-P4		0.00054229	0.0049929	9.03823E-05 0.	8000	-	-				Section P + 0													
			P5-P8	Volume			4.51911E-05 0.		-			1	Tunnel Sec	tion Internal I	Road C) x	(traffic flo	w of Tunne	I Section	P / (traffic	flow of Tu	nnel Section	n I + traffic	flow of Tu	nnel Sectio	n L + traffic	flow of Tunn	inel
			W1-W8		0.01110605	0.3117279	0.000925504 0.		-	-																	
				Volume			0.000462752 0.		-			1	1 x Tunnel	N													
			701-710		0.00393716	0.0843109	0.000262477 0.					1															
			711-720	Volume			0.000131239 0.		-				1 x Tunnel														
							0.000128171 0.							ment roads A													
	% of Serving		BaseC		0.00012817	0.0013909	0.000128171 0.	.0014						nent roads A	,B,C												_
		Out of 500m		Volume					-	-		1	1 x Tunnel 1 x Tunnel					-		1						1	4
		Out of 500m	901-903				-	_		-			i x iunnei	Ĺ				-	-	-	_						4
		Out of 500m Out of 500m		Volume Point				-	-	-		1 from 1-4						-	+	-							+
		Out or boom	VI	Point						_		rom 1-4	-					-	+	+	1						+

Top Openings and Ventilation Exhaust (Hr04-05)

														Hr 04-05 (2	015 EIA_19-1	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	I GVA	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	60	58%		25%	0%	086	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0805467	0.0001180	0.0012903
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	60	58%		25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467	0.0004397	0.0048078
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467	0.0001778	0.0019443
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467	0.0002845	0.0031109
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0976081	1.1735407	0.0005043	0.0060633
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0976081	1.1735407	0.0005596	0.0067283
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3	121	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1095626	1.3316678	0.0005524	0.0067138
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173	230	26%	2%	54%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1447187	1.7333541	0.0015995	0.0191584
In.	117	Austin Rd W (depressed)	Eastbound	3	194	60	33%	0%	58%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1555242	1.4858010	0.0005029	0.0048041
$J^{(1)}$	116	Austin Rd W (depressed)	Westbound	3	194	65	31%		62%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1594894	1.5012774	0.0005587	0.0052586
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	20	75%		25%	0%	0%	0%	0%		0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0547480	0.4592040	0.0000289	0.0002424
L ^(t)	112	Lin Cheung Rd (depressed)	Northbound	3	95	85	59%	0%	29%	0%	0%	0%	6%	6%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0935337	0.9559042	0.0002098	0.0021441
M(1)	84	Lin Cheung Rd	Southbound	3			50%		25%	0%	4%	4%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1085232	1.2989946	0.0002026	0.0024248
N ^(l)	77	Lin Cheung Rd	Northbound	3		150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1095626	1.3316678	0.0002556	0.0031072
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3		180	19%		56%	0%	3%	3%	6%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1556065	1.9736005	0.0004046	0.0051314
P ^(t)	110		Westbound	3	52	95	37%		58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1424472	1.3014426	0.0001955	0.0017859
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2		535	54%		16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0379007	1.0648712	0.0110960	0.3117558
	A	Internal Rd A	Bothbound	4	404	5	100%		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0054188	0.0557154	0.0000030	0.0000313
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.0982316	1.0922400	0.0001478	
	C	Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.2892760	3.2210045	0.0002093	0.0023308
X ^{ey}	144	Reprovision of Gascoigne Rd Flyover		3	180	315	35%	0%	11%	0%	8%	5%	13%	11%	2%	2%	2%	0%	0%	10%	5%	0%	100%	0.1205227	2.5939861	0.0018982	0.0408553

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 315 | 35% | 0% | 17% | 17% | 19% | 19% | 1800 |

Scenario 2		30%										
		30 %		(extracted from t of Road Works a Kowloon)	at West	calculated by of portal/open involved	number ing	Area sourc	e - calc area	culated by emission rate		
				Emission Ra Opening (g/s)		Portal/ Op (g/s) - Volu	ening ime	(g/m2-s)	- Are	e - Portal/ Opening ea source		
	Porta ID.	al/ opening S	ource Type					PM N				Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
	A	А	irea	3.5405E-05				7E-08 88				0.3 x Tunnel Section A
80.935 0.873	В	А	irea	0.00045596				1E-06 18				2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
	CE	А	irea	0.00022456				4E-07 48	E-06	635.3	1	0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 0.3 x Tunnel Section E
	D1-D7			0.00045549					-	-		
	D8-D1	14 V	olume			2.16902E-05			-	-		0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F	А	irea	0.00027379				1E-06 18	E-05	277.5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F
	11-14			0.0034263						-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal
	15-18	v	olume			0.000285525				-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I)
	JKO1	1 A	irea	0.00033244		-		2E-07 29	E-06	1542.7	1	0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +
	L1-L5	5		0.000509	0.0056807	6.78669E-05	0.0008			-		1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +
	L6-L10	10 V	olume			3.39335E-05				-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)
	M1-M	A4		0.00022911	0.002766	3.81852E-05	0.0005			-		
	M5-M	48 V	olume			1.90926E-05				-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4	14		0.00022911	0.002766					-		
	N5-N8	18 V	olume			1.90926E-05				-		0.5 x (Tunnel Section M + Tunnel Section N)
	P1-P4		-	0.00054333				- T-		-		1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B +
	P5-P8	'8 V	olume			4.52775E-05					1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section
	W1-W	W8		0.01109596						-		
	W9-W		olume			0.000462332				-	1	1 x Tunnel W
	701-7		-	0.00189823						-	1	
	711-7	720 V	olume			6.32744E-05				-	-	1 x Tunnel X
		Δ ν	olume	0.00012004	0.001335							1/3 x Basement roads A,B,C
	Base/					0.00012004	0.0013					1/3 x Basement roads A,B,C
% of Serving Rd	Base	eC .		0.00012004	0.001335							
		eC .	olume	0.00012004	0.001335		-			-	1	1 x Tunnel Y
0	Base	eC 820 V		0.00012004	0.001335		-			-	1	1 x Turnel Z
0	Dut of 500m 801-8:	eC 820 V 903		0.00012004	0.001335		-			-	1	
0	Dut of 500m 801-80 Dut of 500m 901-90	eC 820 V 903 906 V	folume	0.00012004	0.001335					-	1 1 from 1-4	1 x Tunnel Z

	Top Openings and Ventilation Exhaust (Hr05-06)	

														Hr 05-06 (2	015 EIA_19-1	2-2011.xls)								Rate (g/km-		Emissio (g/s	
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3 I	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	55	64%	0%	27% 0	% 0	%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0001082	
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	55	64%	0%	27% 0	% 0	%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0004033	
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3			64%	0%	27% 0	% 0	%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0001631	0.0017277
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3	176	55	64%	0%	27% 0	% 0°	%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0002610	0.0027643
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155		54%	0%	23% 0	% 49	%	0%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.0939265	1.1335754	0.0005257	
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	130	54%	0%	23% 0	% 49	%	0%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.0939265	1.1335754	0.0005834	
G ⁽ⁱⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121		50%	0%	23% 0	% 3	%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1104808	1.3353208	0.0005570	0.0067322
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3		230	26%	2%	54% 0	% 2	%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1490417	1.7540131	0.0016473	
ļ ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3			27%	0%	64% 0	% 0	%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1741529	1.6384512	0.0005162	
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	70	29%	0%	57% 0	% 0	%	0%	7%	0%	0%	0%	7%	0%	0%	0%	0%	0%	100%	0.1665138	1.6021293	0.0006281	0.0060436
K ^(t)	114	Lin Cheung Rd (depressed)	Southbound	3	95		60%	0%	40% 0	% 0°	%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0887268	0.7213419	0.0000585	
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95		58%	0%	26% 0	% 0°	%	0%	5%	5%	5%	0%	0%	0%	0%	0%	0%	0%	100%	0.0872000	0.8773389	0.0002186	
M(1)	84	Lin Cheung Rd	Southbound	3	56		50%	0%	25% 0	% 49	%	4%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1042185	1.2227209	0.0002270	0.0026628
N ^(I)	77	Lin Cheung Rd	Northbound	3	56		50%	0%		% 3	%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1104808	1.3353208	0.0002578	0.0031157
O(1)	111	Austin Rd W (depressed)	Eastbound	3	52		18%	3%	58% 0	% 3	%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1628554	1.9802526	0.0004469	0.0054347
P ^(l)	110	Austin Rd W (depressed)	Westbound	3			37%	0%	58% 0	% 0°	%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1471108	1.3229804	0.0002019	0.0018154
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970		53%	0%	16% 0	% 3	%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0385875	1.0858022	0.0110859	
	A	Internal Rd A	Bothbound	4	404		33%	0%	33% 0	70	%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.0785591	0.9548754	0.0001322	
	В	Internal Rd B	Bothbound	4	361		50%	0%	25% 0	% U	%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0602288	0.7299638	0.0001208	
	С	Internal Rd C	Bothbound	4	521		50%	0%	0% 0	% 0°	%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1178386	1.4323130	0.0001705	0.0020729
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover		3	180	315	35%	0%	11% 0	% 6	%	5%	13%	11%	2%	2%	2%	0%	0%	10%	5%	0%	100%	0.1200647	2.5928393	0.0018910	0.0408372

Act | 1948 | 1949 | 194

			30%																							
						the approved EIA	Volume source calculated by n of portal/openin involved	umber Are	source - o led by area	alculated by emission rate																
						te - Portal/	Emission Ra																			
					Opening					ate - Portal/ Opening	,															
					(g/s)		(g/s) - Volun			rea source																
			Portal/ opening		PM	NOx	PM !	NOx PN	I NOx	(Area)	Formula															
				Source Type							from Scenario	Emission	alculation form	uda (Ext	racted from	n the ennre	and FIA	f Dood Wo	rke at Was	t Kowloon)						
					3.2474F-05	0.000344		- 7F-	18 7F-07	491.2	1	0.3 x Tunn	Section A	idia (Exti	racteu n oi	n the appre	veu LiA	I Koau 110	i ks at wes	(KOWIOOH)						-
80.	1.935 0.8	73	В	Area	0.00041821	0.0044296		- 1E-	06 1E-05	341.9	1	2/3 x (0.7)	Tunnel Section	A + 1 x	Tunnel Se	ction B)+	1/3 x (30.	935 / 50)	x (0.7 x T	unnel Section	A + 1 x 7	funnel Sect	on B)			_
						0.0026153			07 4E-06	635.3	1	0.3 x Tunn	Section C + 0	1.3 x (1/3	3 x (19.06	5/50)x(0	0.7 x Tunr	el Section	A + 1 x Tu	nnel Section	B))+0.	3 x Tunnel :	Section E			_
			D1-D7		0.00041778	0.0044251	3.97888E-05 C		-	-																
				Volume			1.98944E-05 (-	-	1		Section C + 0				7 x Tunne	I Section A	+ 1 x Tun	nel Section B))+1x	Tunnel Sec	tion D			
						0.0034447			06 1E-05	277.5	1	$0.3 \times 0.7 \times$	Tunnel Section	E + 0.3	x Tunnel Si	ection F							-11 11 7			
			11-14		0.00353575	0.0407932	0.000589292 0			-	1		Section I + 1 x													
				Volume Area	0.00037998	0.0040007	0.000294646		7 3E-06	-		Hoad A +	unnel Section I	nternal H	0ad B + 1	unnel Section	on Interna	Hoad C)	x (traffic	low of Tunne	Section	/ (traffic f	ow of Tuni	nel Section I	+ traffic flo	W
			JKO1 L1-L5				7.41906E-05 0		07 3E-06	1542.7	1		Section L + 0.7													
				Volume	0.000000040	0.000143	3.70953E-05 C			-	┥,		tion Internal Ro													
			M1-M4		0.00024238	0.0028893	4.03961E-05 C				<u>'</u>	Turner Sec	BOIT III(BITIGET IO	au O) x (traine nov	r Or Turnior	OCCION L	/ (traine i	IOW OF TUIT	iei oection i	T II di IIIC II	OW OF TUILIT	bi Occion	_ + traine ne	JW OI TUITIO	10
				Volume	0.000L-1200	0.0020000	2.01981E-05		-	_	1	0.5 x (Tunr	el Section M +	Tunnel S	ection N)											
			N1-N4		0.00024238	0.0028893	4.03961E-05 C		-	-	ľ															_
			N5-N8	Volume			2.01981E-05 C		-	-	1		el Section M +													
			P1-P4		0.00060959	0.0056795	0.000101599		-	-			Section $P + 0.7$													
			P5-P8	Volume			5.07995E-05 C		-	-	71	Tunnel Sec	tion Internal Ro	ad C) x	(traffic flo	w of Tunne	l Section	P / (traffic	flow of Tu	nnel Section	I + traffic	flow of Tun	nel Section	L + traffic	flow of Tunn	nel
			W1-W8		0.01108588	0.3119419	0.000923823		-	-																
				Volume			0.000461911	.013	-	-	1	1 x Tunnel	N													
			701-710		0.00189102	0.0408372	0.000126068		-	-	1	4	,													
				Volume Volume	0.00014110	0.0017147	6.3034E-05 0		-	-	-	1 x Tunnel	x nent roads A.B.	_												_
	% of Servino	a Rd	BaseC				0.000141191 0		+	-	1		nent roads A,B,													_
	no or Serving	Out of 500m		Volume	0.00014119	0.0077147	0.000141191		-		1	1 x Tunnel						1	1	т т						$\overline{}$
		Out of 500m	901-903							_		1 x Tunnel					-	1	 	1						+
		Out of 500m		Volume					-	_	1	dillioi						t	1	1 1						+
		Out of 500m		Point							from 1-4	-						İ	İ							T
												1														T

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr06-07)	
---	--

														Hr 06-07 (2	015 EIA_19-1:	2-2011.xls)								Rate (g/km-		Emission (g/s	's)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	140	50%	0%	21%	0%	1%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0003069	0.0038487
B ^(I)	73	Lin Cheung Rd (underpass)	Northbound	3	272	140	50%	0%	21%	0% 4	1%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0011436	0.0143403
C ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	110	140	50%	0%	21%	0% 4	1%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0004625	
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	140	50%	0%	21%	0% 4	1%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0007400	
E ^(f)	72	Lin Cheung Rd (underpass)	Southbound	3	155		54%	0%	23%	0% 2	%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0970157	1.2597501	0.0010025	
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	240	54%	0%	23%	0% 2	%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0970157	1.2597501	0.0011124	
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	285	53%	2%	25%	0% 2	1%	2%	5%	4%	4%	2%	0%	0%	2%	2%	0%	0%	100%	0.0933683	1.1684203	0.0008944	
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173	230	24%	2%	57%	0% 2	%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1484276	1.7677545	0.0016405	
I ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3	194	55	27%	0%	64%	0% (1%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1682295	1.6125588	0.0004986	
J ⁽¹⁾		Austin Rd W (depressed)	Westbound	3	194		29%	0%	57%	0% (1%	0%	7%	0%	0%	0%	7%	0%	0%	0%	0%	0%	100%	0.1611435	1.5786187	0.0006079	0.0059549
K ⁱⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	55	64%	0%	27%	0% (1%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0943519	1.0162219	0.0001369	0.0014749
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	215	51%	2%	23%	0% 2	%	2%	7%	2%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1004855	1.3425969	0.0005701	0.0076174
M ^(r)	84	Lin Cheung Rd	Southbound	3	56	255	53%	0%	25%	0% 2	%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0995059	1.2528920	0.0003947	0.0049698
N ^(c)		Lin Cheung Rd	Northbound	3	56	300	52%	2%	25%	0% 2	5%	2%	7%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1014731	1.2752009	0.0004735	
0		Austin Rd W (depressed)	Eastbound	3	52	190	18%	3%	58%	0% 3	1%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1574671	1.9567890	0.0004322	0.0053703
P ⁽ⁱ⁾	110	Austin Rd W (depressed)	Westbound	3	52	95	32%	0%	63%	0% (1%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1525056	1.3861474	0.0002093	0.0019021
W	98	West Kowloon Highway (WKH)	Northbound	2	1970	1060	51%	0%	17%	0% 2	%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0606065	1.5378068	0.0351551	
	A	Internal Rd A	Bothbound	4	404	20	50%	0%	25%	0% (1%	0%	0%	0%	0%	0%	25%	U%	0%	U%	U%	0%	100%	0.0602259	0.7300918	0.0001352	
	R	Internal Rd B	Bothbound	4	361	35	43%	0%	29%	0% (1%	0%	0%	0%	0%	0%	29%	0%	0%	0%	U%	0%	100%	0.0680821	0.8264940	0.0002389	0.0029008
	C	Internal Rd C	Bothbound	4	521	20	25%	0%	25%	0% (1%	0%	0%	0%	0%	0%	50%	0%	0%	0%	U%	0%	100%	0.1165277	1.4187265	0.0003373	0.0041064
X"	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	665	33%	1%	11%	1%	%	5%	13%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1198887	2.5771269	0.0039863	0.0856895

Act | 1948 | 1949 | 194

			30%																							
						the approved EIA	Volume source - calculated by nun of portal/opening involved	nber Area divide	source - ca d by area	alculated by emission rate																
					Emission Ra Opening		Emission Rate Portal/ Openi		ssion Ra	te - Portal/Opening																
					(g/s)		(g/s) - Volume			ea source																
					PM	NOx	PM NO	Ox PM	NOx	(Area)	Formula															Т
			Portal/ opening								from Scenario	p	alculation form	1.00.				.en	1 177							
				Source Type Area	9 2075F-05	0.0011546		2F-0	7 2F-06	401.2	scenario	0.3 x Tunne	Section A	iuia (Exti	racted iroi	n tne appro	ved EIA	or Road We	orks at we	St Kowio	on)					_
80.	935 0.87	3				0.0148693			3 4E-05		1		Tunnel Section	A + 1 x	Tunnel Se	tion B)+	1/3 x (30	0.935 / 50)	x (0.7 x T	unnel Se	ction A + 1 x	Tunnel Sec	tion B)			_
			CE	Area	0.00049129	0.0062946		8E-0	7 1E-05	635.3	1	0.3 x Tunne	Section C + 0	1.3 x (1/3	x (19.065	5/50)x(0).7 x Tuni	nel Section	A + 1 x Ti	unnel Sec	ction B)) + 0	0.3 x Tunnel	Section E			_
			D1-D7		0.00118456		0.000112815 0.0		-	-																
				Volume			5.64074E-05 0.0		-	-	1		l Section C + 0				7 x Tunne	el Section A	4 + 1 x Tur	nnel Secti	ion B)) + 1 :	x Tunnel Se	ction D			
						0.0070672			3E-05	277.5	1	0.3 x 0.7 x	Tunnel Section Section I + 1 x	E + 0.3 x	Tunnel Se	ction F					A 7 A AA					
			11-14		0.00446262	0.0541358	0.000743769 0.0		-		1		unnel Section I													
				Volume Area	0.00041848	0.0046427	0.0003/1885 0.0		7 3E-06	1540.7		0.3 v Tunn	differsection J + 0.	nternal H	0a0 B + II	innel Section	on Interna	3 v Tunnol	Section O	1 0 3 v 1	/3 v / Tunnel	Section Inte	arnal Boad	A . Tunnel	1 + traffic fic	JW.
			L1-L5				0.000127676 0.0		3E-06	1042.7	-		Section L + 0.7													
				Volume	0.00000707	0.0110007	6.38382E-05 0.0			-	١,		tion Internal Ro													
			M1-M4		0.00043412	0.0054604	7.2354E-05 0.0	1009	-					,												_
				Volume			3.6177E-05 0.0	1005	-	-	1	0.5 x (Tunn	el Section M +	Tunnel S	ection N)											
			N1-N4		0.00043412	0.0054604	7.2354E-05 0.0		-	-																
				Volume			3.6177E-05 0.0	1005	-	-	1		el Section M +													
			P1-P4		0.0006583	0.0065371	0.000109717 0.0		-	-	<u>.</u>		Section P + 0.7 tion Internal Roa													
			P5-P8 W1-W8	Volume	0.02515512	0.0000124	5.48584E-05 0.0 0.002929593 0.0		-	F	1	runnel Sec	uon miemai Ho	aa C) X	(traific tic	w or Tunne	section	P/(trame	O HOW OF TH	unnel Sec	cuon i + tram	C HOW OT TU	rinei Sectio	rı L + tramic	now of Tuni	ane.
				Volume	0.03015512	0.0320134	0.002929593 0.0		-	-	- I.	1 x Tunnel	M													
			701-710		0.0039863	0.0856895	0.000265753 0.0		-		1	· A runner	•													_
				Volume			0.000132877 0.0		-	-	Ė	1 x Tunnel	x													
							0.000237135 0.0						nent roads A,B,													_
	% of Serving		BaseC		0.00023714	0.0028819	0.000237135 0.0	1029					nent roads A,B,	,C												Ξ
		Out of 500m		Volume				-	-	-	1	1 x Tunnel														\Box
		Out of 500m	901-903						-			1 x Tunnel	Z						1							
		Out of 500m		Volume					-		1											1				_
		Out of 500m	V1	Point							from 1-4	-		_			-	-	+	-	-	1		1		4

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr07-08)

														Hr 07-08 (2	015 EIA_19-1:	2-2011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name - Portal & top opening of																								PM	NOx	PM	NOx
underpass in EIA of Rd Works in WK)	WKCD section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	190	53%		24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0003791	0.0050443
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3		190	53%		24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0014124	0.0187951
C _{II}	73	Lin Cheung Rd (underpass)	Northbound	3		190	53%		24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0005712	0.0076009
D(1)	73	Lin Cheung Rd (underpass)	Northbound	3		190	53%		24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0009139	0.0121615
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3		615	52%		24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.0980281	1.2558395	0.0025957	0.0332536
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3			52%		24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.0980281	1.2558395	0.0028804	0.0369007
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3		750	51%		24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.0989166	1.2331750	0.0024935	0.0310863
H	119	Austin Rd W (depressed)	Eastbound	3			24%		57%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1529852	1.7603536	0.0069842	0.0803650
F"	117	Austin Rd W (depressed)	Eastbound	3			25%		55%	0%	2%	2%	4%	2%	2%	0%	0%	0%	2%	2%	2%	2%	100%	0.1486270	1.7441715	0.0022426	0.0263176
J ^(r)	116		Westbound	3			25%		54%	0%	2%	2%	4%	2%	2%	0%	2%	0%	2%	2%	2%	2%	100%	0.1483998	1.7608600	0.0022392	0.0265694
K**	114	Lin Cheung Rd (depressed)	Southbound	3			45%		24%	0%	3%	3%	6%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.1063910	1.4684505		0.0063939
E CONTRACTOR OF THE CONTRACTOR	112	Lin Cheung Rd (depressed)	Northbound	3		320	53%		25%	0%	2%	2%	6%	3%	3%	2%	0%	0%	2%	2%	0%	0%	100%	0.0964757	1.1908753		0.0100563
M.	84	Lin Cheung Rd	Southbound			645	51%		24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1018044	1.2926960	0.0010214	0.0129700
N°	//	Lin Cheung Rd	Northbound				52%	1% 2	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1010955	1.2592016	0.0007313	0.0091082
DIII	110	Austin Rd W (depressed) Austin Rd W (depressed)	Eastbound			785 430	25%	1% 5	55%	0%	1%	1%	4%	2%	1%	1%	1%	0%	1%	1%	2%	3%	100%	0.1488055	1.6842114		0.0190971
IAI ⁽³⁾	110	West Kowloon Highway (WKH)	Westbound Northbound	3		1575	20% 51%		17%	0%	176	1%	0%	176	3%	3%	176	076	5%	176	2%	276	100%	0.0613596	1.5130225	0.0009252	1.3040362
**	98	Internal Rd A	Bothbound	4	404		50%		33%	0%	276 No	0%	0%	376 ner	3% ne/	3%	17%	0%	0%	276	3%	0%	100%	0.1380794	1.2327271	0.0028843	0.0041502
	n D	Internal Rd B	Bothbound	2	361	80	33%		25%	000	770	076	0.76	076	070	0 /0	25%	0.76	0.76	0.76	0.76	0.70	100%	0.1730856	1.7471376	0.0004649	0.0041502
———	C	Internal Rd C	Bothbound	4	521	20	20%		20%	0.00	370 No.	076	0.70	0.40	070	0%	60%	0.76	0.70	0.76	0.76	0.70	100%	0.1730856	2.5515727	0.0010414	0.0092317
Y**	144		Westbound	9		1325	33%	0% 2	110/	10/	7/0	D0/	13%	100/	20/0	20/	10/	076	10/	0%	0 % Ee/	10/	100%	0.1212756	2.6406536	0.0080345	0.1749433
r	144	neprovision of Gascoigne Hd Flyover	***estudund	0	100	1020	JJ 70	U 70	1170	1 /0	70	U76	1070	1076	£ /0	2.70	1170	0.70	170	2 /0	0.76	1170	100%	0.1212/00	2.0400030	0.0080345	0.1749433

PA Heapprosists of classcogine for hypoer (Westbound 3 | 1980 | 17325 | 33% | U% | 171% | 17% | 7% | Notic (I): Tunnel name is based on Portal 3 to opening of undergass in EUA of Park Morks in West Kowtoon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutarits multiplied by traffic flow of each roads.

ario 2				30%										
						Calculated by th (extracted from of Road Works a Kowloon)	the approved EIA		number	Area so divided l		culated by emission rate		
						Emission Ra Opening (g/s)		Emission F Portal/ Op (g/s) - Volu	ening			e - Portal/ Opening		
			Box	tal/ opening		PM						(Area)	Formula	
			In In		Source Type								Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
			A.		Area	0.00011372	0.0015133			2E 07	3E-06	401.2		1.3.3 x Turnel Section A
	80 935	0.873	R		Area	0.00116452	0.0013133				6E-05			2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
	00.303	0.070	CF		Area	0.00101404					2E-05			0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 0.3 x Tunnel Section E
			D1-I	37		0.00146303								
			D8-I		Volume			6.96679E-05					1	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			F		Area	0.00140921				5F-08	7E-05	277 5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F
			11-14			0.01567655	0.1872127	0.002612758	0.0312			-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal
			15-18		Volume			0.001306379	0.0156			-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel S
			JKC	11	Area	0.00154083		-		1E-06	1E-05	1542.7	1	0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
			L1-L	.5		0.00209957	0.0256641			-	-			1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
			L6-L	.10	Volume			0.000139972					1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I) + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P)
			M1-	M4		0.00087635	0.0110391			-	-			
			M5-	8M	Volume			7.3029E-05		-	-		1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-I			0.00087635	0.0110391					-		
			N5-1		Volume			7.3029E-05				-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-I			0.00263243	0.0303248							1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
			P5-I		Volume			0.000219369					1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D + traffic flow D
			W1-			0.05288432								
					Volume			0.002203513					1	1 x Tunnel W
			701-			0.00803451	0.1749433			-			1	<u> </u>
			711-		Volume			0.000267817				-	-	1 x Tunnel X
			Bas		Volume	0.00081124								1/3 x Basement roads A,B,C
	% o	f Serving Rd	Bas			0.00081124	0.0079646	0.000811237	0.008					1/3 x Basement roads A,B,C
		Out of 500m	801-		Volume			-			-			1 x Tunnel Y
		Out of 500m	901-					-				-		1 x Tunnel Z
		Out of 500m	904	906	Volume			-	-	-	-	-	1	
		Out of 500m	V1		Point								from 1-4	
							1	1					1	

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr08-09)	
---	--

														Hr 08-09 (2	015 EIA_19-1	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	385	51%		23% (0% 3	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0009380	0.0112480
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3		385	51%		23% (0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0034950	0.0419102
C _(l)	73	Lin Cheung Rd (underpass)	Northbound	3		385	51%		23% (0% 3	3%	3%	6%	3%	3%	3%	1%	0%	3%	196	0%	0%	100%	0.1201489	1.4407644	0.0014134	0.0169490
D ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3		385	51%		23% (0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1201489	1.4407644	0.0022615	0.0271184
E ⁽ⁱ⁾	72	Lin Cheung Rd (underpass)	Southbound	3		1215	51%		24% (0% 2	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167078	1.4026321	0.0061053	0.0733752
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3		1215	51%		24% (0% 2	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167078	1.4026321	0.0067749	0.0814228
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3		1505	51%		24% (0% 2	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1148200	1.3773529	0.0058081	0.0696730
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3			23%		58%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	196	2%	2%	100%	0.1719684	1.8790136	0.0118589	0.1295763
P ¹⁷	117	Austin Rd W (depressed)	Eastbound	3			24%		58% (0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	3%	3%	100%	0.1687920	1.8971826	0.0036384	0.0408948
Jo	116		Westbound	3		400	24%		56%	0%	1%	1%	4%	1%	1%	0%	3%	0%	1%	1%	3%	3%	100%	0.1706781	1.9329541	0.0036791	0.0416659
K ⁱⁱⁱ	114	Lin Cheung Rd (depressed)	Southbound	3			53%		25% 0	0% 2	2%	2%	7%	3%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1146854	1.3530218	0.0008928	0.0105329
L _{ev}	112	Lin Cheung Rd (depressed)	Northbound	3			50%		24% (0% 2	2%	2%	7%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1172186	1.3964640	0.0021189	0.0252430
Mer	84	Lin Cheung Rd	Southbound	3		1305	51%		24% (0% 2	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1167217	1.3848659	0.0023694	0.0281128
N°	//	Lin Cheung Rd	Northbound	3			51%		24% (0% 2	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1184768	1.4240655	0.0017693	0.0212660
U-1	111	Austin Rd W (depressed)	Eastbound	3			23%	2%	58%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1699619	1.8582016	0.0029583	0.0323430
po	110		Westbound	3		645		2%	5/% (0% 2	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1719585	1.8928938	0.0016021	0.0176355
w.	98	West Kowloon Highway (WKH) Internal Rd A	Northbound Bothbound	2	1970	4145	51% 40%		17% C	0% 2	2%	0%	6%	10%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0631257	1.5196290	0.1431840	3.4468774 0.0083902
	Α			4	361	50	35%			076	7% W	0%	0%	10%	076	0%	24%	076	0%	076	0%	0%	100%				
	0	Internal Rd B Internal Rd C	Bothbound Bothbound	4	361 521	85	29%		24% (U76 E	37b	U%	0%	076	U76	0%	57%	U76	U%	U76	U%	0%	100%	0.2081043	2.0551660	0.0017738	0.0175174
Mil.				4			29%			U76 U	7% W	0%	13%	U76	076	0%	5/76	076	U%	076	U%	0%					
^	144	Reprovision of Gascoigne Rd Flyover	Westbound	J	180	1680	33%	176	11% 1	176	176	0%	1376	10%	270	176	176	U76	176	976	076	176	100%	0.1407950	2.8390978	0.0118268	0.2384842

PA Helprosiston of Listscognie for Hypoter | Westbound | 3 | 1880 | 1880 | 33% | 1% | 17%

		30%										
					e formula shown he approved EIA it West		number	Area so divided	urce - cal by area	lculated by emission rate		
				Emission Ra	te - Portal/	Emission 1	Rate -					
				Opening						te - Portal/ Opening		
				(g/s)		(g/s) - Volu				ea source		
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
		Portal/ opening									from Scenario	The state of the s
		ID.	Source Type Area	0.0002814	0.0022744			05.07	7E-06	101.0	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.3 x Tunnel Section A
90.935	0.873	A	Area		0.0033744	-			0.0001			0.3 x Turner Section A 2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
30.533	0.073		Area	0.00302333	0.0289955		_		5E-05		1	0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065/50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 0.3 x Tunnel Section E
		D1-D7		0.00362023	0.0434119	0.000344784	0.0041				Ť T	
			Volume			0.000172392			-	-	1	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F	Area	0.00331457	0.0398356	-	-	1E-05	0.0001	277.5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F
		11-14		0.03016401	0.345325				-	-	1	1 x Tunnel Section 1 + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Section Int
			Volume			0.002513668	0.0288		-	-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
			Area	0.00261575					2E-05	1542.7	1	0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road A
		L1-L5		0.00438507	0.050846							1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road A
		L6-L10	Volume			0.000292338				-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of
		M1-M4 M5-M8		0.00206935	0.0246894	0.000344892				-	4.	0.5 x (Tunnel Section M + Tunnel Section N)
		M5-M8 N1-N4	Volume	0.00006035	0.0246894				-		1	U.5 x (Tunner Section M + Tunner Section M)
			Volume	0.00200933		0.000344692			-	-	١.	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4	volume	0.00443974	0.0482509	0.000172446	0.0021		_	_	-	1.3 X (Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road B + Tunnel Secti
			Volume			0.000369978		-	-	-	1,	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow o
		W1-W8		0.14318403				L	-	-		
		W9-W16	Volume			0.005966001	0.1436		-	-	1	1 x Tunnel W
		701-710		0.01182678	0.2384842				-	-	1	
			Volume			0.000394226			-	-	-	1 x Tunnel X
			Volume		0.0126112							1/3 x Basement roads A,B,C
% of Se	erving Rd	BaseC		0.00131403	0.0126112	0.001314025	0.0126				1	1/3 x Basement roads A,B,C
	Out of 500m		Volume			-	-	-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-	4.	1 x Tunnel Z
	Out of 500m	904-906	Volume Point			-	-	-	-	-	1 from 1-4	
	Out of 500m	v1	Point								Irom 1-4	

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr09-10)	

														Hr 09-10 (2	015 EIA_19-1:	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of																								PM	NOx	PM	NOx
underpass in EIA of Rd Works in WK)	WKCD section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	380	50%		24% (0% 3	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0009631	0.0113947
B ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	272	380	50%		24% (0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0035886	0.0424570
C ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3			50%		24% (0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0014513	0.0171701
Dii)	73	Lin Cheung Rd (underpass)	Northbound	3		380	50%		24% (0% 3	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0023220	0.0274722
E ₁₀	72	Lin Cheung Rd (underpass)	Southbound	3		986	51%		24% (0% 2	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1211567	1.4332808	0.0051448	0.0608630
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3		986	51%		24% (0% 2	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1211567	1.4332808	0.0057091	0.0675383
G**	118	Lin Cheung Rd (depressed)	Southbound	3		1230	50%		24% (0% 2	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1199153	1.4192033	0.0049575	0.0586722
Hea	119	Austin Rd W (depressed)	Eastbound	3			22%		59% (0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1781594	1.9129040	0.0124670	0.1338584
P°	117	Austin Rd W (depressed)	Eastbound	3			23%	1% 5	58% (0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1750981	1.9417582	0.0038325	0.0425002
J ⁽ⁱ⁾	116		Westbound	3			22%	1% 5	57% (0%	1%	1%	4%	1%	1%	0%	4%	0%	1%	1%	2%	2%	100%	0.1794183	2.0092829	0.0038767	0.0434145
K ^o	114	Lin Cheung Rd (depressed)	Southbound	3		284	51%		25% (0% 3	3%	2%	6%	3%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1178027	1.4026281	0.0008842	0.0105279
L	112	Lin Cheung Rd (depressed)	Northbound	3	95	705	51%		24% (0% 2	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1196141	1.3978110	0.0022256	0.0260089
M	84	Lin Cheung Rd	Southbound			1088 975	51%		24% (0% 2	2%	2%	6%	3%	3%	3%	1%	0%	2%	1%	0%	0%	100%	0.1211000	1.4093701	0.0020499	0.0238565
N°	//	Lin Cheung Rd	Northbound				50%		24% (0% 2	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1217139	1.4371498	0.0018462	0.0217991
O.	110	Austin Rd W (depressed) Austin Rd W (depressed)	Eastbound Westbound			1233	22%		59% (0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1762200	1.8941014	0.0031389	0.0337386
1A1 ⁽¹⁾	110	West Kowloon Highway (WKH)	Northbound	3			50%		17% (076 4	276 No.	2%	076	276	176	3%	176	076	5%	176	2%	276	100%	0.0644040	1.5391149	0.1265607	3.0245239
**	98	Internal Rd A	Bothbound	4	404		36%		26%	10/ 4	£76 E97	1%	776	376 697	376	376	19%	0%	0%	276	3%	0%	100%	0.1905963	1.9044530	0.0016852	0.0168388
	n	Internal Rd B	Bothbound	2		134	34%		24%	100 0	J / 6 E6/	170	370	076	10/	1 /0	23%	0.76	0.76	170	0.70	0.70	100%	0.1905963	1.9044530	0.0016852	0.0265100
 	C	Internal Rd C	Bothbound	4	521		22%		24% 16% (170 5	30/	170	20/0	49/	10/	10/	50%	076	0.70	170	0.70	0.70	100%	0.1971908	2.5507236	0.0026450	0.0265100
Ven	144		Westbound	9		1685	33%		11%	10/	370	176 E97	13%	100/	70/	10/	10/	0%	10/	176	U 76	10/	100%	0.1463557	2.8843031	0.0021916	0.2430025
r	144	neprovision of Gascoigne Hd Flyover	***estudund	0	100	1000	JJ 70	1170	1170	170	/ /6	U76	1970	1076	£ /0	1 70	170	0.70	170	270	U 76	1170	100%	0.1403007	2.0043031	0.0123305	0.2430025

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 1985 | 35% | 1% | 17% |

		30%									
							number Area	a source ded by an	- calculated by emission rai ea	e	
				Emission Ra	te - Portal/	Emission R					
				Opening					Rate - Portal/ Openin	g	
				(g/s)	1	(g/s) - Volu			Area source		
		Portal/ opening		PM	NOx	PM	NOx PM	1 NO	Ox (Area)	Formula from	
		ID.	Source Type							Scenario	
		A	Area	0.00028893					06 491.2	1	0.3 x Tunnel Section A
80.935 0.873	73	В	Area	0.00372098					001 341.9	1	2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
		CE	Area	0.00214136	0.0253329	-		06 4E-0	05 635.3	1	0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 0.3 x Tunnel Section E
		D1-D7		0.00371718	0.0439783				-		
		D8-D14	Volume	0.00070040	0.0000107	0.000177009		-		1	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
		F	Area	0.00279313	0.0330427			05 0.00	001 277.5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F 1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (1 Tunnel Section I
		11-14 15-18	Volume	0.02908387	0.3202333	0.004847312		-	-	1	Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I / traffi
			Area	0.00298501	0.0324347	0.002423656		ne ne r	05 1542.7		0.3x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x Tunnel Section I terral Road A + Tunnel Section I terral Road A + Tunnel Section I terral Road B + 0.3x Tunnel Section I te
		L1-L5	Aiba	0.00484835		0.000646446		00 ZEN	00 1042.7		1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (173 x (Tunnel Section Internal Road A + Tunnel Road A
		L6-L10	Volume	0.00101000	0.000111	0.000323223			-	− 1,	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I) + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I)
		M1-M4		0.00194803	0.0228278				-		
		M5-M8	Volume			0.000162336		-		- 1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00194803	0.0228278	0.000324672	0.0038		-		
		N5-N8	Volume			0.000162336		-		1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00484068	0.0512072			-	-		1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		P5-P8	Volume			0.00040339		-		1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow o
		W1-W8		0.12656074	3.0245239				-		
		W9-W16	Volume			0.005273364				1	1 x Tunnel W
		701-710		0.01233047	0.2430025			-		1	-l
			Volume	0.00017404	0.0010000	0.000411016			-		1 x Tunnel X 1/3 x Basement roads A.B.C
0/ -/	. Da		Volume		0.0219086			_			1/3 x Basement roads A.B.C 1/3 x Basement roads A.B.C
% of Serving	Out of 500m	BaseC 801-820	Volume	0.00217401	0.0219086	0.002174009	0.0219			-	ITS x Basement roads A, b, C
	Out of 500m	901-923	Volume		1					-	1 x Tunnel 2
	Out of 500m	901-903	Volume		1	_		_	-	⊣.	T A TUTING Z
	Out of 500m	V1	Point					_		from 1-4	
	Out or coom	* '	T OHIE					_		1°4	

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr10-11	

														Hr 10-11	(2015 EIA 19-1:	2-2011.xls)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name -																								PM	NOx	PM	NOx
Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total				
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0008576	0.0103088
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272		49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0031956	
C _{II}	73		Northbound	3	110		49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0012923	
D(i)	73		Northbound	3	176		49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0020677	
E ⁽ⁱ⁾	72		Southbound	3	155	735	52%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1224588	1.4292669	0.0038753	0.0452303
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	735	52%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1224588	1.4292669	0.0043003	0.0501911
G ⁽¹⁾	118		Southbound	3	121	905	51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1204179	1.4169757	0.0036629	0.0431016
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	1425	24%	2%	58%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1763572	1.8766803	0.0120768	0.1285135
I(1)	117	Austin Rd W (depressed)	Eastbound	3	194		25%	1%	57%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1724208	1.9217716	0.0037631	0.0419427
$J^{(1)}$	116	Austin Rd W (depressed)	Westbound	3	194		25%	1%	56%	0%	1%	1%	4%	1%	1%	0%	2%	0%	1%	1%	2%	2%	100%	0.1743272	1.9588750	0.0038047	0.0427524
K ^(t)	114		Southbound	3	95		49%	2%	24%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1189213	1.4490713	0.0006433	
L ^(t)	112	Lin Cheung Rd (depressed)	Northbound	3	95	555	51%	2%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1181199	1.3881040	0.0017300	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	780	51%	1%	25%	0%	2%	3%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1235803	1.4164610	0.0014994	0.0171864
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	790	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	1%	0%	1%	100%	0.1237291	1.4379412	0.0015205	0.0176707
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	1190	24%	2%	58%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	3%	100%	0.1750260	1.9054963	0.0030085	0.0327534
P ^(t)	110	Austin Rd W (depressed)	Westbound	3	52	640	23%	2%	57%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1775428	1.9422847	0.0016413	0.0179553
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970		50%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0632495	1.5224591	0.1086801	2.6160077
	A	Internal Rd A	Bothbound	4	404	55	36%	0%	27%	0%	9%	0%	0%	9%	0%	0%	18%	0%	0%	0%	0%	0%	100%	0.1746258	1.6526518	0.0010778	0.0102005
	В	Internal Rd B	Bothbound	4	361	95	37%	0%	26%	0%	5%	0%	5%	5%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.2030834	1.9538961	0.0019347	
	С	Internal Rd C	Bothbound	4	521		29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2371532	2.3500970	0.0012012	0.0119039
X _(i)	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1670	33%	1%	11%	1%	7%	4%	13%	10%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1487671	2.9494200	0.0124221	0.2462766

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 180 | 1940 | 35% | 1% | 17% |

cenario 2			301	%								
					of Road Works a Kowloon)	he approved EIA It West	calculated by a of portal/openia involved	number A	rea source - ca Mided by area	alculated by emission rate		
					Emission Ra Opening (g/s)		Emission R Portal/ Ope (g/s) - Volu	ening I	Emission Ra g/m2-s) - Ai	ate - Portal/ Opening rea source		
			Portal/ openin	ng	PM	NOx	PM	NOx I	PM NOx		Formula from	
			ID.	Source Type	0.00005700						Scenario	
			A		0.00025729				E-07 6E-06		1	0.3 x Tunnel Section A
	80.935	0.873	В	Area	0.00331344	0.039828			E-05 0.0001 E-06 3E-05		1	2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B) 0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 0.3 x Tunnel Section E
			D1-D7		0.00331006		0.000045044		E-06 3E-05	635.3	1	0.3 x Turrinei Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Turrinei Section A + 1 x Turrinei Section B)) + 0.3 x Turrinei Section E
			D8-D14	Volume	0.00331006	0.0397673	0.000315244			-	١.	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
			D0-D14		0.00210392	0.0045557	0.000137022		E-06 9E-05	077.5	-	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section E
			H M		0.00210392		0.004259517		E-00 9E-05	2//.0	1	U.S.X.V.7 x Intriner Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal
			15-18	Volume	0.0233311	0.2000223	0.004238317					Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow of
			JKO1		0.00263131	0.028746			E-06 2E-05	1542 7	1	0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
			L1-L5		0.00401589		0.000535452		-		i e	1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
			L6-L10	Volume			0.000267726	0.0031		-	11	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I
			M1-M4		0.00150997	0.0174285	0.000251661	0.0029		-		, , , , , , , , , , , , , , , , , , , ,
			M5-M8	Volume			0.000125831			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00150997	0.0174285	0.000251661	0.0029	-	-		
			N5-N8	Volume			0.000125831			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00444595	0.0476572			-	-		1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
			P5-P8	Volume			0.000370496		-	-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel
			W1-W8		0.10868014	2.6160077	0.009056679		-	-		
			W9-W16	Volume			0.004528339		-		1	1 x Tunnel W
			701-710		0.01242206	0.2462766			-		1	
			711-720	Volume			0.000414069			-		1 x Tunnel X
			BaseA	Volume	0.00140458							1/3 x Basement roads A,B,C
	% of S	Serving Rd	BaseC		0.00140458	0.0135727	0.001404576	0.0136				1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-		-	-	1	1 x Tunnel Y
		Out of 500m	901-903				-		-	-		1 x Tunnel Z
		Out of 500m	904-906	Volume			-		-		1	
		Out of 500m	V1	Point							from 1-4	
				1		1				1	l	

	Top Openings and Ventilation Exhaust (Hr11-12)

														Hr 11-12	(2015 EIA 19-12	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)			Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(t)	73		Northbound	3	73	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0006179	0.0075222
B ^(f)	73		Northbound	3	272	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0023022	0.0280278
C _(i)	73		Northbound	3	110	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0009310	0.0113348
D ^(f)	73		Northbound	3	176	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0014897	0.0181356
E ^(t)	72		Southbound	3	155	735	53%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1151255	1.3383639	0.0036432	0.0423536
F ⁽¹⁾	72		Southbound	3	172	735	53%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1151255	1.3383639	0.0040428	0.0469989
G ⁽¹⁾	118		Southbound	3	121	885	51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1137843	1.3521385	0.0033846	
H ^(f)	119		Eastbound	3	173		25%	1%	56%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1688537	1.8055075	0.0112384	0.1201691
I ⁽¹⁾	117		Eastbound	3	194		26%	1%	55%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	3%	3%	100%	0.1649965	1.8596684	0.0035566	
J ⁽¹⁾	116		Westbound	3	194	420	27%	1%	54%	0%	1%	1%	4%	1%	1%	0%	2%	0%	1%	1%	2%	2%	100%	0.1644221	1.8491397	0.0037214	0.0418522
K ^(t)	114		Southbound	3	95		48%	3%	25%	0%	3%	3%	5%	5%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.1182355	1.4507647	0.0006240	
L ⁽⁰⁾	112		Northbound	3	95	430	51%	1%	23%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1166714	1.3612459	0.0013239	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	750	52%	1%	25%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1160938	1.3369325	0.0013544	0.0155975
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	605	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1163359	1.3867050	0.0010949	
O ⁽¹⁾	111		Eastbound	3	52	1145	25%	2%	56%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1693787	1.8231642	0.0028013	0.0301531
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	635	26%	2%	54%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1677059	1.8604224	0.0015382	
W ⁽ⁱⁱ⁾	98		Northbound	2	1970	3195	51%	0%	16%	0%	2%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0617470	1.4910877	0.1079569	
	A	Internal Rd A	Bothbound	4	404	50	40%	0%	30%	0%	0%	0%	0%	10%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1735904	1.4895423	0.0009740	
	В		Bothbound	4	361	95	37%	0%	26%	0%	5%	0%	5%	5%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.2030667	1.9541474	0.0019345	
	С	Internal Rd C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2370515	2.3486783	0.0012007	0.0118967
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1655	34%	1%	11%	1%	7%	5%	13%	11%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1416055	2.8319594	0.0117179	0.2343446

PA | Medical Registration | 1944 | Medical Registration of Lastocogine for Hypother | Medical Country | 1940 | 1960 | 34% | 17

		30%										<u> </u>			
				Calculated by the (extracted from the of Road Works at Kowloon)	e approved EIA		number A	rea source - vided by area	calculated by emi	sion rate					
				Emission Rat		Emission F									
				Opening					ate - Portal/ (pening					
				(g/s)		(g/s) - Volu			rea source						
				PM	NOx	PM	NOx P	M NOx	(Area)		rmula				
		Portal/ opening	Source Type							fro		sion calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)			
				0.00018536	0.0022566	_	41	E-07 5E-06	401.2	1	enano	Tunnel Section A			
80.935 0.87	173			0.00238713				E-06 9E-05		1		(0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel	el Section B)		
		CE	Area	0.00147656	0.017376		21	E-06 3E-05	635.3	1		Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 0.3 x	unnel Section E		
		D1-D7		0.00238469	0.029032			-	-						
			Volume			0.000113557		-		1		Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tun	nel Section D		
				0.00197793				E-06 8E-05	277.5	1		0.7 x Tunnel Section E + 0.3 x Tunnel Section F unnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel		175 / 1	
		11-14		0.02388907	0.2655235	0.003981511		-		1		unner Section 1 + 1 x Turnier Section G + 1 x Turnier Section H + 0.14 x Turnier Section K + 0.7 x 0.38 x Turnie I A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (
			Volume Area	0.00252875	0.0274641	0.001990756		E-06 2E-05	1540.7			Tunnel Section D + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section C + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section C + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section C + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section C + 0.3 x 1			
		L1-L5		0.00344631		0.000459507			1042.7			unnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section D			
		L6-L10	Volume			0.000229754		-	-	1		nnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow			
		M1-M4		0.00122464	0.014324	0.000204106	0.0024	-	-						
		M5-M8	Volume			0.000102053		-	-	1		(Tunnel Section M + Tunnel Section N)			
		N1-N4		0.00122464	0.014324	0.000204106		-							
		N5-N8	Volume	0.00430929	0.0400400	0.000102053		-		1		(Tunnel Section M + Tunnel Section N) unnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section D + 0.7 x 0.86 x Tunnel Section D + 0.7 x (1/3 x (Tunnel Section D + 0.7 x 0.86 x Tunnel Section D + 0.7 x (1/3 x (Tunnel Section D + 0.7 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x 0.86 x	on Internal Board A .	Tunnel Contine Inte	ornal D
		P1-P4 P5-P8	Volume	0.00430929	0.0462183	0.000718215		-	-			uriner Section P + 0.7 x 0.76 x Turiner Section 3 + 0.7 x 0.86 x Turiner Section R + 0.7 x (1/3 x (Turiner Section Internal Road C) x (traffic flow of Turiner Section P + 0.7 x 0.86 x Turiner Section P + 0.7 x 0.76 x Turiner Section I + traffic flow of Turiner Section I + traff			
		W1-W8		0.10795692	2 6069805		0.0039					mer deciron internal rivació / x / tranic now or runner deciron F / (tranic now or runner deciron) + tranic n	W OF TURNET SECTION	L + traine flow of	runter
		W9-W16	Volume	0.10,00002	2.0003003	0.004498205		_		- 1		unnel W			
		701-710		0.01171785	0.2343446		0.0156	-		1					
		711-720	Volume			0.000390595		-		-		unnel X			
			Volume	0.00136975		0.001369753						Basement roads A,B,C			
% of Serving		BaseC		0.00136975	0.0129569	0.001369753	0.013					Basement roads A,B,C			
	Out of 500m		Volume			-		-	-	1		unnel Y			_
	Out of 500m Out of 500m	901-903	Volume			-		-				unnel Z			+
	Out of 500m Out of 500m		Point Point			-		_		1 fene	n 1-4			-	+
	Out of Coolii	• •	· OIII							100					+

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hrt	

														Hr 12-13	(2015 EIA 19-1:	2-2011.xls)								Rate (g/km-		Emissio	
Remarks (Tunnel name - Portal & top opening of																								PM	NOx	PM	NOx
underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi		LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total				
A ⁽ⁱ⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0006219	0.0075405
Biii	73	Lin Cheung Rd (underpass)	Northbound	3	272	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0023172	
C ^(t)	73		Northbound	3	110	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0009371	0.0113624
D(i)	73		Northbound	3	176	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0014993	
E ₁₀	72		Southbound	3	155	620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1148323	1.3586054	0.0030654	0.0362672
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1148323	1.3586054	0.0034016	0.0402449
G ^(r)	118		Southbound	3	121	720	52%	1%	23%	1%	2%	2%	6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1132003	1.3205377	0.0027394	0.0319570
H ⁽¹⁾	119	Austin Rd W (depressed)	Eastbound	3	173	1145	27%	1%	54%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1655421	1.7884494	0.0091087	0.0984069
por	117	Austin Rd W (depressed)	Eastbound	3	194	340	28%	1%	53%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	1%	1%	100%	0.1661145	1.7972764	0.0030436	
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	365	29%	1%	52%	0%	1%	1%	4%	1%	1%	0%	3%	0%	1%	1%	1%	1%	100%	0.1664142	1.7891971	0.0032733	0.0351925
K ⁽ⁱ⁾	114		Southbound	3	95	110	64%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0981950	0.8909022	0.0002850	
L ^(r)	112	Lin Cheung Rd (depressed)	Northbound	3	95	415	51%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1185754	1.3887175	0.0012986	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1172912	1.3848692	0.0011312	
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	590	52%	1%	24%	0%	3%	2%	6%	3%	3%	2%	1%	0%	3%	2%	0%	1%	100%	0.1173109	1.3980316	0.0010767	0.0128308
O(1)	111	Austin Rd W (depressed)	Eastbound	3	52	935	27%	2%	54%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1644126	1.7735435	0.0022205	0.0239527
P ^(t)	110	Austin Rd W (depressed)	Westbound	3	52	525	28%	1%	52%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1673237	1.8281113	0.0012689	
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970		53%	0%	16%	0%	2%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0598529	1.4669904	0.0887602	
	A	Internal Rd A	Bothbound	4	404	45	44%	0%	33%	0%	0%	0%	0%	0%	0%	0%	22%	0%	0%	0%	0%	0%	100%	0.1699591	1.4821729	0.0008583	0.0074850
	В	Internal Rd B	Bothbound	4	361	80	38%	0%	25%	0%	6%	0%	0%	6%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1802252	1.7106099	0.0014458	
	С	Internal Rd C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2369078	2.3433221	0.0012000	
X ^e	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1635	34%	1%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1401460	2.8205301	0.0114569	0.2305783

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 180 | 1805 | 34% | 1% | 17% |

Scenario 2	30%	•								ı	
			Calculated by th						culated by emission rate		
			of Road Works a		of portal/openi		Area so		iculated by emission rate		
			Kowloon)		involved		uniocu	by wou			
			Emission Ra	te - Portal/	Emission F	Rate -					
			Opening		Portal/Op	eni ng	Emiss	ion Ra	te - Portal/ Opening		
			(g/s)		(g/s) - Volu						
			PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
	Portal/ opening									from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
	ID.	Source Type Area	0.00018657	0.0022621			4E 07	5E-06	401.2	Scenario	Emission carculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.3 x Turnel Section A
80 935 0 873	R	Area	0.00240264					9E-05		1	13-3 x Tullinet Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
	CE	Area	0.00130569					2E-05		1	0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 0.3 x Tunnel Section E
	D1-D7		0.00240019	0.0291028	0.00022859	0.0028	-	-	-		
	D8-D14	Volume			0.000114295			-	-	1	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F	Area	0.00166421					7E-05	277.5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F
	11-14	_	0.01962265					-		1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal
	15-18	Volume	0.0007000		0.00163522						Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
	JKO1	Area	0.00207208					1E-05	1542.7	1	(0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section 0 + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B 1 x Tunnel Section Internal Road B 1 x Tunnel Section Internal Road B 1 x Tunnel Section Internal Road B 1 x Tunnel Section Internal Road A + Tunnel Section Internal Road B 1 x Tunnel Section Intern
	L1-L5 L6-L10	Volume	0.00307725	0.035195	0.000410301			-	-	l.	1 A Tunnel Section Letter 1 Road Ct x (traffic flow of Tu
	M1-M4	volume	0.00110393	0.0130036				-	-	-	+ italine section mental road C) X (traine now or italiner section E) (traine now or italiner section E+ traine now or italiner section
	M5-M8	Volume	0.00110333	0.0100000	9.19943E-05				_	,	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4	* Oldriic	0.00110393	0.0130936				-		_	S.S. A Trainer Cooler III T Territor Cooler II Y
	N5-N8	Volume			9.19943E-05	0.0011	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	P1-P4		0.0035172	0.0361503		0.006	-	-	-		1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
	P5-P8	Volume				0.003	-	-	-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel
	W1-W8		0.08876023	2.1755061				-			
		Volume			0.003698343			-	-	1	1 x Tunnel W
	701-710		0.01145693					-		1	1 x Tunnel X
	711-720	Volume Volume	0.00116803		0.000381898		-	-	-		1 x tunnet x I/3 x Basement roads A,B,C
% of Serving Rd	BaseA BaseC	Volume	0.00116803				_				1/3 x Basement roads A,B,C 1/3 x Basement roads A,B,C
Out of 500m		Volume	0.00116603	0.0110236	0.001168035	0.011	_	_	_	1	Tris x basement rodus x, b, c
Out of 500m	901-903	+ Grand			_	_	_		_		T x Tunnel Z
Out of 500m	904-906	Volume			_	-	-	-	-	1	
Out of 500m	V1	Point								from 1-4	

	Top Openings and Ventilation Exhaust (Hr13-14)

														Hr 13-14	(2015 EIA 19-12	2-2011.x(e)								Rate (g/km-		Emission (g/s	
Remarks (Tunnel name -																								PM	NOx	PM	NOx
Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total				
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0008675	0.0103001
B ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	272	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0032324	0.0383784
Citi	73		Northbound	3	110	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0013072	
D(I)	73		Northbound	3	176		52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0020915	
E ⁽ⁱ⁾	72		Southbound	3	155	620	54%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1107060	1.2881744	0.0029552	
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		54%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1107060	1.2881744	0.0032794	0.0381586
G ⁽ⁱ⁾	118		Southbound	3	121	705	53%	1%	23%	1%	3%	1%	6%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1124899	1.3189998	0.0026655	
H ^(l)	119	Austin Rd W (depressed)	Eastbound	3	173		29%	1%	53%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1614658	1.6962797	0.0086129	0.0904824
I(1)	117	Austin Rd W (depressed)	Eastbound	3	194		30%	1%	52%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1581962	1.6706572	0.0028559	
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194		31%	1%	51%	0%	1%	1%	4%	3%	1%	0%	3%	0%	0%	1%	1%	1%	100%	0.1579677	1.6500713	0.0031923	0.0333452
K ⁽ⁱ⁾	114		Southbound	3	95	95	63%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1013909	0.9325919	0.0002542	
L ^(r)	112	Lin Cheung Rd (depressed)	Northbound	3	95	470	53%	1%	23%	0%	2%	2%	5%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1127223	1.2877637	0.0013981	0.0159718
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	585	53%	1%	24%	0%	3%	2%	5%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1111367	1.2941094	0.0010113	0.0117764
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	715	52%	1%	23%	0%	3%	2%	6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1144628	1.3362032	0.0012731	0.0148615
O(1)	111	Austin Rd W (depressed)	Eastbound	3	52	890	27%	2%	53%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1642927	1.7922519	0.0021121	0.0230404
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	505	28%	1%	51%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1677224	1.8466717	0.0012234	0.0134704
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970		53%	0%	15%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0582986	1.4393940	0.0883694	2.1818415
	A	Internal Rd A	Bothbound	4	404	35	43%	0%	29%	0%	0%	0%	0%	0%	0%	0%	29%	0%	0%	0%	0%	0%	100%	0.1785564	1.6120202	0.0007013	0.0063317
	В	Internal Rd B	Bothbound	4	361	65	38%	0%	31%	0%	0%	0%	0%	8%	0%	0%	23%	0%	0%	0%	0%	0%	100%	0.1805212	1.5729374	0.0011766	
	С	Internal Rd C	Bothbound	4	521	30	33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2189680	2.1353673	0.0009507	0.0092711
X ^e	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1620	34%	0%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	5%	1%	100%	0.1397600	2.7864835	0.0113206	0.2257052

PA Heapprosists of classcogne for Hypoer (Westbound 3 | 1980 | 1960 | 34% | 1976 | 1776 | 77% | 1776

	30	1%								
			Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA		number A	ea source - vided by area	alculated by emission rate	•	
			Emission Ra Opening (g/s)		Emission I Portal/ Op (g/s) - Volu	ening E		ate - Portal/ Opening rea source	,	
	Portal/ openi	ng	PM	NOx	PM	NOx F	M NOx	(Area)	Formula from	
	Δ.	Source Type	0.00026025	0.00300		-	-07 6F-06	401.2	Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.3 x Tunnel Section A
80.935 0.873	A D		0.00026025		-		E-05 0.000			U.3 x furning Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
80.833 0.873	CE		0.00333101				E-06 3E-05		1	23 x 1, 27 x 1
	D1-D7		0.00334819	0.0397536	0.000318875	0.0038				
	D8-D14	Volume			0.000159438	0.0019	-		1	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F		0.00160441				E-06 7E-05	277.5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F
	11-14		0.01864408	0.2035398			-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section F + 0.7 x 0.38 x Tunnel Section F
	15-18	Volume			0.001553673			-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
	JKO1		0.00193975			1	E-06 1E-05	1542.7	1	0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section In
	L1-L5		0.00308781	0.0344705			-			1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section In
	L6-L10	Volume			0.000205854				1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flo
	M1-M4		0.00114221	0.013319	0.000190369			-		
	M5-M8	Volume	0.00114221	0.00000	9.51844E-05			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4 N5-N8		0.00114221	0.013319	0.000190369 9.51844E-05			-	4.	0.5 x (Tunnel Section M + Tunnel Section N)
	P1-P4	Volume	0.00332918	0.0241275			-	-	1	10.5 x (Tunnet Section P + 1.07 x 0.5 ection N) 11 x Tunnet Section P + 0.7 x 0.6 x Tunnet Section J + 0.7 x 0.86 x Tunnet Section K + 0.7 x (1/3 x (Tunnet Section Internal Road A + Tunnet Road A + Tunnet Road A
	P5-P8	Volume	0.00002310	0.0041273	0.000334863		-		⊣,	+ Tunnel Section Internal Road C I x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow
	W1-W8		0.08836937	2 1818415				_	-	Trainer economic fraction and the first economic fraction and
	W9-W16	Volume	0.0000000	2.1010110	0.003682057			-	1	1 x Tunnel W
	701-710		0.01132056	0.2257052			-		1	
	711-720	Volume			0.000377352	0.0075	-		-	1 x Tunnel X
	BaseA	Volume	0.00094289		0.000942888					1/3 x Basement roads A,B,C
% of Serving Rd	BaseC		0.00094289	0.0086184	0.000942888	0.0086				1/3 x Basement roads A,B,C
Out of 500m	801-820	Volume			-		-		1	1 x Tunnel Y
Out of 500m	901-903						-	-		1 x Tunnel Z
Out of 500m	904-906	Volume			-		-	-	1	
Out of 500m	V1	Point							from 1-4	

Top Openings and Ventilation Exhaust (Hr14-15)

														Hr 14-15	(2015 EIA 19-12	2-2011.xls)								Rate (g/km-		Emissio	
Remarks (Tunnel name - Portal & top opening of																								PM	NOx	PM	NOx
underpass in EIA of Rd Works in WK)	WKCD section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ⁽¹⁾	73		Northbound	3	73	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0006521	0.0077959
B ⁽¹⁾	73		Northbound	3	272	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0024298	0.0290476
Citi	73		Northbound	3	110	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0009826	0.0117472
D(I)	73		Northbound	3	176	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0015722	
E ⁽ⁱ⁾	72		Southbound	3	155		55%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1097523	1.2790129	0.0029770	0.0346932
F ⁽¹⁾	72		Southbound	3	172		55%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1097523	1.2790129	0.0033035	0.0384983
G ⁽ⁱ⁾	118		Southbound	3	121		54%	1%	22%	1%	3%	1%	5%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1105299	1.2991527	0.0025634	0.0301295
H ^(l)	119		Eastbound	3	173		31%	1%	51%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1582427	1.6918077	0.0082888	0.0886178
I(1)	117		Eastbound	3	194	335	33%	1%	49%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1515504	1.6320511	0.0027359	
J ⁽¹⁾	116		Westbound	3	194	390	33%	1%	49%	0%	1%	1%	4%	3%	1%	0%	3%	0%	0%	1%	1%	1%	100%	0.1522437	1.6011564	0.0031997	0.0336510
K ^(t)	114		Southbound	3	95	95	63%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1017280	0.9382234	0.0002550	
L ⁽⁰⁾	112		Northbound	3	95	365	52%	1%	22%	0%	3%	3%	5%	4%	3%	1%	1%	0%	1%	1%	0%	1%	100%	0.1116124	1.2940595	0.0010750	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	570	54%	1%	23%	0%	3%	2%	5%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1106405	1.3065727	0.0009810	0.0115849
N ^(f)	77	Lin Cheung Rd	Northbound	3	56	550	53%	1%	23%	0%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1124187	1.3362689	0.0009618	0.0114325
O ⁽¹⁾	111		Eastbound	3	52	860	31%	1%	51%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1574999	1.6848836	0.0019565	0.0209300
P ^(f)	110	Austin Rd W (depressed)	Westbound	3	52	500	29%	1%	50%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1651335	1.8474785	0.0011926	
W ^(t)	98		Northbound	2	1970		55%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0566192	1.4044621	0.1047235	2.5977088
	A	Internal Rd A	Bothbound	4	404	40	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1545602	1.4016274	0.0006938	0.0062917
	В		Bothbound	4	361	70	43%	0%	29%	0%	0%	0%	0%	7%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.1658985	1.4511260	0.0011645	
	C	Internal Rd C	Bothbound	4	521	30	33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2139628	2.1022106	0.0009290	0.0091271
X ₀	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1930	35%	1%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	4%	1%	100%	0.1388937	2.7873581	0.0134032	0.2689801

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 180 | 1930 | 35% | 1% | 17% |

Scenario 2	30%									i	
			Calculated by the						culated by emission rate		
			extracted from to of Road Works a		of portal/opening		Area so divided b		culated by emission rate		
			Kowloon)	· West	involved	э	divided t	y wou			
			Emission Rat	e - Portal/	Emission R	ate -					
			Opening		Portal/ Ope	ning	Emissi	on Rat	te - Portal/ Opening		
			(g/s)		(g/s) - Volu						
			PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
	Portal/ opening									from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
	A.	Source Type Area	0.00019563	0 0033388			4E-07	EE OO	401.2	Scenario	Emission calculation for A
80 935 0 873	R	Area	0.00251942				7E-06			1	2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
	CE	Area	0.00129795				2E-06			1	0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 0.3 x Tunnel Section E
	D1-D7		0.00251685	0.0300884	0.0002397	0.0029	-	-			
	D8-D14	Volume			0.00011985				-	1	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
	F	Area	0.00161624		-		6E-06	7E-05	277.5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F
	11-14	1	0.01809704	0.1997781						1	1x Tunnel Section 1 + 1x Tunnel Section G + 1x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal
	15-18	Volume	0.00189137	0.0105110	0.001508087				-		Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic
	JKO1 L1-L5	Area	0.00189137		0.000054000		1E-06	1E-05	1542.7	1	(0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section 0 + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B T x Tunnel Section Internal Road A + Tunnel Section Internal Road B T x Tunnel Section Internal Road B T x Tunnel Section Internal Road A + Tunnel Section Internal Road B T x Tunnel Section Internal Road B T x Tunnel Section Internal Road B T x Tunnel Section Internal Road B T x Tunnel Section Internal Road B T x T x T x T x T x T x T x T x T x T
	L6-L10	Volume	0.00203933	0.029902	0.000354603		-	-	-		1 A Tulinel Section Internal Road Ct x (traffic flow of Tunnel Section L + traffic fl
	M1-M4	volume	0.00097141	0.0115087				_			Turner Section Internal road of X (Barrier Row or Turner Section E.) (Barrier Row or Turner Section E.)
	M5-M8	Volume	0.00007141	0.0110001	8.09507E-05		_	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
	N1-N4		0.00097141	0.0115087			-		-		
	N5-N8	Volume			8.09507E-05		-	-		1	0.5 x (Tunnel Section M + Tunnel Section N)
	P1-P4		0.00331936	0.0341825			-		-		1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal Road B
	P5-P8	Volume			0.000276613		-		-	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow
	W1-W8	1	0.10472346	2.5977088					-		
	W9-W16	Volume	0.01340324		0.004363478				-	1	1 x Tunnel W
	701-710 711-720	Volume	0.01340324		0.000893549		-			1	1 x Tunnel X
	BaseA	Volume	0.00092909				-		-	-	1/3 x Basement roads A.B.C
% of Serving Rd	BaseC	volume	0.00092909								173 x Basement roads A.B.C
Out of 500m	801-820	Volume	5.55555000			-	-	-		1	1x Tunel Y
Out of 500m	901-903				_	-	_	-			1x Tunnel Z
Out of 500m	904-906	Volume			-	-	-	-	-	1	
Out of 500m	V1	Point								from 1-4	

	Top Openings and Ventilation Exhaust (Hr15-16)	

														Hr 15-16 (2	015 EIA_19-12	2-2011.xls)								Rate (g/km-		Emission (g/s	
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	73		54%	1%	22% (0% 3	1%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0008315	0.0100702
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3			54%	1%	22% (0% 3	1%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0030981	0.0375219
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3			54%	1%	22% (0% 3	1%	3%	5%	4%	1%	1%	1%	0%	3%	196	0%	0%	100%	0.1108224	1.3421993	0.0012529	
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3			54%	1%		0% 3	1%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0020047	0.0242789
E ^(t)	72	Lin Cheung Rd (underpass)	Southbound	3			55%	1%	22%	1% 3	1%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1004353	1.1996396	0.0027675	
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3			55%	1%	2270	1% 3	1%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1004353	1.1996396	0.0030711	0.0366823
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121		54%	1%		1% 3	1%	1%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1021868	1.2116609	0.0023184	
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173		33%	1%	49% (0% 2	%	2%	4%	3%	1%	1%	0%	0%	0%	2%	1%	2%	100%	0.1458971	1.5789733	0.0089743	
I ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3			35%	1%	40/0	0% 1	%	1%	5%	3%	1%	1%	0%	0%	0%	1%	1%	1%	100%	0.1419147	1.5273814	0.0030591	0.0329236
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3			35%	1%	4376	0% 2	%	2%	4%	2%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1417755	1.5644763	0.0038201	0.0421539
K ^(t)	114	Lin Cheung Rd (depressed)	Southbound	3	95		63%	0%	32% (0% 0	1%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970331	0.9105323	0.0002433	
L ^(t)	112	Lin Cheung Rd (depressed)	Northbound	3	95		55%	1%	23% (0% 2	%	2%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1006229	1.1568494	0.0011152	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3			54%	1%	23%	0% 3	1%	2%	4%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1030646	1.2325114	0.0008978	0.0107365
N ^(t)	77	Lin Cheung Rd	Northbound	3			54%	1%		0% 3	1%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1049602	1.2438549	0.0010858	
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3			33%	2%	49% (0% 2	5%	2%	5%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1474459	1.5816576	0.0021085	
P ^(t)	110	Austin Rd W (depressed)	Westbound	3			33%	1%	4/76	0% 2	%	2%	4%	3%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1468227	1.6763221	0.0012513	
W ^(t)	98	West Kowloon Highway (WKH)	Northbound	2			55%	0%	1470	0% 3	1%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0555149	1.3914694	0.1046557	
	A	Internal Rd A	Bothbound	4	404		50%	0%	0070	0% 0	1%	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1547026	1.3396760	0.0008681	0.0075171
	В	Internal Rd B	Bothbound	4	301		39%	0%	20/0	0% 6	1%	0%	0%	6%	0%	0%	22%	0%	0%	0%	0%	0%	100%	0.1760864	1.6307366	0.0015892	
	С	Internal Rd C	Bothbound	4	521		33%	0%	2270	0% 0	1%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	100%	0.2116818	2.0191565	0.0013786	0.0131498
X ^{ee}	144	Reprovision of Gascoigne Rd Flyover		3	180	1900	35%	0%	11%	1% 7	%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	1%	100%	0.1297838	2.6714914	0.0123295	0.2537917

			30%																							
					(extracted from of Road Works Kowloon)	the approved EIA at West	of portal/opening involved	divide	source - c ed by area	alculated by emission rate																
					Emission Ra Opening		Emission Rat		D.	te - Portal/ Opening																
					(g/s)		(g/s) - Volume			rea source																
					PM	NOx	PM No	Ox PM	NOx	(Area)	Formula															
			Portal/ opening	Source Type							from Scenario	Emission o	alculation form	uda (Extr	racted from	n the ennr	and FIA	of Pood We	orke at Wa	set Kov	vloon)					
					0.00024944	0.0030211		5F-0	7 6F-06	491.2	1	0.3 x Tunne	Section A	idia (Exti	acteu ii oi	ii tiie appi t	veu LIA	oi Roau III	or as at vve	St KOV	v100H)					_
80.	335 0.87	3	В			0.0389061		9E-0	6 0.0001	341.9	1	2/3 x (0.7 >	Tunnel Section	A + 1 x	Tunnel Sec	ction B)+	1/3 x (30	0.935 / 50)	x (0.7 x 1	Tunnel	Section A + 1:	Tunnel Se	ction B)			_
				Area	0.00134646	0.0161688			8 3E-05	635.3	1	0.3 x Tunne	Section C + 0	1.3 x (1/3	x (19.065	5/50)x(0.7 x Tun	nel Section	A + 1 x T	unnel S	Section B))+	0.3 x Tunne	Section E			
			D1-D7		0.00320911	0.0388664	0.00030563 0.0		-	-																
				Volume			0.000152815 0.0			-	1		Section C + 0				7 x Tunne	el Section A	4 + 1 x Tui	nnel Se	ection B)) + 1	x Tunnel Se	ction D			
						0.0179466			6E-05	277.5	1	0.3 x 0.7 x	Tunnel Section	E + 0.3 x	Tunnel Se	ection F										_
			11-14		0.01870639	0.2081018	0.003117731 0.0			-	1		Section I + 1 x													
				Volume	0.0000010	0.0235588	0.001558866 0.0					Hoad A +	unnel Section II	nternal H	oad B + Iu	unnel Secti	on Interna	al Hoad C)	x (traffic	flow o	f Tunnel Sectio	n I / (traffic	flow of Tun	nel Section	1 + traffic flo)WC
			JKO1 L1-L5				0.000391825 0.0		8 2E-05	1542.7	1		Section J + 0.7													
				Volume	0.00293869	0.0334012	0.000391825 0.0		-		-1.		tion Internal Ro													
			M1-M4		0.00000170	0.0110010	0.000195913 0.0		-	-	-	Turiner Sec	uon miemai noi	au c) x (traffic flov	or runner	Section	_/ (trainc	now or Tur	IIII SE	BCIIOII I + II AIIIC	now or run	nei Section	L + trailic ii	ow or runne	31 3
				Volume	0.00033176	0.0110016	8.26485E-05 0.0		-	-	┪.	0.5 v (Tupo	el Section M +	Tunnal Si	action M											
			N1-N4		0.00099178	0.0118018	0.000165297 0.0			-		U.S X (Tulii	ei dection ivi +	Turrior O	ocuon iv											_
				Volume	0.00000170	0.0110010	8.26485E-05 0.0		-	-	1,	0.5 x (Tunn	el Section M +	Tunnel Si	ection N)											
			P1-P4		0.00380448	0.040308	0.00063408 0.0						Section P + 0.7			ction J + 0	7 x 0.86	x Tunnel S	ection K +	0.7 x	(1/3 x (Tunnel	Section Inte	ernal Road	+ Tunnel S	Section Inter	rnal
			P5-P8	Volume			0.00031704 0.0	0034			1	Tunnel Sec	tion Internal Roa	ad C) x	(traffic flo	w of Tunne	l Section	P/(traffic	c flow of T	unnel S	Section I + traff	ic flow of Tu	innel Sectio	n L + traffic	flow of Tunn	nel
			W1-W8		0.10465568	2.623171	0.008721307 0.2	2186						,												_
			W9-W16	Volume			0.004360654 0.1				1	1 x Tunnel	W													
			701-710		0.01232946	0.2537917	0.000821964 0.0		-		1															
				Volume			0.000410982 0.0		-		-	1 x Tunnel														
							0.001278604 0.0						nent roads A,B,													
	% of Serving		BaseC		0.0012786	0.0117947	0.001278604 0.0	118					nent roads A,B,	,C												
		Out of 500m		Volume				-	-	-	1	1 x Tunnel					1		1							_
		Out of 500m	901-903					-	-	-		1 x Tunnel						1	1	4		1				4
		Out of 500m		Volume				-	-		1						-	1				1				+
		Out of 500m	V1	Point							from 1-4	-					!	-	+	_		1	1			+

	Top Openings and Ventilation Exhaust (Hr16-17)

														Hr 16-17 (2	015 EIA_19-1:	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3		450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0009323	0.0117771
B ^(l)		Lin Cheung Rd (underpass)	Northbound	3	272	450	54%	1%	21%	0% 3	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0034736	0.0438818
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0014048	0.0177463
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3		450	54%	1%	21%	0% 3	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0022476	0.0283941
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3			55%	1%	22%	1% 3	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0994555	1.1909776	0.0027406	
F ⁽¹⁾		Lin Cheung Rd (depressed)	Southbound	3	172	640	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0994555	1.1909776	0.0030411	0.0364174
G ⁽ⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	655	55%	1%	22%	1% 3	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.1023337	1.2244056	0.0022529	0.0269556
H ^(l)	119	Austin Rd W (depressed)	Eastbound	3	173	1255	35%	1%	47%	0% 2	2%	2%	4%	3%	1%	1%	0%	0%	0%	2%	1%	2%	100%	0.1410136	1.5105051	0.0085045	
l ₍₁₎		Austin Rd W (depressed)	Eastbound	3		400	38%	1%	46%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1378342	1.3635899	0.0029711	
J ⁽¹⁾		Austin Rd W (depressed)	Westbound	3	194	520	36%	1%	43%	0% 2	2%	2%	5%	3%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1416634	1.5803407	0.0039697	0.0442847
K ⁽ⁱ⁾		Lin Cheung Rd (depressed)	Southbound	3	95	75	67%	0%	33%	0% (9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0772351	0.6202375	0.0001529	0.0012276
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95		55%	1%	22%	0%	3%	2%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1000858	1.1605299	0.0012678	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	540	55%	1%	23%	0% 3	3%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1033641	1.2487185	0.0008683	0.0104892
N ⁽ⁱ⁾	77	Lin Cheung Rd	Northbound	3	56	770		1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.1017174	1.2006051	0.0012183	0.0143806
0"	111	Austin Rd W (depressed)	Eastbound	3			36%	1%	46%	0% 2	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1396371	1.5234272	0.0019262	0.0210148
P ⁽ⁱ⁾		Austin Rd W (depressed)	Westbound	3		575	36%	1%	46%	0% 2	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1435693	1.5721295	0.0011924	0.0130574
W ^{oo}		West Kowloon Highway (WKH)	Northbound	2		3510	56%	0%	14%	0% 3	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0543383	1.3756115	0.1043703	2.6422058
	A	Internal Rd A	Bothbound	4	404	50	50%	0%	30%	0% (1%	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1521985	1.3253152	0.0008540	0.0074365
L	В	Internal Rd B	Bothbound	4	361	85	41%	0%	29%	0% (0%	0%	0%	6%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1726185	1.5172152	0.0014713	
		Internal Rd C	Bothbound	4	521	45	33%	0%	22%	0% (1%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	100%	0.2061317	1.9849207	0.0013424	
X''		Reprovision of Gascoigne Rd Flyover		3	180	1885	36%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	1%	100%	0.1271305	2.6322257	0.0119821	0.2480873

PA | Medical Representation of Lastocogine Por Hypoter | Westbournd | 3 | 1980 | 1985 | 26% | 19% | 17

		30%																									
				Calculated by th (extracted from to of Road Works a Kowloon)	the approved EIA		number	Area so divided	urce - cal by area	lculated by emission rate																	
				Emission Ra	te - Portal/	Emission R	ate -																				
				Opening						te - Portal/Opening																	
				(g/s)		(g/s) - Volu				ea source																	
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula																
		Portal/ opening									from																
			Source Type	0.00027968	0.0000004				7F-06		Scenario	Emission c	alculation	tormula (E	stracted fro	m the appro	oved EIA o	f Road Wo	orks at We	st Kow	loon)						
80.935 0.873			Area Area	0.00360178		-			7E-06 0.0001		1	2/3 x (0.7 >			v Tunnal Co	otion D \ .	1/2 - / 20	025 / 50)	v/07v1	Funnal 6	Continu A	. 1 v Ti	innal Ca	ntion D \			
80.935 0.873			Area	0.00360178		-			3E-05		1		el Section C												E		
		D1-D7	Alea	0.00359811	0.0171503	0.000242677		2E-00	3E-00	030.3		O.O X TOTHE	bi Obcilori C	7 + 0.5 X (75 X (15.00	3730) X (U. / A TUIT	iei dection	ATIAN	ui ii iei o	ection b j	J + 0.0	A TUITIO	OCCION			
			Volume	0.00000011	0.0101012	0.000171338		_	_	_	,	0.7 x Tunne	el Section C	1 + 0 7 × / 1	/3 x / 19 06	5 / 50 x / 0	7 v Tunne	Section I	A ± 1 v Tur	nnel Se	ction B))	± 1 v T	innel Se	ction D			
			Area	0.00148785	0.017817			SE-OS	6E-05	277.5	1		Tunnel Sec														
		11-14		0.01796919		0.002994866				-	1	1 x lunnel	Section I +	1 x lunnel	Section G -	1 x Tunnel	Section F	+ 0.14 x	Tunnel Sec	ction K	+ 0.7 x 0.3	38 x Tu	nnel Sec	tion O + ().7 x (1/3	3 x (Tunnel Sec	tion Inter
		15-18	Volume			0.001497433	0.0164		-			Road A + 1	Tunnel Sect	ion Internal	Road B + 1	unnel Secti	on Interna	Road C)	x (traffic	flow of	Tunnel Se	ection I	/ (traffic	flow of T	unnel Se	ction I + traffic f	low of Tu
		JKO1	Area	0.002175		-		1E-06	2E-05	1542.7	1															unnel Section Int	
		L1-L5		0.00305298	0.0346018			-	-	-																nnel Section Inte	
			Volume			0.000203532					1	Tunnel Sec	tion Interna	al Road C):	(traffic flo	w of Tunnel	Section L	/ (traffic	flow of Tur	nnel Se	ction I + tr	affic flo	w of Tun	nel Section	on L + tra	affic flow of Tunn	ıel Secti
		M1-M4		0.0010433	0.0124349				-																		
			Volume			8.6942E-05					1	0.5 x (Tunn	nel Section	M + Tunnel	Section N)												
		N1-N4		0.0010433	0.0124349					-																	
		N5-N8 P1-P4	Volume	0.00373455	0.0005407	8.6942E-05		-	-	-	1	0.5 X (Tunn	nel Section	M + Tunnel	Section N)	otion I . O	7 / 0 00 1	Tunnal C	ontion V	074/	1/2 v / To	nnal Ca	otion Int	ornal Dan	d A . Tu	nnel Section Inte	ornal Da
			Volume	0.003/3455	0.0395137	0.000622424		-	-	-	4.															traffic flow of Tu	
		W1-W8	voiume	0.10437029	2 6422050			-	-	-	1	Turiner Sec	JUON INTERNA	ii noau c)	x (traffic i	DW OF TUITIE	31 Section	r/(uaiii	J HOW OF TH	uririer 3	ection i +	li ailic i	IOW OF TO	Jilliel Sec	UOII L +	traffic flow of Tu	iiiei sec
			Volume	0.1043/029	2.0422030	0.00697524		-	-	-	٠.	1 x Tunnel	W.														
		701-710	voidifie	0.01198205	0.2480873			_	_	_	1	I A TUITIO	**														
			Volume			0.000399402		-	!	-	Ė	1 x Tunnel	Х														
			Volume	0.00122259	0.0110985		0.0111						ment roads	A.B.C													
% of Serving Ro	1	BaseC		0.00122259	0.0110985	0.00122259	0.0111					1/3 x Base	ment roads	A,B,C													
(Out of 500m	801-820	Volume			-		-	-	-	1	1 x Tunnel	Υ														
(Out of 500m	901-903				-		-	-	-		1 x Tunnel	Z														\top
	Out of 500m	904-906	Volume			-			-	-	1																
(Out of 500m	V1	Point								from 1-4	-															- 1

	Top Openings and Ventilation Exhaust (Hr17-18)

														Hr 17-18	(2015 EIA 19-12	2-2011.xls)								Rate (g/km-		Emissio	
Remarks (Tunnel name -																								PM	NOx	PM	NOx
Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total				
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73		55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0011107	0.0137570
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272		55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0041384	0.0512591
C _(i)	73		Northbound	3	110	540	55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0016736	
D ^(f)	73		Northbound	3	176	540	55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505	0.0026778	
E ⁽ⁱ⁾	72		Southbound	3	155		55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0980087	1.1726445	0.0027851	0.0333226
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0980087	1.1726445	0.0030905	0.0369774
G ⁽¹⁾	118		Southbound	3	121		55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0977730	1.1767631	0.0021361	0.0257090
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173		38%	1%	45%	0%	2%	2%	5%	3%	1%	1%	0%	0%	0%	2%	1%	1%	100%	0.1359502	1.4655880	0.0079378	0.0855720
I(1)	117	Austin Rd W (depressed)	Eastbound	3	194		39%	1%	44%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1335938	1.3374192	0.0028437	0.0284685
$J^{(1)}$	116	Austin Rd W (depressed)	Westbound	3	194	540	37%	1%	43%	0%	2%	2%	5%	3%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1382649	1.5407643	0.0040235	0.0448362
K ⁽ⁱ⁾	114		Southbound	3	95		65%	0%	35%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0813252	0.6538889	0.0001824	
L ₆₀	112	Lin Cheung Rd (depressed)	Northbound	3	95	510	57%	1%	22%	0%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0973764	1.1253061	0.0013105	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	525	55%	1%	22%	0%	3%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1017097	1.2512942	0.0008306	0.0102189
N ^(t)	77	Lin Cheung Rd	Northbound	3	56	860	55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0999051	1.1785577	0.0013365	0.0157665
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52		39%	1%	44%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1348947	1.4432168	0.0018023	0.0192830
P ^(t)	110	Austin Rd W (depressed)	Westbound	3	52		39%	1%	43%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1355976	1.5135493	0.0011262	
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	4165	57%	0%	13%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0531229	1.3581898	0.1210767	3.0955598
	A	Internal Rd A	Bothbound	4	404		46%	0%	31%	0%	0%	0%	0%	0%	0%	0%	23%	0%	0%	0%	0%	0%	100%	0.1638192	1.4453496	0.0011950	
	В	Internal Rd B	Bothbound	4	361	105	43%	0%	29%	0%	0%	0%	0%	5%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1686630	1.4954378	0.0017759	
	С	Internal Rd C	Bothbound	4	521	55	36%	0%	18%	0%	0%	0%	0%	0%	0%	0%	45%	0%	0%	0%	0%	0%	100%	0.1979458	1.9406644	0.0015756	0.0154471
X _(i)	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1865	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	1%	10%	4%	0%	100%	0.1245703	2.6362905	0.0116162	0.2458341

PA | Medical Properties | 1944 | Medical Properties | Medical Properties | Medical | 1940 | 1960 | 1965 | 1976 | 1

		30%																						
	_			Calculated by the (extracted from the of Road Works at Kowloon)	e approved EIA West		number A	ea source - o vided by area	alculated by emission ra	te														
				Emission Rat		Emission F																		
				Opening					ate - Portal/ Openin	g														
				(g/s)		(g/s) - Volu			rea source															
				PM	NOx	PM	NOx P	M NOx	(Area)	Formula														
		Portal/ opening	Source Type							from Scenario	Eminates an	culation formula	. (Entropto	d 6 4b		of Dood W	amba at Wa	ot Vamila a	>					
		Δ.		0.0003332	0.0041271	_	71	E-07 8E-06	491.2	1	0.3 x Tunnel	Section A	a (Extracted	u irom the ap	proveu E.IA	OI ROBU W	orks at we	St KOWIOO	11)					_
80.935 0.87	13	R		0.00429108				-05 0.0002		1		unnel Section A	+ 1 x Tunni	el Section B)	+ 1/3 x (3	0.935 / 50)	x (0.7 x T	Tunnel Sec	tion A + 1	x Tunnel S	ection B)			
	-	CE	Area	0.00152505	0.0185374	-	21	-06 3E-05	635.3	1	0.3 x Tunnel	Section C + 0.3	x (1/3 x (1	9.065 / 50) >	(0.7 x Tur	nnel Section	A + 1 x Ti	unnel Secti	on B)) +	0.3 x Tunn	el Section E			
		D1-D7		0.0042867	0.0530958	0.000408258	0.0051	-	-															
		D8-D14	Volume			0.000204129		-	-	1		Section C + 0.7			0.7 x Tunr	nel Section /	A + 1 x Tur	nnel Sectio	n B)) + 1	x Tunnel S	Section D			
		F		0.00151203		-		E-06 7E-05	277.5	1	0.3 x 0.7 x T	unnel Section E +	+ 0.3 x Tunr	nel Section F										
		11-14		0.01723371					-	1		ection I + 1 x Iun												
		15-18	Volume	0.00224946	0.0007070	0.001436143		 E-06 2E-05	-		Hoad A + IL	nnel Section Intel Section J + 0.3 >	rnal Road E	3 + Tunnel Se	ction Interr	nal Hoad C	x (traffic	tlow of Tur	nnel Sectio	n I / (traff	ic flow of Tu	nnel Section I -	+ traffic flo	ow of
		JKO1 L1-L5	Area	0.00224946	0.023/8/8	0.0004470		:-06 2E-05	1542./	1		ection L + 0.7 x 0												
		L6-L10	Volume	0.00313423	0.0331408		0.0023			٠,		tion Internal Roa												
		M1-M4		0.00108357	0.0129927						1 10111101 00	aon miorita i lou	10 0) X (11 u			// L/ (U Cult	0 11011 01 1	di inoi ocoi	, o		1011101 0001	on E i damo i	1011 OI 101	110101
		M5-M8	Volume			9.02974E-05		-		1	0.5 x (Tunne	Section M + Tur	nnel Section	n N)										
		N1-N4		0.00108357				-	-															
		N5-N8	Volume			9.02974E-05		-	-	1		Section M + Tur												
		P1-P4		0.00378868	0.0401245				-			ection P + 0.7 x (
		P5-P8	Volume			0.000315724		-		1	+ Tunnel Se	tion Internal Roa	ad C) x (tr	attic flow of 1	unnel Sect	ion P / (tra	ttic flow of	Tunnel Se	ction I + tra	attic flow o	t Tunnel Se	ction L + traffic	tlow of Tu	unnel
		W1-W8		0.12107666	3.0955598	0.010089722		-	1-	⊢.	1 x Tunnel V													
		W9-W16 701-710	Volume	0.01161618	0.2458341			-	-	1	i x runnei v													
		711-720	Volume	0.01101010	0.2400041	0.000774412				-	1 x Tunnel X													
		BaseA	Volume	0.00151548	0.013912		0.0139					ent roads A.B.C												
% of Serving	Rd	BaseC		0.00151548		0.001515481	0.0139					ent roads A,B,C												
	Out of 500m	801-820	Volume			-		-	-	1	1 x Tunnel Y													Г
	Out of 500m	901-903						-	-		1 x Tunnel Z													
	Out of 500m	904-906	Volume			-		-	-	1														
	Out of 500m	V1	Point							from 1-4	-													↓
		ļ														1				1				Щ.

	Top Openings and Ventilation Exhaust (Hr18-19)	

														Hr 18-19 (2	015 EIA_19-1:	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
A ^(I)	73	Lin Cheung Rd (underpass)	Northbound	3	73	550	55%	1%	21%	0%	4%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0963072	1.2124485	0.0010741	0.0135222
B ^(I)	73	Lin Cheung Rd (underpass)	Northbound	3	272	550	55%	1%	21%	0%	4%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0963072	1.2124485	0.0040021	0.0503840
C _(i)	73	Lin Cheung Rd (underpass)	Northbound	3	110	550	55%	1%	21%	0%	4%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0963072	1.2124485	0.0016185	
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3	176	550	55%	1%	21%	0%	4%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0963072	1.2124485	0.0025896	
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	828	56%	1%	22%	1%	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0924923	1.0975200	0.0032957	0.0391072
F ⁽¹⁾		Lin Cheung Rd (depressed)	Southbound	3	172	828	56%	1%	22%	1%	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0924923	1.0975200	0.0036572	0.0433963
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	755	56%	1%	21%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0928644	1.1226330	0.0023566	0.0284884
H ^(I)	119	Austin Rd W (depressed)	Eastbound	3	173	1226	41%	1%	42%	0%	2%	2%	5%	3%	1%	1%	0%	0%	0%	2%	0%	1%	100%	0.1262322	1.3521806	0.0074382	0.0796772
I ⁽¹⁾	117	Austin Rd W (depressed)	Eastbound	3	194	436	42%	1%	42%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1228485	1.2485652	0.0028876	0.0293481
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	585	38%	1%	40%	0%	2%	2%	4%	3%	1%	1%	6%	0%	0%	2%	1%	1%	100%	0.1336018	1.5150395	0.0042085	0.0477243
KIII	114	Lin Cheung Rd (depressed)	Southbound	3	95	177	58%	0%	34%	0%	2%	0%	0%	2%	1%	1%	0%	0%	0%	1%	0%	0%	100%	0.0851190	0.7951788	0.0003982	0.0037199
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	494	57%	1%	22%	0%	3%	2%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0916868	1.0758783	0.0011943	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	650	56%	1%	23%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0948205	1.1495555	0.0009583	0.0116177
N ^(I)	77	Lin Cheung Rd	Northbound	3	56	844	56%	1%	22%	1%	4%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0948007	1.1350154	0.0012441	
O(1)	111	Austin Rd W (depressed)	Eastbound	3	52	1003	42%	1%	40%	0%	2%	2%	4%	3%	1%	1%	1%	0%	0%	2%	0%	1%	100%	0.1225279	1.3427378	0.0017748	0.0194489
P ^(f)	110	Austin Rd W (depressed)	Westbound	3	52	594	42%	1%	40%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1259363	1.4357436	0.0010807	0.0123205
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	4849	58%	0%	13%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0519319	1.3418356	0.1377960	3.5604241
	A	Internal Rd A	Bothbound	4	404	174	46%	0%	29%	0%	2%	0%	0%	2%	1%	1%	18%	0%	0%	1%	0%	0%	100%	0.1468798	1.3134771	0.0028631	0.0256031
	В	Internal Rd B	Bothbound	4		262	43%	0%	27%	0%	1%	0%	0%	2%	1%	1%	23%	0%	0%	1%	0%	0%	100%	0.1569175	1.4449279	0.0041243	
	С	Internal Rd C	Bothbound	4	521	143	32%	0%	20%	0%	1%	0%	0%	196	1%	1%	42%	0%	0%	0%	0%	0%	100%	0.1912270	1.8942337	0.0039439	0.0390672
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1845	37%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	1%	11%	4%	0%	100%	0.1172952	2.5348958	0.0108205	0.2338441

PA | Medical Registration | 1944 | Medical Registration of Lastocogine for Hypother | Medical Data | 1940 | 1945 | 137% | 1976 |

			30%																							
						the approved EIA	Volume source - calculated by num of portal/opening involved	nber Area divide	source - ca d by area	lculated by emission rate																
					Emission Ra Opening		Emission Rate Portal/ Openia		ssion Ra	te - Portal/ Opening																
					(g/s)		(g/s) - Volume	(g/n	2-s) - Ar	ea source																
					PM	NOx	PM NO	Ox PM	NOx	(Area)	Formula															
			Portal/ opening								from															
				Source Type Area	0.00033333	0.0040567		75.00	8F-06	404.0	Scenario	0.3 x Tunne	alculation form	ula (Extr	acted fron	i the appro	ved EIA o	f Road Wo	rks at Wes	st Kowloon	1)					-
0.0	.935 0.87	19				0.0522426			0.0002		-		Tunnel Section	Δ . 1 v 7	innel Sec	tion B \ .	1/3 v / 30	935 / 50)	v/ n 7 v T	unnel Secti	on A . 1 v	Tunnal Sac	tion B \			_
0.	1.533 0.67	3			0.00165553				3E-05		1		Section C + 0.													_
			D1-D7		0.0041455	0.0521893	0.00039481 0.0		-							,,					= , ,					_
			D8-D14	Volume			0.000197405 0.0	025	-	-	1		Section C + 0.				7 x Tunne	I Section A	+ 1 x Tun	nel Section	B))+1x	Tunnel Sec	ction D			
			F			0.0212314			8E-05	277.5	1	0.3 x 0.7 x	Tunnel Section E	E + 0.3 x	Tunnel Se	ction F										
			11-14		0.01811523		0.003019206 0.03		-	-	1		Section I + 1 x I													
				Volume			0.001509603 0.0		-	-		Road A + 1	unnel Section In	nternal Ro	oad B + Tu	innel Section	on Interna	I Road C)	x (traffic	flow of Tun	nel Section	I / (traffic	flow of Tuni	nel Section	I + traffic flo)W
						0.0313764			2E-05	1542.7	1		Section J + 0.													
			L1-L5		0.00349777	0.0401621	0.000466369 0.00		-	-			Section L + 0.7 : tion Internal Roa													
				Volume		0.0100500	0.000233184 0.00		-	-	1	Tunnel Sec	tion Internal Hoa	ad C) x (traffic flow	of Tunner	Section L	/ (traffic i	low of Tun	nei Section	1 I + traffic 1	flow of Tunn	iel Section	L + traffic fi	ow of Tunne	31 S
			M1-M4 M5-M8	Volume	0.00110117	0.0132562	0.000183528 0.0 9.17639E-05 0.0			-	4.	0 F (T	el Section M + T		-4 AD											
			N1-N4		0.00110117	0.0133563	0.000183528 0.0		-	-	-	U.S X (Turii	ei Section ivi + i	iuillei 36	CUOII IN)											_
				Volume	0.00110117	0.0102002	9.17639E-05 0.0		-		١,	0.5 v (Tunn	el Section M + 7	Funnel Se	ction M											
			P1-P4		0.00455369	0.0470348	0.000758949 0.0		-	_	ľ		Section P + 0.7			ction J + 0.	7 x 0.86 >	Tunnel Se	ection K +	0.7 x (1/3	x (Tunnel S	Section Inte	rnal Road A	+ Tunnel S	Section Inter	rnal
				Volume			0.000379474 0.0		-	-	1	Tunnel Sec	tion Internal Roa	ad C) x	traffic flo	w of Tunne	Section	P / (traffic	flow of Tu	innel Section	on I + traffic	flow of Tu	nnel Section	n L + traffic	flow of Tunn	nel
			W1-W8		0.13779605	3.5604241	0.011483004 0.2	967	-	-				,				, , , , ,								_
			W9-W16	Volume			0.005741502 0.14	484	-	-	1	1 x Tunnel	W													
			701-710		0.01082048	0.2338441	0.000721365 0.0		-	-	1															
			711-720	Volume			0.000360683 0.00		-	-		1 x Tunnel														
							0.003643751 0.03						nent roads A,B,													
	% of Serving		BaseC		0.00364375	0.0342158	0.003643751 0.03	342					nent roads A,B,	С												
		Out of 500m		Volume				-	-	-	1	1 x Tunnel						1	<u> </u>	1	<u> </u>					4
		Out of 500m	901-903					-	-	-	-	1 x Tunnel	4				-	1	-	1						+
		Out of 500m		Volume				-	-	-	1 from 1-4							1	-		-					+
		Out of 500m	V I	Point				_			from 1-4	-					-	+	+	+	1	-				+

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr19-20)	
---	--

														Hr 19-20 (2	015 EIA_19-1:	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	73	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0009473	0.0119641
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	470	54%	1%	21%	0% 3	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0035297	0.0445784
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	470	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0014274	0.0180280
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3		470	54%	1%	21%	0% 3	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0993966	1.2553367	0.0022839	0.0288448
E ^(f)	72	Lin Cheung Rd (underpass)	Southbound	3	155	810	56%	1%	23%	1% 3	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0946940	1.1070114	0.0033025	
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	810	56%	1%	23%	1%	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0946940	1.1070114	0.0036647	0.0428413
G ^(t)	118	Lin Cheung Rd (depressed)	Southbound	3	121	765	56%	1%	22%	1% 3	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0943951	1.1249346	0.0024271	0.0289249
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173	1230	39%	1%	44%	0% 2	2%	2%	4%	3%	1%	1%	0%	0%	0%	2%	0%	1%	100%	0.1307413	1.3764898	0.0077279	0.0813620
I ⁽¹⁾	117	Austin Rd W (depressed)	Eastbound	3		425	41%	1%	44%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1272482	1.2708359	0.0029143	
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	570	37%	1%	40%	0% 2	2%	2%	4%	3%	1%	1%	6%	0%	0%	2%	1%	1%	100%	0.1374107	1.5469820	0.0042208	0.0475181
KIII	114	Lin Cheung Rd (depressed)	Southbound	3	95	165	61%	0%	33%	0%	3%	0%	0%	3%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0837406	0.7390958	0.0003646	
L ^(t)	112	Lin Cheung Rd (depressed)	Northbound	3	95	445	56%	1%	21%	0% 3	3%	2%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0951883	1.1252717	0.0011178	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3		650	56%	1%	24%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0965061	1.1424376	0.0009758	0.0115513
N ^(t)	77	Lin Cheung Rd	Northbound	3		745	55%	1%	21%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0972510	1.1633760	0.0011270	
0"	111	Austin Rd W (depressed)	Eastbound	3		1000	41%	1%	43%	0% 2	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1284244	1.3757389	0.0018550	0.0198718
P10	110	Austin Rd W (depressed)	Westbound	3		590		1%	42%	0% 2	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1316538	1.4708751	0.0011220	0.0125351
W ^{cc}	98	West Kowloon Highway (WKH)	Northbound	2		3605	57%	0%	13%	0% 3	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0526031	1.3506539	0.1037721	
	A	Internal Rd A	Bothbound	4		160	47%	0%	28%	0%	3%	0%	0%	3%	0%	0%	19%	0%	0%	0%	0%	0%	100%	0.1500838	1.3633630	0.0026948	
	В	Internal Rd B	Bothbound	4		245	43%	0%	27%	0% 2	2%	0%	0%	2%	2%	0%	24%	0%	0%	0%	0%	0%	100%	0.1581700	1.4628400	0.0038859	
	С	Internal Rd C	Bothbound	4		130	35%	0%	19%	0% (1%	0%	0%	0%	0%	0%	46%	0%	0%	0%	0%	0%	100%	0.1930660	1.9136558	0.0036323	0.0360033
X"		Reprovision of Gascoigne Rd Flyover		3	180	1850	36%	0%	11%	1% 8	3%	4%	10%	12%	1%	1%	1%	0%	1%	11%	4%	0%	100%	0.1202781	2.5526715	0.0111257	0.2361221

PA | Medical Representation of Lastocogine Por Hypoter | Westbournd | 3 | 1980 | 1960 | 36% | 1976 |

		30%										
				Calculated by th (extracted from to of Road Works a Kowloon)	the approved EIA		number	Area sou divided b	urce - ca by area	lculated by emission	rate	
				Emission Ra		Emission 1						
				Opening						te - Portal/Open	ing	
				(g/s)		(g/s) - Volu				ea source		
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
		Portal/ opening									from	
		ID.	Source Type	0.00028419	0.0000000			6E-07			Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.3 x Tunnel Section A
80.935 0.	873	A		0.00028419		-		6E-07 1E-05			1	0.3 x turner Section A 1 x Tunnel Section B + 1 x Tunnel Section B + 1 x Tunnel Section B + 1 x Tunnel Section B
80.935 0.	6/3	CE CE	Area	0.00363989		-		2E-06				23 x (0.7 x Tuning Section A + 1 x Tuning Section B) + 1 x 3 x 30.393730) x (0.7 x Tuning Section A + 1 x Tuning Section B) + 1 x Tuning Sectio
		D1-D7		0.00365616		0.000349305		2E-00	3E-00	030.3		0.5 x fullilet decision 0 + 0.5 x (1/5 x (15.0057 50) x (0.7 x fullilet decision A + 1 x fullilet decision B) + 0.5 x fullilet decision E
		D8-D14	Volume	0.00000010	0.0401737	0.000346203		-	_		- ,	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
				0.00179291	0.0209599	0.000174100		6E-06	8E-05	977 5	1	0.3 x 0.7 x Tunnel Section F + 0.3 x Tunnel Section F
		11-14		0.01849101		0.003081835					1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x 0.38 x T
		15-18	Volume			0.001540918			-		T T	Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I + traffic flow
		JKO1	Area	0.00293813				2E-06	2E-05	1542.7	1	0.3 x Tunnel Section J + 0.3 x (1 - 0.14) x Tunnel Section K + 0.3 x Tunnel Section O + 0.3 x 1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		L1-L5		0.00335832	0.039035	0.000447775						1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		L6-L10	Volume			0.000223888		-	-	-	1	Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of
		M1-M4		0.00105141	0.0125168			-	-	-		
		M5-M8	Volume			8.76173E-05		-			1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00105141	0.0125168	0.000175235			-	-		
		N5-N8	Volume		0.0100010	8.76173E-05				-	1	0.5 x (Tunnel Section M + Tunnel Section N) 1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunne
		P1-P4		0.00454996	0.0462843			-		-		Turner Section P + 0.7 x 0.76 x turner Section 3 + 0.7 x 0.66 x turner Section F + 0.7 x 0.76 x turner Section Internal Poda A + turner Section Internal Poda A + turner Section Internal Poda C x (traffic flow of Turnel Section Internal Poda C x (
		P5-P8 W1-W8	Volume	0.10377213	0.0044007	0.000379164		-	-	-		Turner Section Internal road C) x { traine now or Turner Section F / traine now or Turner Section E + traine now or Turner
		W1-W8 W9-W16	Volume	0.103/7213	2.0044837	0.008647678		-	-	-	− ,	1 x Tunnel W
		701-710		0.01112573	0.2361221	0.004323839			E		- 1	I A Idilitis M
		711-720	Volume	0.01112070	0.2001221	0.000741718						1 x Tunnel X
		BaseA	Volume	0.00340436	0.0321408	0.003404363						1/3 x Basement roads A.B.C
% of Servi	na Rd	BaseC		0.00340436		0.003404363						1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel 2
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr20-21)	
---	--

														Hr 20-21 (2	015 EIA_19-12	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)		taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	73		54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0008810	0.0114222
B(I)	73		Northbound	3	272		54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0032827	0.0425594
C ⁽ⁱ⁾	73	Lin Cheung Rd (underpass)	Northbound	3	110		54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0013276	0.0172115
D ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	176		54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0021241	0.0275384
E ¹⁰	72	Lin Cheung Rd (underpass)	Southbound	3	155		56%	1%	23%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0906412	1.0507031	0.0021074	
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		56%	1%	23%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	196	100%	0.0906412	1.0507031	0.0023385	0.0271081
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3	121		55%	1%	21%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0929131	1.1244962	0.0016083	0.0194647
H ^(r)	119	Austin Rd W (depressed)	Eastbound	3	173		38%	1%	45%	0%	1%	1%	4%	3%	196	1%	0%	0%	0%	1%	0%	196	100%	0.1275903	1.3494626	0.0063460	0.0671189
p.,	117	Austin Rd W (depressed)	Eastbound	3	194		39%	1%	44%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1231362	1.2569750	0.0023557	0.0240466
J ^(c)	116		Westbound	3	194		35%	1%	41%	0%	2%	2%	4%	2%	196	1%	6%	0%	0%	2%	1%	1%	100%	0.1336804	1.5647378	0.0034218	0.0400529
K ¹⁰	114	Lin Cheung Rd (depressed)	Southbound	3	95		58%	0%	35%	0%	4%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0855512	0.7767962	0.0002935	
Fe.	112	Lin Cheung Rd (depressed)	Northbound	3	95		56%	1%	22%	0%	3%	2%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0914883	1.0890215	0.0010985	
M ^o	84	Lin Cheung Rd	Southbound	3	56		56%	1%	23%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0908042	1.0737254	0.0006427	
N ^(r)	77	Lin Cheung Rd	Northbound	3	56		55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0958090	1.1643613	0.0011178	
0"	111	Austin Rd W (depressed)	Eastbound	3	52		38%	1%	44%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1283496	1.4139561	0.0015666	0.0172581
P10	110		Westbound	3	52		39%	1%	43%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1276585	1.4798679	0.0009312	0.0107948
W ^{cr}	98	West Kowloon Highway (WKH)	Northbound	2	1970		57%	0%	14%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0541399	1.3754610	0.0702149	1.7838583
	A	Internal Rd A	Bothbound	4	404		44%	0%	28%	0%	4%	0%	0%	4%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1511370	1.4181344	0.0021201	0.0198933
	В	Internal Rd B	Bothbound	4	361		43%	0%	27%	0%	3%	0%	0%	3%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1573047	1.4827939	0.0029182	
	С	Internal Rd C	Bothbound	4	521		32%	0%	21%	0%	0%	0%	0%	0%	0%	0%	47%	0%	0%	0%	0%	0%	100%	0.2026860	2.0048960	0.0027867	0.0275645
X**	144	Reprovision of Gascoigne Rd Flyover		3	180	1245	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	0%	10%	4%	0%	100%	0.1159785	2.4957565	0.0072197	0.1553608

	3	1%																						
				e formula shown the approved EIA at West		number	Area sou divided b		alculated by emission rai	le														
			Emission Ra	te - Portal/	Emission I	Rate -																		
			Opening						te - Portal/ Openin	g														
			(g/s)		(g/s) - Volu	ıme	(g/m2-	s) - Ar	rea source															
			PM	NOx	PM	NOx	PM	NOx	(Area)	Formula														
	Portal/ openi									from														
	ID.	Source Type		0.0001007						Scenario	Emission calculation t 0.3 x Tunnel Section A	ormula (E	xtracted fr	m the appr	oved EIA	of Road W	orks at We	st Kowloc	n)					
	A	Area	0.00026431	0.0034267	-		5E-07 1E-05			1	2/3 x (0.7 x Tunnel Section A	E 4 . 4	T	D.)	4/0 / 00	005 / 50	\(A7		E 4 . 4	Toward C	D 1			
80.935 0.873	B	Area Area	0.00340382		-	-	1E-05 2E-06			1	0.3 x Tunnel Section C													
	D1-D7	Area	0.00340034				2E-06	2E-05	030.3		U.S X Turrier Section C	+ U.3 X (I	/3 X (19.0	33 / 30) X (U. / X TUIT	iei sectioi	II A + I X I	unner sec	1011 6)) +	U.S X TUIT	ilei Sectioi	I E		
	D8-D14	Volume	0.00040004	0.0440044	0.000323842			_		٠,	0.7 x Tunnel Section C	±07x/1	/3 v / 19 n	85 / 50 v / 0	7 v Tunno	al Section	A ± 1 v Tiu	nel Sectio	n B)) + 1	l v Tunnel	Section D			
	E	Area	0.00114412	0.0132625			4E-06	5E-05	277 5	1	0.3 x 0.7 x Tunnel Sect				., , , , , , , , , , , , , , , , , , ,	0.000001	/		,,,,,,	A TUITIO	Occusion D			
	11-14	riicu	0.0139303		0.002321716					1	1 x Tunnel Section I +	x lunnel	Section G	+ 1 x Tunne	Section I	1 + 0.14 x	Tunnel Se	ction K + (0.7 x 0.38 x	Clunnel S	ection O +	0.7 x (1/3 :	(Tunnel Se	ection Ir
	15-18	Volume			0.001160858		-	-		ľ	Road A + Tunnel Secti	on Internal	Road B +	Tunnel Sect	ion Interna	al Road C) x (traffic	flow of Tu	nnel Section	on I / (traf	fic flow of	Tunnel Sect	ion I + traffic	c flow o
	JKO1	Area	0.00235475		-		2E-06	2E-05	1542.7	1	0.3 x Tunnel Section J													
	L1-L5		0.00298501	0.0346054				-			1 x Tunnel Section L +													
	L6-L10	Volume			0.000199001		-	-	-	1	+ Tunnel Section Intern	al Road C) x (traffic	flow of Tuni	nel Section	n L / (traff	fic flow of 7	unnel Sec	tion I + tra	ffic flow of	Tunnel Se	ction L + tra	affic flow of	Tunnel S
	M1-M4		0.00088023	0.0105919				-	-															
	M5-M8	Volume			7.33527E-05			-	-	1	0.5 x (Tunnel Section I	1 + Tunnel	Section N)											
	N1-N4		0.00088023	0.0105919					-															
	N5-N8	Volume	0.00362947	0.0007110	7.33527E-05			-	-	1	0.5 x (Tunnel Section I 1 x Tunnel Section P +				7000	Toward C		0.7/40	/ T	1061	atama I Da	- J A T	-1061	-4
	P1-P4 P5-P8	-	0.00362947	0.0387442			-	-		┥.	+ Tunnel Section Inter													
	P5-P8 W1-W8	Volume	0.07021488	1 7020502		0.0032	-		-	-	+ runner section interi	iai noad C) x (train	, now or ru	ii iei 3ecili	ліг / (lfa	arric now or	rumlet Se	schoill + I	and now	or runner a	Deciroff L +	ranic now o	runne
	W1-W8 W9-W16	Volume	0.07021488	1.7638583	0.00585124	0.1487	-	-	-	⊢.	1 x Tunnel W													
	701-710	voiunte	0.00721966	0.1553608			E			i i	I A TUTILIOT VV													
	711-720	Volume	2.00721000	2.1000000	0.000481311		_	-	-	-	1 x Tunnel X													
	BaseA	Volume	0.00260833	0.0249886	0.002608329						1/3 x Basement roads	A,B,C												
% of Serving Rd	BaseC				0.002608329						1/3 x Basement roads													
Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y	-												\neg
Out of 500m	901-903				-	-	-	-			1 x Tunnel Z													\top
Out of 500m	904-906	Volume			-				-	1														
Out of 500m	V1	Point								from 1-4	-													

Appendix 3.18c - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr21-22)	
---	--

														Hr 21-22	(2015 EIA 19-12	2-2011.x(e)								Rate (g/km-		Emissio	
Remarks (Tunnel name -																								PM	NOx	PM	NOx
Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total				
A ⁽¹⁾	73		Northbound	3	73	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0007250	0.0089924
B ^(l)	73		Northbound	3	272	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0027015	0.0335059
C ^(l)	73		Northbound	3	110		54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0010925	
D(I)	73		Northbound	3	176	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0017480	
E ⁽¹⁾	72		Southbound	3	155		55%	1%	23%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0945830	1.1215795	0.0021991	0.0260767
F ⁽¹⁾	72		Southbound	3	172	540	55%	1%	23%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0945830	1.1215795	0.0024402	0.0289367
G ⁽ⁱ⁾	118		Southbound	3	121		55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0948913	1.1392194	0.0016904	
H ^(I)	119	Austin Rd W (depressed)	Eastbound	3	173		36%	1%	46%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	1%	1%	100%	0.1321211	1.4500809	0.0066666	0.0731687
I ⁽¹⁾	117		Eastbound	3	194		38%	1%	45%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1260448	1.2793054	0.0024113	0.0244738
$J^{(1)}$	116	Austin Rd W (depressed)	Westbound	3	194	465	34%	1%	42%	0%	2%	2%	4%	2%	1%	1%	5%	0%	0%	2%	1%	1%	100%	0.1345154	1.5696270	0.0033707	0.0393322
K ^(t)	114		Southbound	3	95	115	61%	0%	35%	0%	0%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0818698	0.6878634	0.0002485	0.0020875
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	405	54%	1%	22%	0%	2%	2%	5%	5%	1%	1%	1%	0%	196	1%	0%	1%	100%	0.0955293	1.1445932	0.0010210	
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	455	54%	1%	23%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	1%	0%	1%	100%	0.0982598	1.1898591	0.0006955	0.0084216
N ^(I)	77	Lin Cheung Rd	Northbound	3	56	645	54%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0969162	1.1919187	0.0009724	0.0119589
O ⁽¹⁾	111		Eastbound	3	52	840	36%	1%	45%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1320770	1.5074457	0.0016025	0.0182903
P ^(l)	110	Austin Rd W (depressed)	Westbound	3	52	500	36%	1%	45%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1332813	1.5280592	0.0009626	0.0110360
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	1765	57%	0%	14%	0%	3%	2%	5%	4%	3%	2%	1%	0%	4%	2%	3%	0%	100%	0.0533533	1.3774921	0.0515311	1.3304470
	A	Internal Rd A	Bothbound	4	404	100	45%	0%	30%	0%	0%	0%	0%	5%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1526722	1.3576760	0.0017133	0.0152361
	В	Internal Rd B	Bothbound	4	361	160	41%	0%	28%	0%	3%	0%	0%	3%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1653254	1.5557151	0.0026526	
	С	Internal Rd C	Bothbound	4	521	80	31%	0%	19%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2096886	2.0813385	0.0024277	0.0240973
X ₀	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1250	36%	0%	11%	1%	7%	4%	11%	12%	1%	1%	1%	0%	0%	10%	4%	0%	100%	0.1159747	2.5378733	0.0072484	0.1586171

PA Heapprosison of Ussecogine for Hypoter | Westbound | 3 | 1880 | 1250 | 28% | 17% | 17% | 17% | 17% | 17% | 1880 | 1750 | 1880

		30%										
				Calculated by the (extracted from the of Road Works at Kowloon)	e approved EIA		number A	rea source - ivided by are	- calcu ea	ulated by emission rate		
				Emission Rat		Emission F						
				Opening						- Portal/Opening		
				(g/s)		(g/s) - Volu		g/m2-s)				
				PM	NOx	PM	NOx 1	PM NO:	x (/	Area)	Formula	
		Portal/ opening	Source Type								from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
				0.00021751	0.0026977	_	4	E-07 5E-0	16 40	01.2	1	0.3 x Tinnel Section A
80.935 0.8	373			0.00280116				E-06 0.000			1	2/3 x (0.7 x Tunnel Section A + 1 x Tunnel Section B) + 1/3 x (30.935 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)
		CE	Area	0.00110983	0.0134057	-	2	E-06 2E-0	05 63	35.3	1	0.3 x Tunnel Section C + 0.3 x (1/3 x (19.065 / 50) x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 0.3 x Tunnel Section E
		D1-D7		0.0027983	0.0347064			-				
			Volume			0.000133252			-		1	0.7 x Tunnel Section C + 0.7 x (1/3 x (19.065 / 50 x (0.7 x Tunnel Section A + 1 x Tunnel Section B)) + 1 x Tunnel Section D
				0.00119387		-		E-06 5E-0	05 27	77.5	1	0.3 x 0.7 x Tunnel Section E + 0.3 x Tunnel Section F
		11-14		0.01446168	0.1605721		0.0268 -				1	1 x Tunnel Section 1 + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + 0.7 x 0.38 x Tunnel Section O + 0.7 x (1/3 x (Tunnel Section C + 0.7 x 0.38 x Tunnel Section C + 0.7 x 0.38 x 0.38 x 0.38 x 0.38 x 0.38 x 0.38 x 0.38 x 0.38 x
			Volume Area	0.00223544	0.0040547	0.00120514		E-06 2E-0				Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road C) x (traffic flow of Tunnel Section I / (traffic flow of Tunnel Section I / traffic flow of Tunnel Section I + traffic flow of Tunnel Section I + traffic flow of Tunnel Section I + traffic flow of Tunnel Section Internal Road A + Tunnel Section Internal Road B + Tunnel Section Internal Road
		L1-L5		0.00223344		0.000372303		E-06 ZE-0	JD IC	542./	-	1 x Tunnel Section L + 0.7 x 0.24 x Tunnel Section J + 0.7 x 0.62 x Tunnel Section O + 0.7 x (13 x (Tunnel Section Internal Boad A + Tunnel Boad A +
		L6-L10	Volume	O.OOL/ OLL/	0.0001270	0.000072000			-		1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flo
		M1-M4		0.00083393	0.0101902			-				
		M5-M8	Volume				0.0008 -	-	-		1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00083393	0.0101902			-				
		N5-N8	Volume			6.94939E-05		-			1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00353442	0.0374252		0.0062 -	-				1 x Tunnel Section P + 0.7 x 0.76 x Tunnel Section J + 0.7 x 0.86 x Tunnel Section K + 0.7 x (1/3 x (Tunnel Section Internal Road A + Tunnel Section Internal
		P5-P8 W1-W8	Volume	0.05153115	4 000447	0.000294535	0.0031 -	-	-	•	1	+ Tunnel Section Internal Road C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D / (traffic flow
		W1-W8 W9-W16	Volume	0.05153115	1.330447	0.004294262		-			l.	1 x Tunnel W
		701-710		0.00724842	0.1586171						1	1 X Turner VV
		711-720	Volume	0.007 E 101E	0.1000171	0.000241614			-			1 x Tunnel X
			Volume	0.00226453	0.0214313							1/3 x Basement roads A,B,C
% of Servin	ig Rd	BaseC		0.00226453	0.0214313	0.002264535	0.0214					1/3 x Basement roads A,B,C
	Out of 500m		Volume			-		-	-		1	1 x Tunnel Y
	Out of 500m	901-903				-		-				1 x Tunnel Z
	Out of 500m	904-906	Volume			-		-			1	
	Out of 500m	V1	Point								from 1-4	

Top Openings and Ventilation Exhaust (Hr22-23)

														Hr 22-23 (2015 EIA_19-12	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of																								PM	NOx	PM	NOx
underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	73		53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0005798	0.0073014
Bii	73	Lin Cheung Rd (underpass)	Northbound	3	272		53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0021605	0.0272051
C ⁽ⁱ⁾	73	Lin Cheung Rd (underpass)	Northbound	3	110		53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0008737	0.0110021
D(1)	73	Lin Cheung Rd (underpass)	Northbound	3	176		53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0013980	0.0176033
E ₁₀	72	Lin Cheung Rd (underpass)	Southbound	3	155		55%	1%	23%	0%	2%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0925218	1.1036981	0.0016333	0.0194833
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		55%		23%	0%	2%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0925218	1.1036981	0.0018124	0.0216202
G ^(r)	118	Lin Cheung Rd (depressed)	Southbound	3	121		55%	1%	23%	0%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0921177	1.1094109	0.0012385	0.0149154
H ⁽¹⁾	119	Austin Rd W (depressed)	Eastbound	3	173		35%	1%	47%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	1%	2%	100%	0.1358599	1.5011441	0.0056148	0.0620389
po,	117	Austin Rd W (depressed)	Eastbound	3	194		38%	2%	46%	0%	2%	2%	4%	2%	2%	0%	0%	0%	0%	2%	0%	2%	100%	0.1256163	1.2766566	0.0018954	0.0192633
Jio	116	Austin Rd W (depressed)	Westbound	3	194		35%	1%	43%	0%	1%	1%	4%	3%	1%	0%	6%	0%	0%	1%	1%	1%	100%	0.1326806	1.5171168	0.0025740	0.0294321
K ¹⁰	114	Lin Cheung Rd (depressed)	Southbound	3	95		59%			0%	5%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0811531	0.7553685	0.0002356	0.0021927
L ^{eo}	112	Lin Cheung Rd (depressed)	Northbound	3	95		54%	1%	22%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0921965	1.1342608	0.0008150	0.0100272
M ⁰⁷	84	Lin Cheung Rd	Southbound	3	56		55%	1%	24%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	0%	100%	0.0929667	1.1149716	0.0005134	0.0061571
N ^(r)	77	Lin Cheung Rd	Northbound	3	56		54%	1%	23%	0%	3%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0956100	1.1435129	0.0007808	0.0093387
0"	111	Austin Rd W (depressed)	Eastbound	3	52		36%	1%	46%	0%	1%	1%	4%	3%	1%	1%	1%	0%	1%	1%	1%	1%	100%	0.1321463	1.4324072	0.0013457	0.0145867
Pil	110	Austin Rd W (depressed)	Westbound	3	52		35%	1%	45%	0%	1%	1%	5%	2%	1%	1%	1%	0%	1%	1%	1%	1%	100%	0.1351002	1.5335894	0.0008001	0.0090823
W.	98	West Kowloon Highway (WKH)	Northbound	2	1970		56%			0%	3%	2%	5%	4%	3%	2%	1%	0%	4%	2%	3%	0%	100%	0.0535651	1.3757223	0.0514425	1.3212093
	A	Internal Rd A	Bothbound	4	404		43%		29%	0%	5%	0%	0%	5%	0%	0%	19%	0%	0%	0%	U%	0%	100%	0.1513914	1.4363008	0.0017839	0.0169244
	В	Internal Rd B	Bothbound		361		42%		26%	0%	3%	0%	0%	3%	0%	0%	26%	0%	0%	0%	0%	0%	100%	0.1631965	1.5598607	0.0025366	0.0242450
	C	Internal Rd C	Bothbound	4	521		33%	0%	20%	0%	0%	0%	0%	0%	0%	0%	47%	0%	0%	0%	U%	0%	100%	0.2107940	2.0557596	0.0022880	0.0223136
X"	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1575	36%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	0%	100%	0.1165184	2.5438244	0.0091758	0.2003262

PA | Medical Representation of Lastocogine Por Hypoter | Westbournd | 3 | 1980 | 1575 | 26% | 1976 | 1776 | 776 | 776 | 776 | 77

			30%																							
					(extracted from of Road Works Kowloon)	the approved EIA at West	of portal/opening involved	divides	ource - ca I by area	lculated by emission rate																
							Emission Rate																			
					Opening					te - Portal/ Opening																
					(g/s)		(g/s) - Volume			ea source																
			Portal/ opening		PM	NOx	PM NO:	PM	NOx	(Area)	Formula from															
				Source Type								Emission o	alculation for	mula (Ext	racted from	n the annre	ved FIA	of Road W	orks at We	et Kowle	oon)					
					0.00017395	0.0021904		4E-07	4E-06		1	0.3 x Tunne	Section A	muni (12A)	I ucteu ii o	п сис прри	rea DE L	or reona iii	A IL III III	JE 140 1111	0011)					_
8	0.935 0.8	373	В	Area	0.00224018	0.0282087		7E-06	8E-05	341.9	1		Tunnel Section													_
				Area	0.00084995	0.0103778			2E-05	635.3	1	0.3 x Tunne	Section C +	0.3 x (1/3	3 x (19.06	5/50)x(0).7 x Tun	nel Section	A + 1 x Ti	unnel Se	ection B)) + 0	1.3 x Tunnel	Section E			
			D1-D7		0.0022379	0.0281799	0.000213133 0.002			-																
				Volume			0.000106566 0.001		-	-	1		el Section C +				7 x Tunne	el Section A	4 + 1 x Tur	inel Sect	tion B)) + 1 :	Tunnel Sec	ction D			
						0.0105776	0.001938301 0.02		4E-05	277.5	1	0.3 x 0.7 x	Tunnel Section Section I + 1 x	1 E + 0.3	x Tunnel S	ection F	Continu I	U . 0 14 v	Lunnol Co.	tion V .	n 7 v n 20 v	Lunnal Post	on () . () 7	U/ 1/9 U/	uppel Poets	on I
			I1-I4 I5-I8		0.0116298	0.1294/35	0.001938301 0.02		-		1		unnel Section													
				Volume Area	0.00189753	0.0201196	0.00096915 0.010		1E-05	1542.7	1	0.3 y Tunni	Section J + 0	03 y / 1 -	0 14) y Ti	innel Section	n K ± 0	3 y Tunnel	Section O	± 0.3 v 1	1/3 v / Tunnel	Section Inte	rnal Boad	Δ ± Tunnel:	Section Inter	rna
			L1-L5				0.000311396 0.000			1042./	·		Section L + 0.7													
				Volume			0.000155698 0.00		-	-	1		tion Internal Ro													
			M1-M4		0.0006471	0.0077479	0.00010785 0.00		-	-																_
				Volume			5.39249E-05 0.000		-	-	1	0.5 x (Tunn	el Section M +	- Tunnel S	Section N)											
			N1-N4		0.0006471	0.0077479	0.00010785 0.00			-	_															
				Volume		0.0001001	5.39249E-05 0.000		-		1		el Section M + Section P + 0.			I . A	70.00	Toward C		07/ 4	(M / T		! D! /	T	N	
			P1-P4 P5-P8		0.00292807	0.0301981	0.000488011 0.003 0.000244005 0.003		-	-	<u>.</u>		tion Internal Ro													
			W1-W8	Volume	0.05144054	1 2212002	0.000244005 0.002		-		1	Turinei Sec	uon internai Ho	oad C) x	(tranic in	w or runne	el Section	P/(traili	C HOW OF TH	innei Se	ection i + traili	C HOW OF TUE	inei Sectioi	n L + trailic	now or Tuni	iei
				Volume	0.03144234	1.3212033	0.004286878 0.110		-	-	┨,	1 x Tunnel	w													
			701-710		0.00917582	0.2003262	0.002143439 0.000			-	1	I A TUTTING	**													_
				Volume			0.000305861 0.006		-	-	-	1 x Tunnel														
					0.00220282		0.00220282 0.02						ment roads A,E													_
	% of Servir	ig Rd	BaseC		0.00220282	0.021161	0.00220282 0.02	2					ment roads A,E	3,C												_
		Out of 500m		Volume				-	-	-	1	1 x Tunnel														⊥
		Out of 500m	901-903					-	-	-		1 x Tunnel	Z						1	4						4
		Out of 500m		Volume				-	-	-	1						-	1		_	_					+
		Out of 500m	V1	Point							from 1-4	-					!	-	+	-	_					+

Top Openings and Ventilation Exhaust (Hr23-00)

														Hr 23-00 (2	015 EIA_19-1	2-2011.xls)								Rate (g/km-		Emissio (g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0005680	0.0072495
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0021162	
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3		300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0008558	
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3		300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0013693	0.0174781
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3		425	56%	1%	24%	0%	2%	1%	5%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0887885	1.0621039	0.0016247	
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3		425	56%	1%	24%	0%	2%	1%	5%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0887885	1.0621039	0.0018029	
G ^(t)	118	Lin Cheung Rd (depressed)	Southbound	3		405	54%	1%	22%	0%	2%	1%	5%	5%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.0895458	1.0911759	0.0012189	
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173	680	35%	1%	48%	0%	1%	1%	4%	2%	1%	1%	1%	0%	1%	1%	1%	1%	100%	0.1335898	1.4637242	0.0043654	0.0478313
I(1)		Austin Rd W (depressed)	Eastbound	3		245	37%	2%	45%	0%	2%	2%	4%	2%	2%	0%	0%	0%	0%	2%	0%	2%	100%	0.1238049	1.3101097	0.0016346	
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	295	32%	2%	41%	0%	2%	2%	3%	2%	2%	0%	10%	0%	0%	2%	2%	2%	100%	0.1314081	1.5991364	0.0020890	
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	170	56%	0%	35%	0%	3%	0%	3%	3%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0948358	0.9132334	0.0004254	
L ^(r)	112	Lin Cheung Rd (depressed)	Northbound	3	95	355	54%	1%	23%	0%	3%	1%	6%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0939261	1.1694007	0.0008799	
M ^(r)	84	Lin Cheung Rd	Southbound	3		400	54%	1%	25%	0%	1%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	0%	100%	0.0918391	1.0991535	0.0005714	
N ⁽ⁱ⁾	77	Lin Cheung Rd	Northbound	3	56	545	54%	1%	23%	0%	3%	2%	6%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0958762	1.1629589	0.0008128	0.0098593
0"	111	Austin Rd W (depressed)	Eastbound	3	52	610	35%	1%	46%	0%	2%	2%	3%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1287058	1.4387418	0.0011340	0.0126769
P ⁽ⁱ⁾	110	Austin Rd W (depressed)	Westbound	3		330	32%	2%	47%	0%	2%	2%	5%	2%	2%	2%	2%	0%	2%	2%	2%	2%	100%	0.1374171	1.6234948	0.0006550	0.0077387
W ^{oo}	98	West Kowloon Highway (WKH)	Northbound	2	1970	1170	56%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0544161	1.3969034	0.0348399	0.8943674
	A	Internal Rd A	Bothbound	4	404	175	43%	0%	29%	0%	3%	0%	3%	3%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1597945	1.5484876	0.0031382	0.0304106
	В	Internal Rd B	Bothbound	4	361	285	39%	0%	26%	0%	1%	0%	2%	4%	2%	2%	23%	0%	0%	0%	0%	0%	100%	0.1588280	1.5535335	0.0045392	
	C	Internal Rd C	Bothbound	4	521	140	29%	0%	18%	0%	1%	0%	0%	4%	0%	0%	46%	0%	0%	0%	U%	0%	100%	0.2034716	2.0812462	0.0041226	
X''		Reprovision of Gascoigne Rd Flyover		3	180	1265	35%	0%	11%	1%	7%	4%	11%	11%	2%	1%	1%	0%	0%	10%	4%	0%	100%	0.1142516	2.4953576	0.0072264	0.1578314

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 1265 | 35% | 10% | 17%

Scenario 2		30%																									
				of Road Works a Kowloon)	he approved EIA at West	calculated by of portal/open involved	number A	Area source fivided by a	e - calcula area	ated by emission rate																	
				Opening (g/s)		Portal/ Op (g/s) - Volu	ening E	(g/m2-s)	- Area																		
		Portal/ opening	Source Type	PM	NOx	PM	NOx F	PM N	Ox (A		Formula from Scenario	Emission c	dculation	ı formu	la (Extrac	ted from	the appr	oved EIA o	of Road Wo	rks at Wes	t Kowloon)					
		A	Area	0.00017039	0.0021748		3	8E-07 4E	-06 49	12	1	0.3 x Tunne	Section A	A								,					
80.935	1.873	B	Area	0.00219427				E-06 8E			1	2/3 x (0.7 x	Tunnel Se	ection A	+ 1 x Tur	nnel Sect	ion B) +	1/3 x (30	935 / 50)	x (0.7 x Tı	unnel Secti	on A + 1 x	Tunnel Se	ection B)			
		CE	Area	0.00084001	0.0103311		- 1	E-06 2E	-05 635	5.3	1	0.3 x Tunne	Section C	C + 0.3	x (1/3 x)	(19.065	/50)x(0.7 x Tunr	nel Section	A + 1 x Tu	nnel Section	on B)) + (0.3 x Tunn	el Section			
		D1-D7		0.00219204	0.0279795	0.000208765	0.0027		-																		
		D8-D14	Volume			0.000104383	0.0013		-		1	0.7 x Tunne	Section C	C + 0.7	x (1/3 x)	(19.065	/50 x (0	.7 x Tunne	I Section A	+ 1 x Tuni	nel Section	B))+1	x Tunnel S	ection D			
		F	Area	0.00088206				8E-06 4E	-05 277	7.5	1	0.3 x 0.7 x	funnel Sec	ction E	+ 0.3 x Tu	unnel Sec	tion F					- / /					
		11-14		0.01036362	0.116761	0.00172727	0.0195		-		1															Tunnel Sect	
		15-18	Volume			0.000863635																					ow of Tunnel
		JKO1	Area	0.00225668				E-06 2E	-05 154	42.7	1	0.3 x Tunne	Section J	J + 0.3	x (1 - 0.1	14) x Tur	nel Secti	on K + 0.3	3 x Tunnel S	Section O +	+ 0.3 x 1/3	x (Tunnel	Section In	ternal Roa	A + Tunne	Section Inte	rnal Road B +
		L1-L5		0.00277403					-																		rnal Road B +
		L6-L10	Volume			0.000184935			-		1	Tunnel Sec	ion Interna	nal Road	d C) x (tra	affic flow	of Tunnel	Section L	./ (traffic f	low of Tuni	nel Section	I + traffic	flow of Tu	nnel Section	n L + traffic	flow of Tunn	el Section P))
		M1-M4		0.00069213																							
		M5-M8	Volume			5.76775E-05					1	0.5 x (Tunn	el Section	n M + Tu	ınnel Sect	tion N)											
		N1-N4		0.00069213																							
		N5-N8	Volume			5.76775E-05					1	0.5 x (Tunn															
		P1-P4]	0.00299948					-																		rnal Road B +
		P5-P8	Volume			0.000249957					1	Tunnel Sec	ion Interna	nal Road	iC)x(tr	raffic flov	v of Tunn	el Section	P / (traffic	flow of Tu	nnel Section	on I + traffi	ic flow of 7	unnel Sect	on L + traffi	c flow of Tur	nel Section
		W1-W8]	0.0348399					-			1															
		W9-W16	Volume			0.001451662					1	1 x Tunnel '	٧														
		701-710	1	0.00722642							1	1															
		711-720	Volume			0.000240881					-	1 x Tunnel :															
		BaseA	Volume		0.0389925							1/3 x Baser															
% of Sen		BaseC		0.00393331	0.0389925	0.003933306	0.039					1/3 x Baser		s A,B,C													
	Out of 500m	801-820	Volume						-		1	1 x Tunnel						1				1	1			1	
	Out of 500m	901-903				-			-			1 x Tunnel :	!					1				1	1			1	
	Out of 500m	904-906	Volume			-			-		1							1				1	1			1	
	Out of 500m	V1	Point								from 1-4							1				1	1			1	
																		1				1	1				

	Ventilation Exhaust (Hr00-01)

													Hr 00-01 (2015 EIA_19-	12-2011.xls)								Rate (g/km-		Emissio (g/	's)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Length (m) (from Rd Works EIA)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
A ^(l)	73	Lin Cheung Rd (underpass)	Northbound	134	215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0007645	
B ^(l)	73		Northbound		215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0012836	
C(I)	73		Northbound		215	53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0008044	0.0103611
D ⁽¹⁾			Northbound			53%	0%	23%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0955238	1.2304077	0.0010098	
E ⁽ⁱ⁾			Southboun		265	55%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0936651	1.1839523	0.0010687	0.0135086
F ⁽¹⁾			Southboun	146			0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0936651	1.1839523	0.0010066	
G (1)	118		Southboun			53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	0%	0%	2%	2%	0%	2%	100%	0.0924976	1.2001108	0.0011517	0.0149430
H ^(l)		Austin Rd W (depressed)	Eastbound			32%	1%	51%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1342209	1.4577666	0.0012002	0.0130349
I ⁽¹⁾		Austin Rd W (depressed)	Eastbound			36%	0%	56%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1379285	1.2475830	0.0008764	
J ⁽¹⁾			Westbound		165	33%	0%	45%	0%	3%		3%	3%	0%	0%	6%	0%	0%	3%	0%	0%	100%	0.1363135	1.5185645	0.0011433	
K ⁽ⁱ⁾			Southboun		50		0%	30%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0648138	0.5373284	0.0000594	0.0004926
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound			54%	2%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0950957	1.2108087	0.0004533	
M ⁽¹⁾	84	Lin Cheung Rd	Southboun			54%	0%	24%	0%	2%	2%	4%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0939613	1.1887411	0.0003602	0.0045568
N ^(t)	77	Lin Cheung Rd	Northbound		410	52%	1%	22%	0%	2%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0963301	1.2034973	0.0006583	0.0082239
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound		355	34%	1%	49%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1312810	1.4683894	0.0004660	0.0052128
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound		205	32%	0%	49%	0%	2%	2%	5%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1373062	1.7179691	0.0002815	0.0035218
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound		1145	55%	0%	14%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0546631	1.4126668	0.0342503	0.8851339
	A		Bothbound		40	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1480281	1.3796668	0.0006648	
	В		Bothbound		65	38%	0%	31%	0%	0%	0%	0%	8%	0%	0%	23%	0%	0%	0%	0%	0%	100%	0.1676717	1.5226167	0.0010934	0.0099291
	С	Internal Rd C	Bothbound	520.836	30	33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2147230	2.1257746	0.0009320	0.0092265
X ^{p1}			Westbound	180	965	35%	1%	11%	1%	7%	4%	11%	11%	2%	1%	1%	0%	1%	10%	5%	1%	100%	0.1170200	2.5587013	0.0056462	0.1234573

enario 4			max									
				Calculated by the for (extracted from the a Road Works at Wes	approved EIA of it Kowloon)	Volume sour calculated by portal/openin	number of g involved	Area source rate divided b	y area			
				Emission Rate -	Portal/	Emission		Emission	Rate - Por	tal/		
				Opening		Portal/O		Opening				
				(g/s)		(g/s) - Vol		(g/m2-s) -				
			Portal/	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
			opening								from	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
-	3.076	0.687	ID.	0.000525313	0.0067664			1.0694E-06	1 277EE 0E	401.2	Scenario	Emission calculation formula (Extracted from the approved ELA of Road Works at West Kowloon) 10.687 X Tunnel Section A
	0.935	0.873	<u> </u>	0.000323313	0.0007004	-		3.8877F-06		341.9	-	10.873 x (1-0.687) x Tunnel Section A + 1 x Tunnel Section B)
	2.646	0.435	CF	0.001323262	0.0114751			1.416E-06			1	10.435 x (1 - 0.873) x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section B
	2.040	0.400	D1-D7	0.001573317	0.0202653					-	ľ	STATE AND A CONTROL OF CONTROL OF A CONTROL
			D8-D14			7.492E-05		-	-	-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x Tunnel Section B + (1 -
	30	0.400	F	0.000644061	0.0081411	-	-	2.3209E-06	2.9337E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
			11-14	0.004345297	0.0499274	0.00072422	0.00832124			-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x
			15-18				0.00416062			-		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
4	5.868	0.612	JKO1	0.001563914	0.0164048			1.0138E-06	1.0634E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
			L1-L5	0.000825602	0.0096683	0.00011008	0.00128911			-		1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rid A+
			L6-L10			5.504E-05	0.00064456			-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P
			M1-M4	0.000509221	0.0063904	8.487E-05	0.00106506	-	-	-		
			M5-M8			4.2435E-05	0.00053253			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4	0.000509221	0.0063904	8.487E-05	0.00106506			-		
			N5-N8			4.2435E-05	0.00053253			-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4	0.000759864	0.0083026	0.00012664	0.00138377	-	-	-		1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Pid A+
			P5-P8			6.3322E-05	0.00069188	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section D + traffic flow of Tunnel Section P
			W1-W8	0.034250253	0.8851339	0.00285419	0.07376116	-	-	-		
			W9-W16			0.00142709	0.03688058	-	-	-	1	1 x Tunnel W
			701-710	0.005646217	0.1234573	0.00037641	0.00823049	-	-	-	1	
			711-720			0.00018821	0.00411524	-		-		1 x Tunnel X
			BaseA	0.000896725	0.0084506	0.00089672	0.00845062					1/3 x Basement roads A,B,C
	% of S	erving Rd	BaseC	0.000896725	0.0084506	0.00089672	0.00845062					1/3 x Basement roads A,B,C
		Out of 500m	801-820			-	-	-	-	-	1	1 x Tunnel Y
		Out of 500m	901-903			-				-		1 x Tunnel Z
		Out of 500m	904-906			-	-	-	-	-	1	
		Out of 500m	V1								from 1-4	

Appendix 3.18d - Emission Rates of Portal, Top Openings and Ventilation Exh	aust (Hr01-02)
---	----------------

														Hr 01-02 (2	015 EIA_19-	12-2011.xls)								Rate (g/km-		Emissio (g/	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	210	55%	0%	2190	096	294	294	5%	5%	294	2%	0%	0%	2%	296	096	096	100%	0.0943143	1.2268229	0.0004016	0.0052242
B ^(l)	73		Northbound	3	272	210	55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0014965	0.0194656
C ^(f)	73		Northbound	3	110	210	55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0006052	0.0078721
D(f)	73		Northbound	3	176		55%	0%	21%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0943143	1.2268229	0.0009683	0.0125954
E ^(I)	72	Lin Cheung Rd (underpass)	Southbound	3	155	115	61%	0%	26%	0%	4%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0856195	0.9034429	0.0004239	0.0044733
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	115	61%	0%	26%	0%	4%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0856195	0.9034429	0.0004704	0.0049639
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	130	58%	0%	23%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0920525	1.0899955	0.0004022	0.0047627
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173	425	31%	1%	52%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1397561	1.5027165	0.0028543	0.0306909
In.	117	Austin Rd W (depressed)	Eastbound	3	194	115	35%	0%	57%	0%	0%	0%	4%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1433709	1.2930617	0.0008885	0.0080134
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	155	32%	0%	48%	0%	3%	3%	3%	3%	0%	0%	3%	0%	0%	3%	0%	0%	100%	0.1409186	1.5411581	0.0011771	0.0128730
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	25	60%	0%	40%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0867808	0.7080664	0.0000573	0.0004671
L ^(t)	112	Lin Cheung Rd (depressed)	Northbound	3	95	270	54%	2%	24%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0969609	1.2051710	0.0006908	0.0085868
M ^(r)	84	Lin Cheung Rd	Southbound	3	56	105	62%	0%	24%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0835398	0.9063790	0.0001364	0.0014804
N ^(l)	77		Northbound	3	56	420	52%	1%	23%	0%	2%	2%	6%	4%	2%	1%	1%	0%	2%	196	0%	1%	100%	0.1014759	1.2541069	0.0006630	0.0081935
O ^(t)	111	Austin Rd W (depressed)	Eastbound	3	52		29%	1%	53%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1423837	1.5668165	0.0006993	0.0076948
P ⁽¹⁾	110		Westbound	3	52	195	28%	0%	51%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1466236	1.8155317	0.0004130	0.0051137
W ⁽¹⁾	98		Northbound	2	1970	560	56%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0376112	1.0372349	0.0115257	0.3178549
	A	Internal Rd A	Bothbound	4	404	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1181331	1.2262913	0.0001989	0.0020643
	В		Bothbound	4	361	20	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0901715	0.9342677	0.0001808	
	С	Internal Rd C	Bothbound	4	521	10	50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1771997	1.8394369	0.0002564	0.0026621
X ^{p1}	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	650	35%	1%	12%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	5%	1%	100%	0.1184204	2.5744043	0.0038487	0.0836681

PA Heapprosists of classcogne for hypoer (Westbound 3 | 1980 | 1900 | 25% | 17

enario 4			max										
			1186		Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA It West	Volume sour calculated by portal/openin	number of g involved	Area source rate divided t	oy area	,		
					Emission Ra Opening	te - Portal/	Emission Portal/O		Emission Opening	Rate - Por	rtal/		
					(g/s)		(g/s) - Vol		(g/m2-s) -	Area sour	ce		
					PM	NOx					(Area)	Formula	
			Portal/ openin	g Source Type								from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
	53.076	0.687	A.		0.00027598	0.0035899			5.6186E-07	7.3085F-08	491.2	1	10.687 x Turnel Section A
	80.935	0.873	В	Area	0.00141592	0.0184181			4.1413E-06			1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
	32.646	0.435	CE		0.0005377		-		8.4636E-07	1.0296E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section B
			D1-D7		0.00142648	0.0185554			-	-	-		
			D8-D14	Volume			6.7928E-05	0.00088359	-	-		1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tun
	30	0.400	F		0.00028393		-	-	1.0232E-06	1.0797E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
			11-14		0.0046985	0.0494169			-	-		1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel SectionO + (1 - 0.4) x (1 - 0.435) x
			15-18	Volume			0.00039154		-	-	-		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
	45.868	0.612	JKO1		0.00130731		-		8.4741E-07	9.1851E-06	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
			L1-L5		0.00100732	0.0120333			-	-			1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rid A+
			L6-L10	Volume				0.00080222	-			1	Internal Pd B+ Internal Pd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P
			M1-M4		0.00039971	0.004837		0.00080616	-]	
			M5-M8	Volume				0.00040308	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00039971	0.004837		0.00080616	-]	
			N5-N8	Volume				0.00040308	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00080728	0.0092765			-	-			1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
			P5-P8	Volume				0.00077304	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P + traffic flow of Tunnel Section P
			W1-W8		0.01152574	0.3178549		0.02648791	-	-			
			W9-W16	Volume				0.01324395	-	-		1	1 x Tunnel W
			701-710		0.00384866	0.0836681	0.00025658	0.00557788	-	-	-	1	
			711-720	Volume			0.00012829	0.00278894	-	-	-	-	1 x Tunnel X
			BaseA	Volume	0.00021205	0.0022	0.00021205	0.00220002					1/3 x Basement roads A,B,C
	% of:	Serving Rd	BaseC		0.00021205	0.0022	0.00021205	0.00220002					1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-	-	-		-	1	1 x Tunnel Y
		Out of 500m	901-903					-	-	-	-		1 x Tunnel Z
		Out of 500m	904-906	Volume			-	-	-	-	-	1	
		Out of 500m	V1	Point								from 1-4	

														Hr 02-03 (2015 EIA_19	-12-2011.xls)								Rate (g/km-		Emissio (g/	
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
1)	73	Lin Cheung Rd (underpass)	Northbound	3	73		56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0003043	0.00374
0	73	Lin Cheung Rd (underpass)	Northbound	3	272	135	56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0011339	0.013941
,	73	Lin Cheung Rd (underpass)	Northbound	3	110		56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0004585	0.005638
0	73	Lin Cheung Rd (underpass)	Northbound	3	176		56%	0%	22%	0%	4%	4%	7%	4%	0%	0%	0%	0%	4%	0%	0%	0%	100%	0.1111624	1.3667947	0.0007337	0.009020
1)	72	Lin Cheung Rd (underpass)	Southbound	3	155		59%	0%	27%	0%	5%		5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0882718	0.9397428	0.0004181	0.004450
1)	72	Lin Cheung Rd (depressed)	Southbound	3	172	110	59%	0%	27%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0882718	0.9397428	0.0004639	0.004938
1)	118	Lin Cheung Rd (depressed)	Southbound	3	121		56%	0%	22%	0%	4%	0%	7%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1024286	1.2617028	0.0004648	0.005725
10	119	Austin Rd W (depressed)	Eastbound	3	173	440	30%	1%	52%	0%	1%	1%	5%	2%	1%	1%	0%	0%	1%	1%	1%	2%	100%	0.1425085	1.5675662	0.0030133	0.033145
	117	Austin Rd W (depressed)	Eastbound	3	194		33%	0%	54%	0%	0%		4%	4%	0%	0%	0%	0%	0%	0%	0%	4%	100%	0.1364513	1.2514258	0.0008824	0.008092
0	116	Austin Rd W (depressed)	Westbound	3	194	145	34%	0%	52%	0%	0%	0%	3%	3%	0%	0%	0%	0%	0%	0%	3%	3%	100%	0.1300228	1.5319528	0.0010160	0.011970
10	114	Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0551335	0.4595877	0.0000291	0.000242
10	112	Lin Cheung Rd (depressed)	Northbound	3	95		54%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1010261	1.1767331	0.0004932	0.005744
(1)	84	Lin Cheung Rd	Southbound	3	56	100	60%	0%	25%	0%	5%	0%	5%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0864728	0.9467793	0.0001345	0.001472
(1)	77	Lin Cheung Rd	Northbound	3	56	275	55%	0%	24%	0%	4%	2%	5%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0962872	1.2157264	0.0004119	0.005200
Po	111	Austin Rd W (depressed)	Eastbound	3	52	350	30%	1%	51%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	1%	1%	100%	0.1422522	1.6214943	0.0007192	0.008197
(1)	110	Austin Rd W (depressed)	Westbound	3	52	190	26%	3%	53%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	0%	3%	3%	100%	0.1473824	1.7098931	0.0004045	0.004692
I ₍₁₎	98	West Kowloon Highway (WKH)	Northbound	2	1970		55%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0372391	1.0434813	0.0111061	0.311203
	A	Internal Rd A	Bothbound	4	404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0057955	0.0567367	0.0000033	0.000031
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1048959	1.1361667	0.0001578	0.001709
	С	Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.3088922	3.3517635	0.0002235	0.002425
9	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	645	34%	1%	12%	1%	7%	4%	12%	11%	2%	2%	196	0%	1%	9%	5%	1%	100%	0.1178284	2.5455230	0.0038000	0.082093

| Discription |

		max										
				Calculated by th (extracted from t of Road Works a Kowloon)	ne approved EIA t West	portal/openir	y number of ng involved	rate divided I				
				Emission Ra				Emission	Rate - Por	rtal/		
				Opening (g/s)		Portal/ O (g/s) - Vol		Opening (g/m2-s) -	Area som	ce		
							NOx			(Area)	Formula	
		Portal/ opening ID.	Source Type								from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
53.076	0.687	A	Area	0.00020911	0.0025711	-	-	4.2572E-07	5.2344E-06	491.2	1	0.687 x Tunnel Section A
80.935	0.873	В	Area	0.00107284	0.0131911	-	-		3.8582E-05		1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CE	Area	0.00044957		-	-	7.0765E-07	8.2284E-06	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E
		D1-D7		0.00108084	0.0132894			-	-	-		
		D8-D14	Volume			5.1468E-05	0.00063283	-	-	-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.4
30	0.400	F	Area		0.0029809	-	-	1.009E-06	1.0742E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
		11-14		0.00490272	0.0528363		0.00880605	-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0
		15-18	Volume			0.00040856	0.00440302	-	-			Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Internal Rd
45.868	0.612	JKO1	Area	0.00115487		-	-	7.486E-07	8.6285E-06	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
		L1-L5		0.00077972	0.0090913	0.00010396	0.00121217	-		-		1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd
		L6-L10	Volume					-	-		1	Internal Pd B+ Internal Pd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of T
		M1-M4		0.0002732	0.0033367	4.5534E-05	0.00055611	-	-	-		
		M5-M8	Volume			2.2767E-05	0.00027806	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.0002732	0.0033367	4.5534E-05	0.00055611	-	-	-		
		N5-N8	Volume			2.2767E-05	0.00027806	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00073324	0.0084323	0.00012221	0.00140539	-	-	-		1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd
		P5-P8	Volume			6.1103E-05	0.00070269	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D + traffic flow of
		W1-W8		0.01110605	0.3112038	0.0009255	0.02593365	-	-	-		
		W9-W16	Volume			0.00046275	0.01296682	-	-	-	1	1 x Tunnel W
		701-710		0.00379997	0.0820931	0.00025333	0.00547287	-			1	
		711-720	Volume			0.00012667	0.00273644	-		-	-	1 x Tunnel X
		BaseA	Volume	0.00012818	0.0013887	0.00012818	0.00138873					1/3 x Basement roads A.B.C
% of Si	ervina Rd	BaseC		0.00012818		0.00012818				1		1/3 x Basement roads A.B.C
70 GI GI	Out of 500m	801-820	Volume				-	-	_	-	1	1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	

														Hr 03-04 (015 EIA_19-	12-2011.xls)								Rate (g/km-		Emissio (g/s	
emarks (Tunnel name - ortal & top opening of derpass in EIA of Rd orks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
0	73		Northbound	3	73	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0001174	0.00128
1)	73	Lin Cheung Rd (underpass)	Northbound	3	272	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0004373	0.00478
0	73	Lin Cheung Rd (underpass)	Northbound	3	110	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0001768	0.00193
1)	73		Northbound	3	176	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0964577	1.0565426	0.0002829	0.00309
,	72	Lin Cheung Rd (underpass)	Southbound	3	155	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0970091	1.1690494	0.0005012	0.00604
		Lin Cheung Rd (depressed)	Southbound	3	172	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0970091	1.1690494		0.00670
,			Southbound	3	121	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1089485	1.3270861	0.0005493	0.00669
		Austin Rd W (depressed)	Eastbound	3	173	225	27%	2%	53%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1423527	1.7284372	0.0015392	0.0186
		Austin Rd W (depressed)	Eastbound	3	194	60	33%	0%	58%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1543550	1.4791575	0.0004991	0.00478
		Austin Rd W (depressed)	Westbound	3	194	70	36%	0%	57%	0%	0%	0%	7%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1472623	1.3912920	0.0005555	0.0052
		Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0543449	0.4569923	0.0000287	0.0002
		Lin Cheung Rd (depressed)	Northbound	3	95	85	59%	0%	29%	0%	0%	0%	6%	6%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0929589	0.9520466	0.0002085	0.0021
,		Lin Cheung Rd	Southbound	3	56	115	52%	0%	22%	0%	4%	4%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1036526	1.2775418	0.0001854	0.0022
		Lin Cheung Rd	Northbound	3	56	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1089485	1.3270861	0.0002542	0.0030
		Austin Rd W (depressed)	Eastbound	3	52	180	22%	3%	53%	0%	3%	3%	6%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1489664	1.9219048	0.0003873	0.0049
			Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1413646	1.2954102		0.0017
9		West Kowloon Highway (WKH)	Northbound	2	1970	545	55%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0372391	1.0452387	0.0111061	0.3117
		Internal Rd A	Bothbound	4	404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0057589	0.0568122	0.0000032	0.0000
		Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.1048837	1.1379078	0.0001578	0.0017
		Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.3088921	3.3569111	0.0002235	0.0024
		Reprovision of Gascoigne Rd Flyover top opening of underpass in EIA of Ros	Westbound	3	180	655	34%	1%	11%	1%	7%	5%	12%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1202185	2.5743785	0.0039372	0.0843

		max																								
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA	Volume sou calculated to portal/openi	y number of	Area source rate divided		by emission																
				Emission Ra	te - Portal/				Rate - Po	rtal/																
				Opening		Portal/ C		Opening																		
				(g/s)		(g/s) - Vo		(g/m2-s) -																		
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula															
		Portal/ opening									from	Emission ca			E 4 4 . 3	e a		T4 - CD 3	W	W W 1						
53.076	0.687	ID.	Source Type	8.0645E-05	0.0000000			4.04405.07	1.7983E-06	104.0	Scenario	0.687 x Tunr			Extracted	from the	ipproved E	IA of Road	Works at	West Kowle	oon)					
80.935	0.873	A D	Area	0.00041374			-		1.7963E-06			0.873 x ((1			Section A	. 1 v Tunr	ol Section	B)								
32.646	0.435	CE	Area	0.00032137	0.0043515				5.9177E-06		1	0.435 x Tunr	nel Section	1 C ± 0 4	35 v / 1 - /	1873) v /	1 - 0 687	v Tunnel S	ection A +	0.435 v / 1	- 0.873)	Tunnel S	ection B ± 0	435 v Tunn	el Section F	_
02.040	0.400	D1-D7	ricu	0.00041683			0.00043483					0.100 x 1011	noi Oddiloi	1010.11	JO A (1 C	.070 / A (1 0.007	X TOTAL C		0.100 X ()	0.010 /	· runnor o	000011 D 1 0	. 100 x 101111	OI OCOBOII E	_
		D8-D14	Volume				0.00021741	-	-	-	1	(1-0.435)	x Tunnel S	Section C	+ (1 - 0.	135)x(1	- 0.873) >	(1 - 0.68)) x Tunne	Section A	+ (1 - 0.4	35)x(1-	0.873) x Ti	unnel Sectio	n B + (1 -	0.435
30	0.400	F	Area	0.00033569	0.0040454	-	-	1.2097E-06	1.4578E-05	5 277.5	1	0.4 x (1 - 0.						,	,		,	,	,			
		11-14		0.00316472	0.0371411	0.00052745	0.00619018	-	-	-	1	1 x Tunnel S	Section I +	1 x Tunne	el Section	G + 1 x Tı	nnel Secti	on H + 0.14	x Tunnel	Section K +	(1 - 0.61)	2) x 0.38;	Tunnel Sec	tionO + (1	- 0.4)x(1	- 0.43
		15-18	Volume			0.00026373	0.00309509	-	-	-		Tunnel Secti	ion E + (1	- 0.4) x	Tunnel Se	ction F +	1 - 0.612) x (1/3 x	Tunnel Se	ction Intern	al Rd A+ In	ternal Rd	B+ Internal	Rd C) x (tra	ffic flow of	Funnel
45.868	0.612	JKO1	Area	0.00067007			-	4.3435E-07	4.6951E-06	1542.7	1	0.612 x Tunr	nel Section	n J + 0.61	2 x (1 - 0	.14) x Tui	nel Sectio	n K + 0.61	2 x Tunnel	Section O						
		L1-L5		0.0003712	0.0040745	4.9494E-05	0.00054327	-	-	-		1 x Tunnel S	Section L +	(1-0.6	12) x 0.24	x Tunnel	Section J -	+ (1 - 0.61	2) x 0.62	Tunnel Se	ction O + (1 - 0.612) x (1/3 x (1	Tunnel Section	on Internal I	Ad A+
		L6-L10	Volume			2.4747E-05	0.00027163	-	-	-	1	Internal Rd E	B+ Internal	I Rd C) x	(traffic flo	w of Tunn	el Section	L/(traffic	flow of Tur	nel Section	I + traffic	flow of Tu	nnel Section	L + traffic f	low of Tunn	el Sect
		M1-M4		0.00021982	0.002691	3.6636E-05	0.00044849	-	-	-																
		M5-M8	Volume			1.8318E-05	0.00022425	-	-	-	1	0.5 x (Tunne	el Section I	M + Tunn	el Section	N)										
		N1-N4		0.00021982	0.002691	3.6636E-05	0.00044849	-	-	-																
		N5-N8	Volume			1.8318E-05	0.00022425	-	-	-	1	0.5 x (Tunne	el Section I	M + Tunn	el Section	N)										
		P1-P4		0.00038726	0.0035618	6.4543E-05	0.00059363	-	-	-		1 x Tunnel S	Section P +	· (1 - 0.6	12) x 0.76	x Tunnel	Section J	+ (1 - 0.61	2) x 0.86	c Tunnel Se	ction K + (1 - 0.612) x (1/3 x (Funnel Section	on Internal	Rd A+
		P5-P8	Volume			3.2272E-05	0.00029681	-			1	Internal Rd E														
		W1-W8		0.01110605	0.3117279	0.0009255	0.02597733	-	-	-																
		W9-W16	Volume			0.00046275	0.01298866	-	-	-	1	1 x Tunnel W	V													
		701-710		0.00393716	0.0843109	0.00026248	0.00562073	-			1															
		711-720	Volume			0.00013124	0.00281036	-	_	-	-	1 x Tunnel X	(
		BaseA	Volume	0.00012817	0.0013909	0.00012817	0.00139086					1/3 x Basem	nent roads	A.B.C												
9	% of Serving Rd	BaseC		0.00012817	0.0013909	0.00012817	0.00139086					1/3 x Basem	ent roads	ABC												
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y	,	, , , -												Т
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z														1
	Out of 500m	904-906	Volume			-	-	-	-	-	1															I
	Out of 500m	V1	Point								from 1-4	-														
			1	1		1	1	1	1							1		1	1		1	1	1	1	1	1 -

Appendix 3.18d - Emission	n Rates of Port	al, Top Openings and Ventilation E	Exhaust (Hr04-05)																								
																								Rate		Emissi	on Rate
														Hr 04-05	(2015 EIA_1	9-12-2011.xls	1							(g/km-		(g.	/s)
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467		0.0012903
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467	0.0004397	0.0048078
C(I)	73	Lin Cheung Rd (underpass)	Northbound	3	110	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467		0.0019443
D ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	176	60	58%	0%	25%	0%	0%	0%	8%	8%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970008	1.0605467		0.0031109
E ^(f)	72	Lin Cheung Rd (underpass)	Southbound	3	155	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0976081	1.1735407		0.0060633
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	120	54%	0%	25%	0%	4%	0%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.0976081	1.1735407	0.0005596	0.0067283
G ^(t)	118	Lin Cheung Rd (depressed)	Southbound	3	121	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1095626	1.3316678	0.0005524	0.0067138
H ^(l)	119	Austin Rd W (depressed)	Eastbound	3	173	230	26%	2%	54%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1447187	1.7333541		0.0191584
I ⁽¹⁾	117	Austin Rd W (depressed)	Eastbound	3	194	60	33%	0%	58%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1555242	1.4858010		0.0048041
$J^{(1)}$	116	Austin Rd W (depressed)	Westbound	3	194	65	31%	0%	62%	0%	0%	0%	8%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1594894	1.5012774	0.0005587	0.0052586
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	20	75%	0%	25%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0547480	0.4592040		0.0002424
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	85	59%	0%	29%	0%	0%	0%	6%	6%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0935337	0.9559042		0.0021441
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	120	50%	0%	25%	0%	4%	4%	4%	4%	4%	0%	0%	0%	4%	0%	0%	0%	100%	0.1085232	1.2989946		0.0024248
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1095626	1.3316678		0.0031072
O ⁽ⁱ⁾	111	Austin Rd W (depressed)	Eastbound	3	52	180	19%	3%	56%	0%	3%	3%	6%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1556065	1.9736005		0.0051314
P ^(l)	110	Austin Rd W (depressed)	Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1424472	1.3014426		0.0017859
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970		54%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0379007	1.0648712		0.3117558
	A	Internal Rd A	Bothbound	4	404	5	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0054188	0.0557154		0.0000313
	В	Internal Rd B	Bothbound	4	361	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.0982316	1.0922400		0.0016429
	С	Internal Rd C	Bothbound	4	521	5	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%	100%	0.2892760	3.2210045	0.0002093	0.0023308
X ^{ej}	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	315	35%	0%	11%	0%	6%	5%	13%	11%	2%	2%	2%	0%	0%	10%	5%	0%	100%	0.1205227	2.5939861	0.0018982	0.0408553

Note: (i): Lumine issues a control a top opening of underpass in Eur of Hose wronts in west review.

Note: Emissien state is calculated by a missien factor or movified by utditing a factor of any or market by utditing the state of any of any or market by utditing the state of any of any or market by utditing the state of any or

Scenario 4		max										
				Calculated by th (extracted from of Road Works a Kowloon)	the approved EIA at West	calculated by portal/opening	y number of ng involved	Area source rate divided l	by area			
				Emission Ra	te - Portal/			Emission	Rate - Por	rtal/		
				Opening		Portal/ O		Opening				
				(g/s)		(g/s) - Vol		(g/m2-s) -				
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
		Portal/ opening									from	
		ID.	Source Type	8.1099E-05	0.0000007				1.8051E-06		Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.687 x Tunnel Section A
53.076 80.935	0.687 0.873	A	Area	0.00041607			-		1.8051E-06 1.3305E-05		1	10.873 x (11 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CE	Area	0.00032329	0.0043431	-	-		5.9403E-06		1	0.435 x (1 * 0.667) x Tunnel Section C + 0.435 x (1 * 0.873) x (1 * 0.687) x Tunnel Section A + 0.435 x (1 * 0.873) x Tunnel Section B + 0.435 x Tunnel Section E
32.040	0.435	D1-D7	Aica	0.00032323			0.00043648	J.0000E-07	5.5403E-00	033.3		0.403 X Tulling Gettion 0 + 0.403 X (1 - 0.4
		D8-D14	Volume				0.00021824	-		-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Sec
30	0.400	F	Area	0.00033777	0.0040609		_	1.2172E-06	1.4634E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
		11-14		0.00323685	0.037693	0.00053947	0.00628217	-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel SectionO + (1 - 0.4) x (1 - 0.435) x
		15-18	Volume			0.00026974	0.00314109	-	-	-		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
45.868	0.612	JKO1	Area	0.0006777	0.0072982	-	-	4.3929E-07	4.7308E-06	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
		L1-L5		0.00037583	0.0041066	5.011E-05	0.00054754	-	-	-		1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		L6-L10	Volume			2.5055E-05	0.00027377	_	_	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section D
		M1-M4		0.00022911	0.002766	3.8185E-05	0.000461	-	-	-		
		M5-M8	Volume			1.9093E-05	0.0002305	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00022911	0.002766	3.8185E-05	0.000461	-	-	-		
		N5-N8	Volume			1.9093E-05	0.0002305	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.0003885	0.0035673	6.4749E-05	0.00059455	_	_	_		1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		P5-P8	Volume		,		0.00029727	_	_	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P
		W1-W8		0.01109596	0.3117558	0.00092466	0.02597965			_		
		W9-W16	Volume				0.01298983			_	1	1 x Tunnel W
		701-710		0.00189823	0.0408553	0.00012655	0.00272369	-	-	-	1	
		711-720	Volume			6.3274F-05	0.00136184			_	_	1 x Tunnel X
		BaseA	Volume	0.00012004	0.001335							1/3 x Basement roads A.B.C
% of	Serving Rd	BaseC		0.00012004	0.001335	0.00012004	0.00133498					1/3 x Basement roads A.B.C
7.0 0.1	Out of 500m	801-820	Volume				-	-	-	-	1	1x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906	Volume				-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	

Appendix 3.18d	- Emission F	Rates of Portal,	Top Openings and	Ventilation Exhaus	(Hr05-06)

														Hr 05-06 (2	2015 EIA_19-	12-2011.xls)								Rate (g/km-		Emissio (g/	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	73	55	64%	096	27%	096	094	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	096	100%	0.0970581	1.0280291	0.0001082	0.0011465
B ^(l)	73		Northbound	3	272	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0004033	0.0042720
C ^(f)	73		Northbound	3	110	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0001631	0.0017277
D ⁽¹⁾	73		Northbound	3	176	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970581	1.0280291	0.0007601	0.0027643
E ^(l)	72	Lin Cheung Rd (underpass)	Southbound	3	155	130	54%	0%	23%	0%	4%	0%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.0939265	1.1335754	0.0005257	0.0063449
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172		54%	0%	23%	0%	4%	0%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.0939265	1.1335754	0.0005834	0.0070408
G ^(t)	118	Lin Cheung Rd (depressed)	Southbound	3	121	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1104808	1.3353208	0.0005570	0.0067322
H ^(l)	119	Austin Rd W (depressed)	Eastbound	3	173	230	26%	2%	54%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1490417	1.7540131	0.0016473	0.0193867
In.	117	Austin Rd W (depressed)	Eastbound	3	194	55	27%	0%	64%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1741529	1.6384512	0.0005162	0.0048562
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	70	29%	0%	57%	0%	0%	0%	7%	0%	0%	0%	7%	0%	0%	0%	0%	0%	100%	0.1665138	1.6021293	0.0006281	0.0060436
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	25	60%	0%	40%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0887268	0.7213419	0.0000585	0.0004759
L ₆₀	112	Lin Cheung Rd (depressed)	Northbound	3	95	95	58%	0%	26%	0%	0%	0%	5%	5%	5%	0%	0%	0%	0%	0%	0%	0%	100%	0.0872000	0.8773389	0.0002186	0.0021994
M ^(r)	84	Lin Cheung Rd	Southbound	3	56	140	50%	0%	25%	0%	4%	4%	4%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1042185	1.2227209	0.0002270	0.0026628
N ^(l)	77		Northbound	3	56	150	50%	0%	23%	0%	3%	3%	7%	3%	3%	3%	0%	0%	3%	0%	0%	0%	100%	0.1104808	1.3353208	0.0002578	0.0031157
O ^(t)	111	Austin Rd W (depressed)	Eastbound	3	52	190	18%	3%	58%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1628554	1.9802526	0.0004469	0.0054347
P ⁽¹⁾	110		Westbound	3	52	95	37%	0%	58%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1471108	1.3229804	0.0002019	0.0018154
W ⁽¹⁾	98		Northbound	2	1970	525	53%	0%	16%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0385875	1.0858022	0.0110859	0.3119419
	A	Internal Rd A	Bothbound	4	404	15	33%	0%	33%	0%	0%	0%	0%	0%	0%	0%	33%	0%	0%	0%	0%	0%	100%	0.0785591	0.9548754	0.0001322	0.0016074
	В		Bothbound	4	361	20	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0602288	0.7299638	0.0001208	
	С	Internal Rd C	Bothbound	4	521	10	50%	0%	0%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1178386	1.4323130	0.0001705	0.0020729
X _(i)	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	315	35%	0%	11%	0%	6%	5%	13%	11%	2%	2%	2%	0%	0%	10%	5%	0%	100%	0.1200647	2.5928393	0.0018910	0.0408372

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 315 | 35% | 19% | 17% | 19% |

Scenario 4			max																						
Scenario 4			max		Calculated by the (extracted from to of Road Works a Kowloon)	ne approved EIA t West	calculated i portal/open	by number of ing involved	rate divided I																
					Emission Ra Opening (g/s)	e - Portal/	Emission Portal/ ((g/s) - Vo	Opening	Opening	Rate - Por															
			Portal/ opening	Source Type		NOx	PM				(Area)	Formula from Scenario	Emission calculation	formula	Extracted	from the e	nnrovad Fl	A of Pond	Works at V	Voet Kowle	on)				
5	3.076	0.687		Area	7.4384E-05	0.0007879	-	-	1 5143F-07	1.604E-06	491.2		0.687 x Tunnel Section		(Extracted	n om the a	pproved 121	A OI KOAU	WOLKS at V	vest Kowie	JOH)				
	0.935	0.873		Area	0.00038163					1.1823E-05			0.873 x ((1 - 0.687	x Tunnel	Section A	+ 1 x Tunn	el Section I	B)							
	2.646	0.435		Area	0.00032403	0.00377			5.1004E-07	5.9342E-06	635.3	1	0.435 x Tunnel Section	on C + 0.4	35 x (1 - 0	.873)x(1 - 0.687)	x Tunnel S	ection A +	0.435 x (1	- 0.873) x	Tunnel Se	ction B + 0	.435 x Tunne	el Section E
			D1-D7 D8-D14	Volume	0.00038447		1.8308E-05	0.00019392		-	-	1						(1 - 0.687) x Tunnel	Section A	+ (1 - 0.43	35)x(1-	0.873) x Tı	unnel Section	n B + (1 - 0.435) x Tu
	30	0.400	F	Area	0.00035211				1.2689E-06	1.5314E-05	277.5	1	0.4 x (1 - 0.435) x T												
			11-14		0.00333514	0.0383671		0.00639452	-	-		1													0.4) x (1 - 0.435) x
				Volume			0.00027793	0.00319726	-	-	-		Tunnel Section E + (al Rd A+ In	ternal Rd E	3+ Internal I	RdC)x(traf	fic flow of Tunnel
4	5.868	0.612		Area	0.00077462		-		5.0212E-07	5.3924E-06	1542.7	1	0.612 x Tunnel Section												
			L1-L5		0.00040606	0.0043877			-	-	-	_	1 x Tunnel Section L												
				Volume			2.7071E-05		-			1	Internal Rd B+ Intern	al Rd C) >	(traffic flo	w of Tunne	I Section L	./ (traffic f	low of Tun	nel Section	I + traffic	flow of Tun	nel Section	L + traffic fle	ow of Tunnel Section F
			M1-M4		0.00024238	0.0028893		0.00048155	-																
				Volume				0.00024077	-			1	0.5 x (Tunnel Section	M + Tuni	nel Section	N)									
			N1-N4		0.00024238	0.0028893			-																
				Volume				0.00024077	-	-	-		0.5 x (Tunnel Section												
			P1-P4		0.00042811	0.0039596		0.00065993	-				1 x Tunnel Section P												
				Volume			3.5676E-05		-			1	Internal Rd B+ Intern	al Rd C) >	(traffic flo	w of Tunne	I Section F	/ (traffic	flow of Tun	nel Section	ı I + traffic	flow of Tur	nel Section	L + traffic fl	low of Tunnel Section F
			W1-W8		0.01108588	0.3119419			-																
				Volume			0.00046191		-	-	-	1	1 x Tunnel W												
			701-710		0.00189102	0.0408372			-		-	1													
				Volume				0.00136124	-			-	1 x Tunnel X												
				Volume	0.00014119			0.00171474					1/3 x Basement road:												
	% of S	erving Rd	BaseC		0.00014119	0.0017147	0.00014119	0.00171474					1/3 x Basement road:	s A,B,C											
		Out of 500m		Volume			-	-	-	-	-		1 x Tunnel Y		1		1	ļ	ļ	1	1				
		Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z		1	-	1	-	-	1	1	-		1	
		Out of 500m Out of 500m		Volume Point			-	-	-		-	1 from 1-4			1	-	1	-	-	1	1	-		1	
		Out or boom	VI	Point								Irom 1-4	-				1		1	1	1			1	

Appendix 3.18d - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr08-0	7)
---	----

														Hr 06-07 (2015 EIA_19-	-12-2011.xls)								Rate (g/km-		Emissio (g/	
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	МС	Total	PM	NOx	PM	NOx
A ^(t)	73	Lin Cheung Rd (underpass)	Northbound	3	73	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0003069	
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0011436	
C ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	110	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0004625	
D ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	176	140	50%	0%	21%	0%	4%	4%	7%	4%	4%	4%	0%	0%	4%	0%	0%	0%	100%	0.1081115	1.3557014	0.0007400	
E ^(f)	72	Lin Cheung Rd (underpass)	Southbound	3	155	240	54%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0970157	1.2597501	0.0010025	
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	240	54%	0%	23%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0970157	1.2597501	0.0011124	
G ⁽ⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	285	53%	2%	25%	0%	2%	2%	5%	4%	4%	2%	0%	0%	2%	2%	0%	0%	100%	0.0933683	1.1684203	0.0008944	
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173	230	24%	2%	57%	0%	2%	2%	4%	2%	0%	0%	0%	0%	0%	2%	2%	2%	100%	0.1484276	1.7677545	0.0016405	
I ⁽¹⁾	117	Austin Rd W (depressed)	Eastbound	3	194	55	27%	0%	64%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1682295	1.6125588	0.0004986	
$J^{(1)}$	116	Austin Rd W (depressed)	Westbound	3	194	70	29%	0%	57%	0%	0%	0%	7%	0%	0%	0%	7%	0%	0%	0%	0%	0%	100%	0.1611435	1.5786187	0.0006079	
K ^(t)	114	Lin Cheung Rd (depressed)	Southbound	3	95	55	64%	0%	27%	0%	0%	0%	9%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0943519	1.0162219	0.0001369	
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	215	51%	2%	23%	0%	2%	2%	7%	2%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1004855	1.3425969	0.0005701	
M(1)	84	Lin Cheung Rd	Southbound	3	56	255	53%	0%	25%	0%	2%	2%	6%	4%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.0995059	1.2528920	0.0003947	
N ^(I)	77	Lin Cheung Rd	Northbound	3	56	300	52%	2%	25%	0%	2%	2%	7%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1014731	1.2752009	0.0004735	
O(1)	111	Austin Rd W (depressed)	Eastbound	3	52	190	18%	3%	58%	0%	3%	3%	5%	3%	0%	0%	0%	0%	0%	3%	3%	3%	100%	0.1574671	1.9567890	0.0004322	0.0053703
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	95	32%	0%	63%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1525056	1.3861474	0.0002093	
W ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	1060	51%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0606065	1.5378068	0.0351551	
	A	Internal Rd A	Bothbound	4	404	20	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.0602259	0.7300918	0.0001352	0.0016387
	В	Internal Rd B	Bothbound	4	361	35	43%	0%	29%	0%	0%	0%	0%	0%	0%	0%	29%	0%	0%	0%	0%	0%	100%	0.0680821	0.8264940	0.0002389	0.0029008
	С	Internal Rd C	Bothbound	4	521	20	25%	0%	25%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.1165277	1.4187265	0.0003373	
X ₀	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	665	33%	1%	11%	1%	7%	5%	13%	11%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1198887	2.5771269	0.0039863	0.0856895

At legislations of Uses of Physics | 1980 |

Calculated by the formula shown Volume source					
extracted from the approved EIA particulated by emission Area source - calculated by emission					
of relaat Woos at West Koolborn) gontal/opening innoted gontal/opening innot					
Emission Rate - Portal/ Emission Rate - Portal/					
Opening Opening Opening					
(g/s) (g/g) - Volume (g/m2-s) - Area source					
Portal/ opening					
10. Source Type Secando Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowle Source Type So	wloon)				
89.955 0.873 [B Area 0.000108204 [0.0135898] - 3.164EE.06 [3.9588E.05 [341.9] 0.873 x ([1 - 0.687] x Turnel Section A + 1 x Turnel Section B) 22.646 0.455 [C E Area 0.000705625 [0.0095050] - 1.11177.66 1.24486.05 [53.3] 1 0.435 x (1.0473) x (1.045) x	/ 1 - 0 973) v Tunnol Sc	action B + 0	435 v Tunno	Section	E
DI-107 0.00019031 0.0136698 0.001032 0.	(1 - 0.0/3) X Turinor Ge	SCHOILD + 0.	.400 X TUITIO	OCCUOIT	-
DB-D14 Volume 5.191E-05 0.00065094 - 1 (1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.687) x Tunnel Section A	A + (1 - 0.435) x (1 -	0.873) x Tu	innel Section	B+(1-	0.435) x Tun
30 0.400 F Area 0.00067143 0.0087185 2.4198E-05 3.1418E-05 277.5 1 0.4 x (1 - 0.435) x Tunnel Section F + 0.4 x Tunnel Section F					
11-14 0.00413753 0.049865 0.00089999 0.00831083 1 1 X Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K +	< + (1 - 0.612) x 0.38 x	Tunnel Sect	tionO + (1 -	0.4)x(1	1 - 0.435) x
5-B Volume 0.00034479 0.00415542 Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Intern	ernal Rd A+ Internal Rd E	B+ Internal R	Rd C) x (traf	fic flow of	Tunnel
45.888 0.612 JKO1 Area 0.0008531 0.0094645 5.5299E-07 6.135E-06 1542.7 1 0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O					
L11-L5 0.00078511 0.0093664 0.00010468 0.00133152 1 1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Se					
L6-L10 Volume 5.2341E-05 0.00086576 1 Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section	ion I + traffic flow of Tur	nnel Section	L + traffic flo	w of Tunr	nel Section P
M1-M4 0.00043412 0.0054604 7.2354E-05 0.00091006					
MS-M8 Volume 2.6177E-05 0.00045503 1 0.5 x (Tunnel Section M + Tunnel Section N)					
N1-N4 0.00043412 0.0054604 7.2354E-05 0.00091006					
N5-N8 Volume 2.6177E-05 0.00045503 1 0.5 x (Tunnel Section M + Tunnel Section N)					
P1-P4 0.00045844 0.004474 7.8408E-05 0.00074587 1 1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.76 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section D + (1 - 0.					
P5-P8 Volume 3.8203E-05 0.00037284 1 Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / (traffic flow of Tu	tion I + traffic flow of Tur	nnel Section	L + traffic fl	ow of Tuni	nel Section P
W1-W8 0.03515512 0.8920134 0.00292999 0.07433445					
W9-W16 Volume 0.0014648 0.03716722 1 1 x Tunnel W					
701-710 0.0039863 0.0856895 0.005675 0.00571283 1 1					
711-720 Volume 0.000128714 0.0009819 0.0001282 1 X Tunnel X Base A Volume 1.000128714 0.0009819 0.0001282 1 X Tunnel X 1/3/X Resement trade A R C					
% of Serving R4 BaseC 0.00023714 0.0028819 0.0023714 0.0028819 1/3 x Basement roads A,B,C 0.0028195 1.13 x B			1		
Out of 500m 931-520 Volume 1 1 X Tunnel Y 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1	1		-
Out of 500m 904-905 Volume 1					_
Out of S00m V1 Point Iron 1-4 -					

Top Openings and Ventilation Exhaust (Hr07-08)

														Hr 07-08 (2	2015 EIA_19-	12-2011.xls)								Rate (g/km-		Emissio (g/	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
A ^(f)	73	Lin Cheung Rd (underpass)	Northbound	3	73	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0003791	0.0050443
B ^(l)	73		Northbound	3	272	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0014124	
C(I)	73		Northbound	3	110	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0005712	0.0076009
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	190	53%	0%	24%	0%	3%	3%	5%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.0983881	1.3092533	0.0009139	0.0121615
E ^(l)	72	Lin Cheung Rd (underpass)	Southbound	3	155	615	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.0980281	1.2558395	0.0025957	0.0332536
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	615	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.0980281	1.2558395	0.0028804	0.0369007
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	750	51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	196	0%	1%	100%	0.0989166	1.2331750	0.0024935	0.0310863
H ^(t)	119	Austin Rd W (depressed)	Eastbound	3	173	950	24%	2%	57%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1529852	1.7603536	0.0069842	0.0803650
I ₍₁₎	117	Austin Rd W (depressed)	Eastbound	3	194	280	25%	2%	55%	0%	2%	2%	4%	2%	2%	0%	0%	0%	2%	2%	2%	2%	100%	0.1486270	1.7441715	0.0022426	0.0263176
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	280	25%	2%	54%	0%	2%	2%	4%	2%	2%	0%	2%	0%	2%	2%	2%	2%	100%	0.1483998	1.7608600	0.0022392	0.0265694
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	165	45%	3%	24%	0%	3%	3%	6%	3%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.1063910	1.4684505	0.0004632	0.0063939
L ^(t)	112	Lin Cheung Rd (depressed)	Northbound	3	95	320	53%	2%	25%	0%	2%	2%	6%	3%	3%	2%	0%	0%	2%	2%	0%	0%	100%	0.0964757	1.1908753	0.0008147	0.0100563
M ^(r)	84	Lin Cheung Rd	Southbound	3	56	645	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1018044	1.2926960	0.0010214	0.0129700
N ^(l)	77		Northbound	3	56	465	52%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	196	0%	1%	100%	0.1010955	1.2592016	0.0007313	0.0091082
O ^(t)	111	Austin Rd W (depressed)	Eastbound	3	52	785	25%	1%	57%	0%	1%	1%	4%	2%	1%	1%	1%	0%	1%	1%	2%	3%	100%	0.1488055	1.6842114	0.0016873	0.0190971
P ^(l)	110		Westbound	3	52	430	26%	1%	55%	0%	1%	1%	5%	1%	1%	1%	1%	0%	1%	196	2%	2%	100%	0.1489656	1.7654596	0.0009252	0.0109655
W ⁽¹⁾	98		Northbound	2	1970	1575	51%	0%	17%	0%	2%	2%	6%	3%	3%	3%	2%	0%	5%	2%	3%	0%	100%	0.0613596	1.5130225	0.0528843	1.3040362
	A	Internal Rd A	Bothbound	4	404	30	50%	0%	33%	0%	0%	0%	0%	0%	0%	0%	17%	0%	0%	0%	0%	0%	100%	0.1380794	1.2327271	0.0004649	
	В		Bothbound	4	361	60	33%	0%	25%	0%	8%	0%	0%	8%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1730856		0.0010414	
	С	Internal Rd C	Bothbound	4	521		20%	0%	20%	0%	0%	0%	0%	0%	0%	0%	60%	0%	0%	0%	0%	0%	100%	0.2563377	2.5515727	0.0009274	0.0092317
X ^{p1}	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1325	33%	0%	11%	1%	7%	5%	13%	10%	2%	2%	1%	0%	1%	9%	5%	1%	100%	0.1212756	2.6406536	0.0080345	0.1749433

PA | Pergrosions of classcogine but hyber | Westbound | 3 | 1880 | 1325 | 33% | 19% | 17%

enario 4			max										
enano 4			max				Volume sour calculated by portal/openin	number of g involved	Area source rate divided				
					Opening		Portal/ O		Opening	Kate - Por	tai/		
					(g/s)		(g/s) - Vol		(g/m2-s) -	Area sour	ce		
					PM						(Area)	Formula	
			Portal/ opening	Source Type								from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
	53.076	0.687	A.	Area	0.00026049	0.0034663	-	_	5.303E-07	7.0568E-06	491.2	1	10.687 x Turnel Section A
	80.935	0.873	В		0.00133641		-	-	3.9088E-06			1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
	32.646	0.435	CE		0.00146319		-	-	2.3031E-06	2.9766E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section B
			D1-D7		0.00134637	0.0179162			-	-	-		
			D8-D14	Volume			6.4113E-05	0.00085315	-	-		1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Sec
	30	0.400	F		0.00173849		-	-		8.0259E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
			11-14		0.01472764	0.1756364		0.02927274	-	-		1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x
			15-18	Volume			0.0012273	0.01463637	-				Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
	45.868	0.612	JKO1			0.0361622	-	-	2.0361E-06	2.3441E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
			L1-L5		0.00152766	0.018717	0.00020369		-	-	-	1	1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
			L6-L10	Volume			0.00010184		-	-		1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section D
			M1-M4		0.00087635	0.0110391			-	-	-	1	
			M5-M8	Volume				0.00091993	-	-		1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00087635	0.0110391	0.00014606		-	-			
			N5-N8	Volume				0.00091993	-			1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00187255	0.0217078	0.00031209		-	-			1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
			P5-P8	Volume				0.00180899	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P
			W1-W8		0.05288432	1.3040362	0.00440703		-		-		
			W9-W16	Volume				0.05433484	-	-		1	1 x Tunnel W
			701-710		0.00803451	0.1749433			-	-	-	1	
			711-720	Volume			0.00026782		-		-	-	1 x Tunnel X
			BaseA	Volume			0.00081124						1/3 x Basement roads A,B,C
	% of:	Serving Rd	BaseC		0.00081124	0.0079646	0.00081124	0.00796462					1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-	-	-		-	1	1 x Tunnel Y
		Out of 500m Out of 500m	901-903				-	-	-	-	-	1.	1 x Tunnel Z
		Out of 500m	904-906 V1	Volume Point								from 1-4	
		Out 04 000111										174	

																								Rate		Emissio	
														Hr 08-09 (2015 EIA_19	-12-2011.xls)								(g/km-		(g/:	
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
(1)			Northbound	2	72	385	E10/	10/	220/	ner	20/	20/	00/	20/	20/	20/	10/	09/	20/	10/	09/	00/	100%	0.1201489	1.4407644	0.0009380	0.0112480
(0)			Northbound	2	272	385	51%	170	23%	0.76	20/	20/	60/	370	3%	376	197	0.90	99/	170	0.6	076	100%	0.1201489	1.4407644	0.0034950	0.0419102
(1)			Northbound	2	110	385	51%	10/	23%	076	20/	20/	6%	20/	3%	3%	196	0%	20/	10/	0%	0.0	100%	0.1201489	1.4407644	0.0034530	0.0169490
(I)			Northbound	3	176	385	51%	196	23%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0.46	100%	0.1201489	1.4407644	0.0014134	0.0271184
(1)		Lin Cheung Rd (underpass)	Southbound	2	155	1215	51%	10/	24%	076	20/	20/0	60/	20/	20/	20/	197	0%	20/	20/	0%	0.0	100%	0.1167078	1.4026321	0.0022013	0.0733752
(1)		Lin Cheung Rd (depressed)	Southbound	3	172	1215	51%	196	24%	0%	2%	2%	6%	3%	2%	2%	196	0%	2%	296	0%	0.46	100%	0.1167078	1.4026321	0.0067749	0.0814228
(0)		Lin Cheung Rd (depressed)	Southbound	9	121	1505	51%	10/	24%	010	20/	20/	6%	20/	3%	20/	196	09/	20/	29/	097	010	100%	0.1148200	1.3773529	0.0058081	0.0696730
(1)		Austin Rd W (depressed)	Eastbound	3	173	1435	23%	296	58%	0%	1%	1%	4%	2%	1%	196	0%	0%	196	196	2%	296	100%	0.1719684	1.8790136	0.0038081	0.1295763
1)		Austin Rd W (depressed)	Eastbound	9	194	400	24%	19/	58%	010	1%	19/	4%	20/	19/	09/	09/	09/	10/	197	29/	29/	100%	0.1687920	1.8971826	0.0036384	0.0408948
		Austin Rd W (depressed)	Westbound	3	194	400	24%	196	56%	0%	1%	1%	4%	194	194	0%	390	0%	196	196	3%	396	100%	0.1706781	1.9329541	0.0036384	0.0416659
		Lin Cheung Rd (depressed)	Southbound	9	06	295	53%	20/	25%	010	20/	20/	79/	20/	20/	20/	09/	09/	99/	20/	097	097	100%	0.1146854	1.3530218	0.0008928	0.0105329
			Northbound	3	95	685	50%	194	24%	0%	2%	2%	7%	3%	3%	2%	196	0%	2%	196	0%	196	100%	0.1172186	1.3964640	0.0006328	0.0252430
((1)		Lin Cheung Rd	Southbound	9	56	1305	51%	10/	24%	010	20/	20/	00/	20/	29/	20/	196	09/	20/	20/	097	097	100%	0.1167217	1.3848659	0.0021103	0.0281128
(1)			Northbound	3	56	960	51%	196	24%	0%	2%	2%	6%	3%	3%	396	196	0%	3%	296	096	196	100%	0.1184768	1.4240655	0.0017693	0.0212660
y ¹¹)			Eastbound	3	52	1205	23%	2%	58%	0%	194	1%	4%	294	194	0%	0%	0%	196	196	296	296	100%	0.1699619	1.8582016	0.0029583	0.0323430
(1)		Austin Rd W (depressed)	Westbound	3	52	645	23%	2%	57%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	196	2%	2%	100%	0.1719585	1.8928938	0.0016021	0.0176355
V ⁽¹⁾			Northbound	2	1970	4145	51%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	096	100%	0.0631257	1.5196290	0.1431840	3.4468774
		Internal Rd A	Bothbound	4	404	50	40%	0%	30%	0%	096	096	0%	10%	0%	0%	20%	0%	0%	096	096	096	100%	0.1729363	1.4952900	0.0009704	0.0083902
			Bothbound	4	361	85	35%	0%	24%	0%	6%	0%	6%	6%	0%	0%	24%	0%	0%	0%	0%	096	100%	0.2081043	2.0551660	0.0003704	0.0175174
		Internal Bri C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	096	096	096	100%	0.2364946	2.3544629	0.0011979	0.0119260
9)				3	180	1680	33%	196	1194	196	7%	5%	13%	10%	294	196	196	0%	196	0%	5%	196	100%	0.1407950	2.8390978	0.0118268	0.2384842
		top opening of underpass in EIA of Ros		t Kowloon	1.00	1.000	0070		11.00	11.79	1.70	U/U	10.0	110.0	12.70	1.~	1.~	10.00	1.70	0.0	10.00	1.74	10075	0.1-07500	2.0000070	0.0110200	V.EUU+042
		on factor provided by Vehicular Emission			d the uphicle fleet	auprana amieeinn	factore for no	Ilutante mulitr	diad by traffic	flow of each	made																

Appendix 3.18d - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr08-09)

Scenario 4		max										
				Calculated by th (extracted from to of Road Works a Kowloon)	he approved EIA at West	calculated portal/open	by number of ing involved rate of	livided by a	area	y emission		
				Emission Ra	te - Portal/			ssion Ra	ate - Por	tal/		
				Opening		Portal/ 0		ning				
				(g/s)		(g/s) - Vo		12-s) - Ar				
				PM	NOx	PM	NOx PM	N	Ox	(Area)	Formula	
		Portal/ opening									from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
53.076	0.687	ID.	Source Type Area	0.00064457	0.0077203		1.917	2E-06 1.5	5796E 0E	401.2	Scenario	Emission carculation formula (Extracted from the approved EIA of Road Works at West Rowloon) 1.687 × Tunnel Section A
80.935	0.873	R	Area	0.00330692				2E-06 0.0			1	10.873 x (1/1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CF	Area	0.00348233				4E-06 6.5			1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.873) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section E
		D1-D7		0.00333157				-				
		D8-D14	Volume				0.00190241 -				1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Sec
30	0.400	F	Area	0.00408906			- 1.473	5E-05 0.0	00017709	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
		11-14		0.02811868	0.321303	0.00468645	0.05355049 -	-		-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x
		15-18	Volume				0.02677525	-		-		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
45.868	0.612	JKO1	Area	0.00533241				5E-06 3.7	793E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
		L1-L5		0.00337638	0.03945	0.00045018	3 0.00526			-		1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		L6-L10	Volume			0.00022509				-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P
		M1-M4		0.00206935	0.0246894					-		
		M5-M8	Volume				0.00205745	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00206935	0.0246894		0.0041149	-				
		N5-N8	Volume				0.00205745	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00317668	0.0346238			-				1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		P5-P8	Volume				0.00288532	-		-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P
		W1-W8		0.14318403	3.4468774	0.011932	0.28723978	-		-		
		W9-W16	Volume			0.005966	0.14361989	-			1	1 x Tunnel W
		701-710		0.01182678	0.2384842	0.00078845	0.01589895	-		-	1	
		711-720	Volume				0.00794947 -	-		-	-	1 x Tunnel X
		BaseA	Volume	0.00131403	0.0126112	0.00131403	0.01261123					1/3 x Basement roads A,B,C
% c	f Serving Rd	BaseC		0.00131403	0.0126112	0.00131403	0.01261123					1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume			-		-		-	1	1 x Tunnel Y
	Out of 500m	901-903						-		-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-		-		-	1	
	Out of 500m	V1	Point								from 1-4	
					l							

																								Rate		Emissio	
														Hr 09-10 (2015 EIA_19	-12-2011.xls)								(g/km-		(g/s	
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Works in WK)	section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0009631	0.0113947
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0035886	0.0424570
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0014513	0.0171701
D(I)	73	Lin Cheung Rd (underpass)	Northbound	3	176	380	50%	1%	24%	0%	3%	3%	7%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1249897	1.4787662	0.0023220	0.0274722
E ^(f)	72	Lin Cheung Rd (underpass)	Southbound	3	155	986	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1211567	1.4332808	0.0051448	0.0608630
F ⁽¹⁾	72	Lin Cheung Rd (depressed)	Southbound	3	172	986	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1211567	1.4332808	0.0057091	0.0675383
G ⁽ⁱ⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	1230	50%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	0%	100%	0.1199153	1.4192033	0.0049575	0.0586722
H ^(l)	119	Austin Rd W (depressed)	Eastbound	3	173	1456	22%	2%	59%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1781594	1.9129040	0.0124670	0.1338584
I ⁽¹⁾	117	Austin Rd W (depressed)	Eastbound	3	194	406	23%	1%	58%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1750981	1.9417582		0.0425002
$J^{(1)}$	116	Austin Rd W (depressed)	Westbound	3	194	401	22%	1%	57%	0%	1%	1%	4%	1%	1%	0%	4%	0%	1%	1%	2%	2%	100%	0.1794183	2.0092829	0.0038767	0.0434145
K ⁽ⁱ⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	284	51%	2%	25%	0%	3%	2%	6%	3%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1178027	1.4026281	0.0008842	0.0105279
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	705	51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1196141	1.3978110	0.0022256	0.0260089
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	1088	51%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	0%	100%	0.1211000	1.4093701	0.0020499	0.0238565
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	975	50%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	2%	0%	1%	100%	0.1217139	1.4371498	0.0018462	0.0217991
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	1233	22%	2%	59%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1762200	1.8941014	0.0031389	0.0337386
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	650	22%	2%	58%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1792959	1.9438496	0.0016842	0.0182593
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	3591	50%	0%	17%	0%	2%	2%	7%	3%	3%	3%	2%	0%	5%	2%	3%	0%	100%	0.0644040	1.5391149		3.0245239
	A	Internal Rd A	Bothbound	4	404	79	36%	0%	26%	1%	5%	1%	3%	6%	1%	1%	19%	0%	0%	1%	0%	0%	100%	0.1905963	1.9044530	0.0016852	0.0168388
	В	Internal Rd B	Bothbound	4	361	134	34%	0%	24%	1%	5%	1%	3%	6%	1%	1%	23%	0%	0%	1%	0%	0%	100%	0.1971908	1.9763877	0.0026450	0.0265100
	С	Internal Rd C	Bothbound	4	521	61	22%	0%	16%	0%	3%	1%	2%	4%	1%	1%	50%	0%	0%	1%	0%	0%	100%	0.2498420	2.5507236	0.0021918	0.0223770
X ⁽¹⁾	144	Reprovision of Gascoigne Rd Flyover		3	180	1685	33%	1%	11%	1%	7%	5%	13%	10%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1463557	2.8843031	0.0123305	0.2430025
		top opening of underpass in EIA of Ros																									
Note: Emission rate is calcu	lated by emiss	ion factor provided by Vehicular Emissis	on Control Section	on of EPD provide	d the vehicle fleet a	average emission	factors for po	ollutants mulity	plied by traffic	flow of each	roads.																

Appendix 3.18d - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr09-10)

Scenario 4			max																						
Scenario 4			max		Calculated by the (extracted from to of Road Works a Kowloon)	ne approved EIA t West	calculated to portal/openi	by number of fing involved	ate divided I																
					Emission Ra Opening (g/s)	e - Portal/	Emission Portal/ C (g/s) - Vo)pening (Opening	Rate - Por															
			Portal/ opening			NOx	PM				(Area)	Formula from													
-	3.076	0.687		Source Type Area	0.00066183	0.0079201			04745.00	1.5941E-05	404.0		Emission calculation 0.687 x Tunnel Secti		(Extracted	from the	approved E	IA of Road	Works at V	Vest Kowlo	oon)				
	0.935	0.873		Area	0.00339548					0.0001175			0.873 x ((1 - 0.687		Section A	+ 1 x Tunr	nel Section	B)							
	2.646	0.435		Area	0.00308635	0.0365123	-			5.7473E-05		1	0.435 x Tunnel Secti	on C + 0.	435 x (1 -)).873) x (1 - 0.687)	x Tunnel S	ection A +	0.435 x (1	- 0.873) x	Tunnel Se	ction B + 0	.435 x Tunne	el Section E
			D1-D7		0.00342079	0.0404717			-	-	-														
			D8-D14	Volume				0.00192723 -	-	-	-	1	(1 - 0.435) x Tunne					(1 - 0.687) x Tunnel	Section A	+ (1 - 0.43	35)x(1-	0.873) x Tı	unnel Section	n B + (1 - 0.435) x 1
	30	0.400	F	Area	0.00344578				.2417E-05	0.0001469	277.5	1	0.4 x (1 - 0.435) x												
			11-14		0.02720741	0.304659		0.0507765 -	-	-	-	1	1 x Tunnel Section I												
				Volume			0.00226728		-	-	-		Tunnel Section E + (al Rd A+ In	ternal Rd E	3+ Internal I	RdC)x(traf	ffic flow of Tunnel
45	5.868	0.612		Area	0.00608517		-		8.9445E-06	4.286E-05	1542.7	1	0.612 x Tunnel Secti												
			L1-L5		0.00368097	0.0427124			-				1 x Tunnel Section L												
			L6-L10	Volume			0.0002454			-	-	1	Internal Rd B+ Intern	nal Rd C)	x (traffic flo	w of Tunn	el Section L	/ (traffic t	flow of Tun	nel Section	I + traffic t	flow of Tun	nel Section	L + traffic fle	ow of Tunnel Section
			M1-M4		0.00194803	0.0228278				-	-														
				Volume			0.00016234		-	-	-	1	0.5 x (Tunnel Section	n M + Tur	nel Section	N)									
			N1-N4		0.00194803	0.0228278				-	-														
			N5-N8	Volume				0.00190232 -	-	-	-		0.5 x (Tunnel Section												
			P1-P4		0.00343571	0.0365419		0.00609032 -	-	-	-		1 x Tunnel Section P												
			P5-P8	Volume			0.00028631		-	-	-	1	Internal Rd B+ Intern	nal Rd C)	x (traffic flo	w of Tunn	el Section F	/ (traffic	flow of Tun	nel Section	1 + traffic	flow of Tur	nel Section	L + traffic fl	low of Tunnel Section
			W1-W8		0.12656074	3.0245239			-	-	-														
			W9-W16	Volume			0.00527336		-	-	-	1	1 x Tunnel W												
			701-710		0.01233047	0.2430025			-	-	-	1													
				Volume				0.00810008 -	-	-	-	-	1 x Tunnel X												
			BaseA	Volume	0.00217401		0.00217401						1/3 x Basement road												
	% of Si	rving Rd	BaseC		0.00217401	0.0219086	0.00217401	0.02190861					1/3 x Basement road	s A,B,C											
		Out of 500m	801-820	Volume			-	-		-	-		1 x Tunnel Y												
		Out of 500m	901-903				-		-	-	-		1 x Tunnel Z			1	1	<u> </u>	1	<u> </u>					
		Out of 500m	904-906	Volume			-		-	-	-	1				1	1	<u> </u>	1	<u> </u>					
		Out of 500m	V1	Point								from 1-4	-						1		1				

														Hr 10-11 (2015 EIA_19	-12-2011.xls)								Rate (g/km-		Emissio (g/s	
marks (Tunnel name - rtal & top opening of derpass in EIA of Rd orks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
	73	Lin Cheung Rd (underpass)	Northbound	3	73	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0008576	0.0103
	73	Lin Cheung Rd (underpass)	Northbound	3	272	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0031956	0.0384
	73	Lin Cheung Rd (underpass)	Northbound	3	110	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0012923	0.0155
	73		Northbound	3	176	335	49%	1%	22%	0%	3%	3%	6%	3%	3%	3%	1%	0%	3%	1%	0%	0%	100%	0.1262512	1.5175550	0.0020677	0.0248
	72	Lin Cheung Rd (underpass)	Southbound	3	155	735	52%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1224588	1.4292669	0.0038753	0.0452
	72	Lin Cheung Rd (depressed)	Southbound	3	172	735	52%	1%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1224588	1.4292669	0.0043003	0.050
	118		Southbound	3		905	51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1204179	1.4169757	0.0036629	0.043
	119	Austin Rd W (depressed)	Eastbound	3	173	1425	24%	2%	58%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1763572	1.8766803	0.0120768	0.128
	117	Austin Rd W (depressed)	Eastbound	3	194	405	25%	1%	57%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	2%	100%	0.1724208	1.9217716	0.0037631	0.041
	116	Austin Rd W (depressed)	Westbound	3	194	405	25%	1%	56%	0%	1%	1%	4%	1%	1%	0%	2%	0%	1%	1%	2%	2%	100%	0.1743272	1.9588750	0.0038047	0.042
	114	Lin Cheung Rd (depressed)	Southbound	3	95	205	49%	2%	24%	0%	2%	2%	5%	5%	2%	2%	0%	0%	2%	2%	0%	0%	100%	0.1189213	1.4490713	0.0006433	0.007
	112	Lin Cheung Rd (depressed)	Northbound	3	95	555	51%	2%	24%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1181199	1.3881040	0.0017300	0.0203
	84	Lin Cheung Rd	Southbound	3	56	780	51%	1%	25%	0%	2%	3%	6%	3%	3%	2%	1%	0%	3%	1%	0%	1%	100%	0.1235803	1.4164610	0.0014994	0.0171
	77	Lin Cheung Rd	Northbound	3	56	790	51%	1%	24%	0%	2%	2%	6%	3%	3%	3%	1%	0%	3%	1%	0%	1%	100%	0.1237291	1.4379412	0.0015205	0.0176
	111	Austin Rd W (depressed)	Eastbound	3	52	1190	24%	2%	58%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	1%	2%	3%	100%	0.1750260	1.9054963	0.0030085	0.0327
	110	Austin Rd W (depressed)	Westbound	3	52	640	23%	2%	57%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1775428	1.9422847	0.0016413	0.0179
	98	West Kowloon Highway (WKH)	Northbound	2	1970	3140	50%	0%	17%	0%	2%	2%	6%	3%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0632495	1.5224591	0.1086801	2.6160
	A	Internal Rd A	Bothbound	4	404	55	36%	0%	27%	0%	9%	0%	0%	9%	0%	0%	18%	0%	0%	0%	0%	0%	100%	0.1746258	1.6526518	0.0010778	0.010
	В	Internal Rd B	Bothbound	4	361	95	37%	0%	26%	0%	5%	0%	5%	5%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.2030834	1.9538961	0.0019347	0.018
	С	Internal Rd C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2371532	2.3500970	0.0012012	0.011
	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1670	33%	1%	11%	1%	7%	4%	13%	10%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1487671	2.9494200	0.0124221	0.246

		max										
				Calculated by the (extracted from till of Road Works a Kowloon)	ne approved EIA t West	calculated by portal/openir	number of g involved	Area source rate divided	- calculated l by area	by emission		
				Emission Rat Opening		Emission Portal/O		Emission Opening	Rate - Por	tal/		
				(g/s)		(g/s) - Vol			Area sour	ce		
		Portal/ opening	9	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
		ID.	Source Type								Scenario	
53.076	0.687	A	Area	0.00058934		-	-		1.4422E-05		1	0.687 x Tunnel Section A
80.935	0.873	В	Area	0.00302359			-		0.0001063		1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CE	Area	0.002441			-	3.8423E-06	4.5259E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section B
		D1-D7 D8-D14	Volume	0.00304614	0.0366149		0.00348/13	-	-	-	l,	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435)
30	0.400	D8-D14	Area	0.00259552	0.0303034	0.00014505	0.001/435/	0.05005.00	0.00010917	077.5		(1-0.435) x Tunnel Section E + 0.4 x Tunnel Section F
30	0.400	11-14	Area	0.00259552			- 04407007	9.3532E-06	0.00010917	2//.5	1	0.4 x (1 · 0.435) x runner section E + 0.4 x runner section F 1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 · 0.612) x 0.38 x Tunnel Section O + (1 · 0.4) x (1 · 0.4
		I1-I4 I5-IR	.	0.02406827	0.2002384			-	-	-	1	1x Turnet Section F + (1 - 0.4) x Turnet Section F + (1 - 0.612) x (1/3 x (Turnet Section In + (1 - 0.612) x (1/3 x (Turnet Section In + (1 - 0.612) x (1/3 x (Turnet Section Internal Rd 0.4) + Internal Rd B+ Internal Rd C) x (traffic flow of Turnet Section Internal Rd 0.4) + Internal Rd B+ Internal Rd C) x (traffic flow of Turnet Section Internal Rd 0.4) + Internal Rd B+ Internal Rd C) x (traffic flow of Turnet Section Internal Rd 0.4) + Internal Rd C) x (traffic flow of Turnet Section Internal Rd 0.4) + Internal Rd 0.4) + Internal Rd 0.4 + Inter
			Volume	0.00536413	0.00004	0.00200569	0.02218653	-	3.7986E-05			Turner Section E + (1 - 0.4) x Turner Section T + (1 - 0.612) x (1/3 x (1/3 mer Section T and A+ Internal Ha B+ Internal Ha C) x (1/3 mile Trown or Turner O.612 x Turner Section T and B+ Internal Ha C) x (1/3 mile Trown or Turner O.612 x Turner Section O.612 x Turner Sectio
45.868	0.612	JKO1	Area	0.00536413			-	3.4//1E-06	3.7986E-05	1542./	1	(0.512 x 1011)61 Section 1 + 0.512 x (1 - 0.14) x 1011)61 Section 1 + 0.512 x (1 11)61 Section 0 + (1 - 0.612) x (1/3 x (Tunnel Section 1 + (1 - 0.612) x
		L1-L5	-	0.00299841	0.0349246			-	-	-	4	
		L6-L10	Volume			0.00019989	0.00232831	-			1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of
		M1-M4	-	0.00150997	0.0174285		0.00290476	-			4	
		M5-M8	Volume					-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00150997	0.0174285		0.00290476	-	-			
		N5-N8	Volume				0.00145238	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00319758	0.0344367	0.00053293	0.00573946	-	-			1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rid A-
		P5-P8	Volume			0.00026646	0.00286973	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of T
		W1-W8		0.10868014	2.6160077	0.00905668	0.21800064	-	-			
		W9-W16	Volume			0.00452834	0.10900032	-	-		1	1 x Tunnel W
		701-710		0.01242206	0.2462766	0.00082814	0.01641844	-	-	-	1	
		711-720	Volume			0.00041407	0.00820922	-	-	-	-	1 x Tunnel X
		BaseA	Volume	0.00140458	0.0135727	0.00140458	0.01357267					1/3 x Basement roads A,B,C
% c	of Serving Rd	BaseC		0.00140458	0.0135727	0.00140458	0.01357267					1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903					-	-		-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	

Appendix 3.18d - Emission	n Rates of Por	tal, Top Openings and Ventilation	Exhaust (Hr11-12)																								
														H= 11 12 /	2015 EIA 19-	12 2011 14								Rate (g/km-		Emissio (g/	
Remarks (Tunnel name - Portal & top opening of														Hr 11-12 (.	2015 EIA_19-	12-2011.XIS)								PM	NOx	PM	NOx
underpass in EIA of Rd Works in WK)	WKCD section no.	Road name Lin Cheung Rd (underpass)	Bound Northbound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	0.1149823	1.3998324	0.0006179	0.0075222
B(I)	73	Lin Cheung Rd (underpass)	Northbound	3	272	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0023022	0.0075222
C _(i)	73	Lin Cheung Rd (underpass)	Northbound	3	110	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0009310	0.0113348
D ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	176	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0014897	0.0181356
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	735	53%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1151255	1.3383639	0.0036432	0.0423536

Remarks (Tunnel name -																											
Portal & top opening of																											
	WKCD																										
Works in WK)	section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC					
A 117	73		Northbound	3	73	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0006179	0.007522
B ⁽¹⁾	73		Northbound	3	272	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823		0.0023022	0.028027
C ⁽¹⁾	73		Northbound	3	110	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823	1.3998324	0.0009310	0.011334
DII)	73		Northbound	3	176	265	51%	2%	23%	0%	4%	2%	6%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1149823		0.0014897	0.018135
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	735	53%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1151255		0.0036432	0.042353
F(I)	72	Lin Cheung Rd (depressed)	Southbound	3	172	735	53%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1151255	1.3383639	0.0040428	0.046998
30)	118	Lin Cheung Rd (depressed)	Southbound	3	121	885	51%	1%	24%	1%	2%	2%	6%	3%	3%	2%	1%	0%	2%	2%	0%	1%	100%	0.1137843			0.040220
H ^(l)	119	Austin Rd W (depressed)	Eastbound	3	173	1385	25%	1%	56%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	196	2%	2%	100%	0.1688537			0.120169
0	117	Austin Rd W (depressed)	Eastbound	3	194	400	26%	1%	55%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	3%	3%	100%	0.1649965	1.8596684	0.0035566	0.040086
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	420	27%	1%	54%	0%	1%	1%	4%	1%	1%	0%	2%	0%	1%	1%	2%	2%	100%	0.1644221	1.8491397	0.0037214	0.041852
K ₁₀	114	Lin Cheung Rd (depressed)	Southbound	3	95	200	48%	3%	25%	0%	3%	3%	5%	5%	3%	3%	0%	0%	3%	3%	0%	0%	100%	0.1182355	1.4507647	0.0006240	0.007656
(9)	112	Lin Cheung Rd (depressed)	Northbound	3	95	430	51%	1%	23%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1166714	1.3612459	0.0013239	0.015446
M _(i)	84	Lin Cheung Rd	Southbound	3	56	750	52%	1%	25%	0%	2%	2%	6%	3%	3%	2%	1%	0%	2%	1%	0%	1%	100%	0.1160938	1.3369325	0.0013544	0.015597
N ^(I)	77	Lin Cheung Rd	Northbound	3	56	605	51%	1%	24%	0%	2%	2%	6%	3%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1163359	1.3867050	0.0010949	0.013050
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	1145	25%	2%	56%	0%	1%	1%	4%	2%	1%	0%	0%	0%	1%	196	2%	2%	100%	0.1693787	1.8231642	0.0028013	0.030153
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	635	26%	2%	54%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1677059	1.8604224	0.0015382	0.017064
N ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	3195	51%	0%	16%	0%	2%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0617470	1.4910877	0.1079569	2.606980
	A	Internal Rd A	Bothbound	4	404	50	40%	0%	30%	0%	0%	0%	0%	10%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1735904	1.4895423	0.0009740	0.008358
	В	Internal Rd B	Bothbound	4	361	95	37%	0%	26%	0%	5%	0%	5%	5%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.2030667			0.018616
	C	Internal Rd C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2370515		0.0012007	0.011896
(°)	144	Reprovision of Gascoigne Rd Flyover	Westhound	3	180	1655	34%	1%	11%	1%	7%	5%	13%	11%	2%	1%	1%	0%	1%	9%	5%	1%	100%				
Inte: (I): Tunnel name is has	ed on Portal &	ton opening of underpass in FIA of Box		Kowloon												1.70				10.10							

Note: (i): Tunnel name is based on Portal & top opening of underpass in EIA of Road Works in West Kowloon.

Note: Emission rate is calculated by emission factor provided by Vehicular Emission Control Section of EPD provided the vehicle fleet average emission factors for pollutants multiplied by traffic flow of each roads.

enario 4			max									_	
					Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA at West	Volume sour calculated by portal/openin	number of g involved	Area source rate divided t		by emission		
					Emission Ra Opening	te - Portal/	Emission Portal/ O (g/s) - Vol	pening	Emission Opening (g/m2-s) -				
					(g/s)	N.O.							
			Portal/ openin		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
	53.076	0.687	A		0.00042458		-		8.6438E-07			1	0.687 x Tunnel Section A
	80.935	0.873	В		0.00217831				6.3712E-06			1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
	32.646	0.435	CE		0.00212915				3.3514E-06	3.9431E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E
			D1-D7 D8-D14	Volume	0.00219455		0.000209 0.0001045	0.00254449	-	-	-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Sec
	30	0.400	F		0.00244009		-		8.7931E-06	0.00010222	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
			11-14		0.02248584	0.2498262			-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x
			15-18	Volume			0.00187382	0.02081885	-	-			Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
	45.868	0.612	JKO1		0.00515505		-		3.3416E-06	3.6292E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
			L1-L5		0.00250161	0.0290999			-				1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
			L6-L10	Volume				0.00193999	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P
			M1-M4		0.00122464	0.014324		0.00238733	-	-	-]	
			M5-M8	Volume				0.00119367	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
			N1-N4		0.00122464	0.014324		0.00238733	-	-	-]	
			N5-N8	Volume				0.00119367	-	-		1	0.5 x (Tunnel Section M + Tunnel Section N)
			P1-P4		0.00307588	0.0332417			-				1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
			P5-P8	Volume				0.00277014	-	-		1	Internal Pd B+ Internal Pd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section P
			W1-W8		0.10795692	2.6069805			-				
			W9-W16	Volume				0.10862419	-	-	-	1	1 x Tunnel W
			701-710		0.01171785	0.2343446	0.00078119	0.01562298	-	-		1	
			711-720	Volume				0.00781149	-			-	1 x Tunnel X
			BaseA		0.00136975			0.01295689					1/3 x Basement roads A,B,C
	% of \$	Serving Rd	BaseC		0.00136975	0.0129569	0.00136975	0.01295689					1/3 x Basement roads A,B,C
		Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
		Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
		Out of 500m	904-906	Volume			-	-	-	-	-	1	
		Out of 500m	V1	Point								from 1-4	
			L		l	1	1	l	1		1	1	

														Hr 12-13 (2015 EIA_19	I-12-2011.xls)								Rate (g/km-		Emissio (g/s	
marks (Tunnel name - rtal & top opening of derpass in EIA of Rd orks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
	73	Lin Cheung Rd (underpass)	Northbound	3	73	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0006219	0.0075
	73	Lin Cheung Rd (underpass)	Northbound	3	272	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0023172	0.0280
	73	Lin Cheung Rd (underpass)	Northbound	3	110	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0009371	0.0113
	73		Northbound	3	176	275	53%	2%	22%	0%	4%	2%	5%	4%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1115212	1.3522164	0.0014993	0.018
	72	Lin Cheung Rd (underpass)	Southbound	3	155	620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1148323	1.3586054	0.0030654	0.036
	72	Lin Cheung Rd (depressed)	Southbound	3	172	620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1148323	1.3586054	0.0034016	0.040
	118		Southbound	3	121	720	52%	1%	23%	1%	2%	2%	6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1132003	1.3205377	0.0027394	0.031
	119	Austin Rd W (depressed)	Eastbound	3	173	1145	27%	1%	54%	0%	1%	1%	4%	2%	1%	1%	0%	0%	1%	1%	2%	2%	100%	0.1655421	1.7884494	0.0091087	0.098
	117	Austin Rd W (depressed)	Eastbound	3	194	340	28%	1%	53%	0%	1%	1%	4%	3%	1%	0%	0%	0%	1%	1%	1%	1%	100%	0.1661145	1.7972764	0.0030436	0.0329
	116	Austin Rd W (depressed)	Westbound	3	194	365	29%	1%	52%	0%	1%	1%	4%	1%	1%	0%	3%	0%	1%	1%	1%	1%	100%	0.1664142	1.7891971	0.0032733	0.035
	114	Lin Cheung Rd (depressed)	Southbound	3	95	110	64%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0981950	0.8909022	0.0002850	0.002
	112	Lin Cheung Rd (depressed)	Northbound	3	95	415	51%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1185754	1.3887175	0.0012986	0.0152
	84	Lin Cheung Rd	Southbound	3	56	620	52%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1172912	1.3848692	0.0011312	0.013
	77	Lin Cheung Rd	Northbound	3	56	590	52%	1%	24%	0%	3%	2%	6%	3%	3%	2%	1%	0%	3%	2%	0%	1%	100%	0.1173109	1.3980316	0.0010767	0.0128
	111	Austin Rd W (depressed)	Eastbound	3	52	935	27%	2%	54%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1644126	1.7735435	0.0022205	0.0239
	110	Austin Rd W (depressed)	Westbound	3	52	525	28%	1%	52%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1673237	1.8281113	0.0012689	0.0138
	98	West Kowloon Highway (WKH)	Northbound	2	1970	2710	53%	0%	16%	0%	2%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0598529	1.4669904	0.0887602	2.1758
	A	Internal Rd A	Bothbound	4	404	45	44%	0%	33%	0%	0%	0%	0%	0%	0%	0%	22%	0%	0%	0%	0%	0%	100%	0.1699591	1.4821729	0.0008583	0.007
	В	Internal Rd B	Bothbound	4	361	80	38%	0%	25%	0%	6%	0%	0%	6%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1802252	1.7106099	0.0014458	0.013
	С	Internal Rd C	Bothbound	4	521	35	29%	0%	14%	0%	0%	0%	0%	0%	0%	0%	57%	0%	0%	0%	0%	0%	100%	0.2369078	2.3433221	0.0012000	0.0118
	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1635	34%	1%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	9%	5%	1%	100%	0.1401460	2.8205301	0.0114569	0.230

Scenario 4												
Scenario 4		max									1	
				Calculated by th (extracted from t of Road Works a Kowloon)	the approved EIA	Volume sour calculated by portal/openir	y number of	Area source rate divided t	- calculated l by area	by emission		
				Emission Ra	te - Portal/	Emission	Rate -	Emission	Rate - Por	tal/	1	
				Opening		Portal/O		Opening				
				(g/s)		(g/s) - Vol			Area sour			
		Portal/ opening	9	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
		ID.	Source Type	0.00040704	0.0051010						Scenario	
53.076	0.687	A	Area	0.00042734 0.00219247					1.0549E-05 7.7754E-05		1	0.687 x Tunnel Section A 0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
80.935 32.646	0.873 0.435	R	Area Area	0.00219247	0.0205841				7.7754E-05 3.5286E-05		1	10.435 x (1 - 0.687) x 10.11mt Section A + 1 x 10.11mt Section B) 10.435 x 10.1nmt Section C + 0.435 x (1 - 0.873) x 1 - 0.687) x 10.1nmt Section B + 0.435 x 10.10mt
32.046	0.435	D1-D7	Area	0.00220881	0.0224171	0.00021036		2.90 IE-00	3.5286E-U5	030.3		0.433 X Tullinet Section C + 0.433 X (1 * 0.673) X (1 * 0.673) X Tullinet Section A + 0.433 X (1 * 0.673) X Tullinet Section B + 0.433 X Tullinet Section B
		D8-D14	Volume	0.00220001	0.0207020		0.00127535	_			1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Section B
30	0.400	F	Area	0.00205307	0.0242903			7.3984E-06	8.7533E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
		11-14		0.01845953	0.2047542	0.00307659	0.0341257	-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x
		15-18	Volume				0.01706285	-				Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
45.868	0.612	JKO1	Area	0.00422409	0.0442749	-	-	2.7381E-06	2.87E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
		L1-L5		0.00228555	0.0262989	0.00030474	0.00350652	-	-	-		1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Pd A+
		L6-L10	Volume			0.00015237	0.00175326	_	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section D
		M1-M4		0.00110393	0.0130936	0.00018399	0.00218226	-	-	-		
		M5-M8	Volume			9.1994E-05	0.00109113		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00110393	0.0130936	0.00018399	0.00218226	-	-	-		
		N5-N8	Volume			9.1994E-05	0.00109113		-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00251646	0.0262302	0.00041941	0.0043717	-	-	-		1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		P5-P8	Volume			0.0002097	0.00218585	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section F
		W1-W8		0.08876023	2.1755061	0.00739669	0.18129217	-	-	-		
		W9-W16	Volume				0.09064609		-	-	1	1 x Tunnel W
		701-710		0.01145693	0.2305783	0.0007638	0.01537189		-	-	1	
		711-720	Volume			0.0003819	0.00768594	-	-	-	-	1 x Tunnel X
		BaseA	Volume	0.00116803	0.0110258	0.00116803	0.01102581					1/3 x Basement roads A,B,C
% of	Serving Rd	BaseC		0.00116803	0.0110258	0.00116803	0.01102581					1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume				-	-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	
				1		1					L	

Appendix 3.18d - Emission	n Rates of Port	al, Top Openings and Ventilation Ex	chaust (Hr13-14)																					Rate		Emissio	D. C.
														11-40-44		-12-2011.xls)								(g/km-		Emissio (g/:	
	1			1	1									111 13-14 (2010 EIA_15	-12-2011.XIS)	1						_	PM	NOx	PM (g)	NOx
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total			rm	
A ^(I)	73	Lin Cheung Rd (underpass)	Northbound	3	73	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0008675	0.0103001
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0032324	0.0383784
C ^(l)	73		Northbound	3	110	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0013072	0.0155207
D ⁽¹⁾	73		Northbound	3	176	355	52%	1%	23%	0%	3%	3%	6%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1205109	1.4308445	0.0020915	0.0248331
E ⁽¹⁾	72		Southbound	3	155	620	54%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1107060	1.2881744	0.0029552	0.0343871
F(I)	72	Lin Cheung Rd (depressed)	Southbound	3	172	620	54%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1107060	1.2881744	0.0032794	0.0381586
3(1)	118		Southbound	3	121	705	53%	1%	23%	1%	3%	1%	6%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1124899	1.3189998	0.0026655	0.0312548
H ⁽¹⁾			Eastbound	3	173	1110	29%	1%	53%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1614658	1.6962797	0.0086129	0.0904824
ρ)	117	Austin Rd W (depressed)	Eastbound	3	194	335	30%	1%	52%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1581962	1.6706572	0.0028559	0.0301600
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	375	31%	1%	51%	0%	1%	1%	4%	3%	1%	0%	3%	0%	0%	1%	1%	1%	100%	0.1579677	1.6500713	0.0031923	0.0333452
K ⁽¹⁾	114	Lin Cheung Rd (depressed)	Southbound	3	95	95	63%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1013909	0.9325919	0.0002542	0.0023380
_(H)	112		Northbound	3	95	470	53%	1%	23%	0%	2%	2%	5%	3%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1127223	1.2877637	0.0013981	0.0159718
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	585	53%	1%	24%	0%	3%	2%	5%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1111367	1.2941094	0.0010113	0.0117764
N ^(I)	77	Lin Cheung Rd	Northbound	3	56	715	52%	1%	23%	0%	3%	2%	6%	4%	2%	2%	1%	0%	2%	1%	0%	1%	100%	0.1144628	1.3362032	0.0012731	0.0148615
D ⁽¹⁾		Austin Rd W (depressed)	Eastbound	3		890	27%	2%	53%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1642927	1.7922519	0.0021121	0.0230404
P ⁽¹⁾	110	Austin Rd W (depressed)	Westbound	3	52	505	28%	1%	51%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1677224	1.8466717	0.0012234	0.0134704
N ⁽¹⁾	98		Northbound	2	1970	2770	53%	0%	15%	0%	3%	2%	6%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0582986	1.4393940	0.0883694	2.1818415
	A	Internal Rd A	Bothbound	4	404	35	43%	0%	29%	0%	0%	0%	0%	0%	0%	0%	29%	0%	0%	0%	0%	0%	100%	0.1785564	1.6120202	0.0007013	0.0063317
	В	Internal Rd B	Bothbound	4	361	65	38%	0%	31%	0%	0%	0%	0%	8%	0%	0%	23%	0%	0%	0%	0%	0%	100%	0.1805212	1.5729374	0.0011766	0.0102525
	С		Bothbound	4	521	30	33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2189680	2.1353673	0.0009507	0.0092711
K ^{p)}	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1620	34%	0%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	5%	1%	100%	0.1397600	2.7864835	0.0113206	0.2257052

| B | Neternal Rd S | Bothbound | 4 | 381 | 85 | 38% | 10% |

		max										
				Calculated by the (extracted from ti of Road Works a Kowloon)	ne approved EIA t West	portal/openin	number of ginvolved	Area source rate divided b	by area			
				Emission Rat				Emission	Rate - Por	tal/		
				Opening		Portal/ O		Opening				
				(g/s)		(g/s) - Vol		(g/m2-s) -				
		Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
		Portal/ opening	Source Type								Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
53.076	0.687	A.	Area	0.00059613	0.0070779		_	1.2136E-06	1 441F-05	491.2		20.687 x Tunnel Section A
80.935	0.873	В	Area	0.00305842	0.0363131		-	8.9454E-06				0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CE	Area	0.0020492		-	-	3.2256E-06	3.7817E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E
		D1-D7	_	0.00308123	0.0365839			-		-		
		D8-D14	Volume	0.0010700		0.00014673	0.00174209	-	-	-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435)
30	0.400	F	Area	0.0019793		-	-	7.1326E-06	8.2995E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
		11-14		0.01754422	0.1910/41		0.03184568	-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.4
45 868	0.612	I5-I8	Volume	0.00395432	0.0400044	0.00146202		2 5632F-06		4540.7		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel O.612 x Tunnel Section O.
45.868	0.612	JKO1 L1-L5	Area	0.00395432		0.00031143		2.5632E-06	2.656/E-05	1542./	1	0.512 x 10mms Section 1 + 0.612 x (1 - 0.412) x 10mms Section 1 + 0.612 x 10mms Section 0 + (1 - 0.612) x (1/3 x (Tunnel Section I + (1 - 0.612) x 0.24 x Tunnel Section 1 + (1 - 0.612) x (0.62 x Tunnel Section 0 + (1 - 0.612) x (1/3 x (Tunnel Section Internal Pid A
		L6-L10	Volume	0.0023337	0.0202300		0.00349822	-	-	-	١.	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section I + traffic flow of Tunnel Section I + traffic flow of Tunnel Section I - traffic flow of T
		M1-M4	volume	0.00114221	0.013310	0.00019037	0.00174911	-	-	-		Internal Pu B+ Internal Pu C/ X (transc now or Tunner Section E / (transc now or Tunner Section E + transc now or Tunner Section E -
		M5-M8	Volume	0.00114221	0.010010		0.00221963			_	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4	VOIGITIC	0.00114221	0.013319	0.01042 03	0.00110331	_	_	_		SO X (Turner Couldn'th' Turner Couldn'ty)
		N5-N8	Volume			9.5184E-05	0.00110991				1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.0023919	0.0249329		0.00415549	-				1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A
		P5-P8	Volume			0.00019933	0.00207774	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of
		W1-W8		0.08836937	2.1818415	0.00736411	0.18182012	-	-	-		
		W9-W16	Volume			0.00368206	0.09091006	-		-	1	1 x Tunnel W
		701-710		0.01132056	0.2257052	0.0007547	0.01504701	-	-	-	1	
		711-720	Valume			0.00037735	0.00752351	-	-	-	-	1 x Tunnel X
		BaseA	Volume	0.00094289	0.0086184	0.00094289	0.0086184					1/3 x Basement roads A,B,C
%	of Serving Rd	BaseC		0.00094289	0.0086184	0.00094289	0.0086184					1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume			-	-	-	-	-		1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m Out of 500m	904-906 V1	Volume Point			-	-	-	-	-	1 from 1-4	
	Out or 500m	v I	Point								irom 1-4	

														Hr 14-15 (2015 EIA 19-	12-2011 vie)								Rate (g/km-		Emissio (g/	
	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)) PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
0	73	Lin Cheung Rd (underpass)	Northbound	3	73	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0006521	0.0077
0	73	Lin Cheung Rd (underpass)	Northbound	3	272	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0024298	0.0290
0	73	Lin Cheung Rd (underpass)	Northbound	3	110	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0009826	0.0117
)	73	Lin Cheung Rd (underpass)	Northbound	3	176	290	53%	2%	22%	0%	3%	2%	5%	3%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.1108930	1.3257027	0.0015722	0.018
0	72	Lin Cheung Rd (underpass)	Southbound	3	155	630	55%	1%	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1097523	1.2790129	0.0029770	0.034
	72	Lin Cheung Rd (depressed)	Southbound	3	172	630	55%	196	23%	0%	2%	2%	6%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1097523	1.2790129	0.0033035	0.038
	118	Lin Cheung Rd (depressed)	Southbound	3	121	690	54%	1%	22%	1%	3%	1%	5%	4%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.1105299	1.2991527	0.0025634	0.030
		Austin Rd W (depressed)	Eastbound	3	173	1090	31%	196	51%	0%	1%	1%	5%	2%	1%	1%	0%	0%	0%	1%	1%	2%	100%	0.1582427	1.6918077	0.0082888	0.08
	117	Austin Rd W (depressed)	Eastbound	3	194	335	33%	1%	49%	0%	1%	1%	4%	3%	1%	0%	0%	0%	0%	1%	1%	1%	100%	0.1515504	1.6320511	0.0027359	0.029
	116	Austin Rd W (depressed)	Westbound	3	194	390	33%	196	49%	0%	1%	1%	4%	3%	1%	0%	3%	0%	0%	1%	1%	1%	100%	0.1522437	1.6011564	0.0031997	0.033
	114	Lin Cheung Rd (depressed)	Southbound	3	95	95	63%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.1017280	0.9382234	0.0002550	0.002
,	112	Lin Cheung Rd (depressed)	Northbound	3	95	365	52%	1%	22%	0%	3%	3%	5%	4%	3%	1%	1%	0%	1%	1%	0%	1%	100%	0.1116124	1.2940595	0.0010750	0.012
1)	84	Lin Cheung Rd	Southbound	3	56	570	54%	1%	23%	0%	3%	2%	5%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1106405	1.3065727	0.0009810	0.011
)	77	Lin Cheung Rd	Northbound	3	56	550	53%	1%	23%	0%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1124187	1.3362689	0.0009618	0.011
	111	Austin Rd W (depressed)	Eastbound	3	52	860	31%	1%	51%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1574999	1.6848836	0.0019565	0.020
0	110	Austin Rd W (depressed)	Westbound	3	52	500	29%	196	50%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	2%	2%	100%	0.1651335	1.8474785	0.0011926	0.013
	98	West Kowloon Highway (WKH)	Northbound	2	1970	3380	55%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	5%	2%	3%	0%	100%	0.0566192	1.4044621	0.1047235	2.597
	A	Internal Rd A	Bothbound	4	404	40	50%	0%	25%	0%	0%	0%	0%	0%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1545602	1.4016274	0.0006938	0.006
	В	Internal Rd B	Bothbound	4	361	70	43%	0%	29%	0%	0%	0%	0%	7%	0%	0%	21%	0%	0%	0%	0%	0%	100%	0.1658985	1.4511260	0.0011645	0.010
		Internal Rd C	Bothbound	4	521	30	33%	0%	17%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2139628	2.1022106	0.0009290	0.009
		Reprovision of Gascoigne Rd Flyover top opening of underpass in EIA of Ros		3	180	1930	35%	1%	11%	1%	7%	4%	12%	11%	2%	1%	1%	0%	1%	10%	4%	1%	100%	0.1388937	2.7873581	0.0134032	0.26

		max										
				Calculated by th (extracted from to of Road Works a Kowloon)	ne approved EIA t West	Volume sour calculated by portal/openin	number of g involved	Area source rate divided t		by emission		
				Emission Ra				Emission	Rate - Por	rtal/		
				Opening		Portal/O		Opening				
			1	(g/s)		(g/s) - Vol		(g/m2-s) -				
		Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
		ID.	Source Type									Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
53.076	0.687	A	Area	0.00044811		-	-	9.1228E-07	1.0906E-05	491.2	1	0.687 x Tunnel Section A
80.935	0.873	В	Area	0.00229903	0.0274845	-	-		8.0387E-05		1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CE	Area	0.00186928		-	-	2.9424E-06	3.4561E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E
		D1-D7		0.00231617	0.0276894			-				
		D8-D14	Volume	0.00199389	0.0000004	0.00011029	0.00131854	-	 8.3734E-05	-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
30	0.400	11-14	Area	0.00199389		0.00283403	0.03123983	7.1852E-06	8.3/34E-05	2/7.5	1	0.4 x (1 * 0.435) x Turnet Section E + 0.4 x Turnet Section F 1 x Turnet Section I + 1 x Turnet Section G + 1 x Turnet Section H + 0.14 x Turnet Section K + (1 * 0.612) x 0.38 x Turnet Section O + (1 * 0.4) x (1 * 0.4)
		11-14 15-18	Volume	0.01700419	0.187439		0.03123983	-	-	-	1	In turned Section E + (1 - 0.4) x Turned Section G + 1 x Turned Section in + 0.14 x Turned Section E + (1 - 0.612) x 0.36 x Turned Section E + (1 - 0.4) x Turned Section F + (1 - 0.612) x (1/3 x (Turned Section Internal Rd A Internal Rd B C) x (traffic flow of Turned Section Internal Rd A Internal Rd B C) x (traffic flow of Turned Section Internal Rd B C) x (tr
45 868	0.612	JKO1	Area	0.00385571	0.0308371	0.00141702	0.01561991	2 4993F-06	2 E022E 0E	1540.7		Tomber Section P + (1 * 0.4) X tunner Section P + (1 * 0.612 X Tunner Section N + 0.612 X Tunner Section O + 0.612 X Tunner Section O
43.000	0.012	L1-L5	Airea	0.00303371		0.00026057	0.00295427	2.4953E-00	2.0023E-03	1042.7		1x Turnel Section L + (1 - 0.612) x 0.24 x Turnel Section J + (1 - 0.612) x 0.612 x Turnel Section O + (1 - 0.612) x (1/3 x (Turnel Section Internal Rd A
		L6-L10	Volume	0.00100127	U.ULL 107	0.00013028	0.00147714	_	_	_	,	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section L + traffic flow of Tunnel Section L)
		M1-M4	Folianic	0.00097141	0.0115087		0.00191812	-			_	The state of A taken to the state of the sta
		M5-M8	Volume			8.0951E-05	0.00095906	-	-	_	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00097141	0.0115087	0.0001619	0.00191812	-	-	_		
		N5-N8	Volume			8.0951E-05	0.00095906	-			1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00237274	0.0249067	0.00039546	0.00415111	-				1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A
		P5-P8	Volume			0.00019773	0.00207556	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of T
		W1-W8		0.10472346	2.5977088	0.00872696	0.21647573	-	-	-		
		W9-W16	Volume			0.00436348	0.10823787	-	-	-	1	1 x Tunnel W
		701-710		0.01340324	0.2689801	0.00089355	0.017932	-	-	-	1	
		711-720	Volume			0.00044677	0.008966	-		-	-	1 x Tunnel X
		BaseA	Volume	0.00092909		0.00092909	0.00853498					1/3 x Basement roads A,B,C
% of S	Serving Rd	BaseC		0.00092909	0.008535	0.00092909	0.00853498					1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
	Out of 500m Out of 500m	901-903				-	-	-	-	-	1.	1 x Tunnel Z
	Out of 500m	904-906 V1	Volume Point			-	-	-	-	-	1 from 1-4	
	Out 0: 000111	• • • • • • • • • • • • • • • • • • • •	· OIII								1.0111 1.4	

Appendix 3.18d - Emission	Rates of Port	al, Top Openings and Ventilation E	xhaust (Hr15-16)																								
																								Rate		Emissio	n Rate
														Hr 15-16 (2	015 EIA_19-1	2-2011.xls)								(g/km-		(g/s	s)
																								PM	NOx	PM	NOx
Remarks (Tunnel name -																											
Portal & top opening of																											
	WKCD																										
Works in WK)	section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC:	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
A ⁽¹⁾																											
	/3	Lin Cheung Rd (underpass)	Northbound	3	73	370	54%	1%	22%	0%	3%	3%	5%	4%	1%	1%	1%	0%	3%	1%	0%	0%	100%	0.1108224	1.3421993	0.0008315	0.0100702
B ^(l)	73	Lin Cheung Rd (underpass) Lin Cheung Rd (underpass)	Northbound Northbound	3	73 272	370 370		1%		0%	3% 3%	3%	5% 5%	4% 4%	1% 1%	1%	1%	0%	3%	1%	0%	0% 0%		0.1108224 0.1108224		0.0008315 0.0030981	0.0100702 0.0375219
B ^(l)	73 73			3 3 3	73 272 110	370 370 370	54%	1% 1% 1%	22%	0%	3% 3% 3%	3% 3% 3%	5% 5% 5%	4% 4% 4%	1% 1% 1%	1% 1% 1%	1% 1% 1%	0% 0% 0%	3% 3% 3%	1% 1% 1%	0% 0% 0%	0% 0% 0%	100%		1.3421993		
D(I)	73 73 73	Lin Cheung Rd (underpass)	Northbound	3 3 3	73 272 110 176	370 370 370 370	54%	1% 1% 1% 1%	22% 22%	0%	3% 3% 3% 3%	3% 3% 3% 3%	5% 5% 5% 5%	4% 4% 4% 4%	1% 1% 1% 1%	1% 1% 1% 1%	1% 1% 1% 1%	0% 0% 0%	3% 3% 3% 3%	1% 1% 1% 1% 1%	0% 0% 0% 0%	0% 0% 0% 0%	100% 100%	0.1108224	1.3421993 1.3421993	0.0030981 0.0012529	0.0375219
E(i) D(i) B(i)	73 73 73 73 72	Lin Cheung Rd (underpass) Lin Cheung Rd (underpass)	Northbound Northbound	3 3 3 3	73 272 110 176	370 370 370 370 640	54%	1%	22% 22% 22%	0%	3% 3% 3% 3% 3% 3%	3% 3% 3% 3% 3% 2%	5% 5% 5% 5% 5%	4% 4% 4% 4% 5%	1% 1% 1% 1% 2%	1% 1% 1% 1% 1% 2%	1% 1% 1% 1% 1%	0% 0% 0% 0% 0%	3% 3% 3% 3% 2%	1% 1% 1% 1% 1% 2%	0% 0% 0% 0% 0%	0% 0% 0% 0% 0%	100% 100% 100%	0.1108224 0.1108224	1.3421993 1.3421993	0.0030981 0.0012529	0.0375219 0.0151743
B _(I) C _(I) E _(I)	73 73 73 73 72 72	Lin Cheung Rd (underpass) Lin Cheung Rd (underpass) Lin Cheung Rd (underpass)	Northbound Northbound Northbound	3 3 3 3 3 3	73 272 110 176 155	370 370 370 370 370 640	54%	1% 1%	22% 22% 22% 22%	0%	3% 3% 3% 3% 3% 3% 3%	3% 3% 3% 3% 3% 2% 2%	5% 5% 5% 5% 5% 5%	4% 4% 4% 4% 4% 5% 5%	1% 1% 1% 1% 1% 2% 2%	1% 1% 1% 1% 1% 2% 2%	1% 1% 1% 1%	0% 0% 0% 0% 0% 0%	3% 3% 3% 3% 3% 2% 2%	1% 1% 1% 1% 1% 2% 2%	0% 0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 1%	100% 100% 100% 100%	0.1108224 0.1108224 0.1108224	1.3421993 1.3421993 1.3421993	0.0030981 0.0012529 0.0020047	0.0375219 0.0151743 0.0242789

1	110	Austili nu vi (ucpresseu)	Lastbourio	3	173	1200	3370	1 76	4576	0.76	270	270	470	376	1 70	176	0.76	0.76	0.76	276	1 76	2.70	10076	0.1400971	1.0705733		
	117	Austin Rd W (depressed)	Eastbound	3	194	400	35%	1%	48%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	1%	1%	100%	0.1419147	1.5273814	0.0030591	0.0329236
1)	116	Austin Rd W (depressed)	Westbound	3	194	500	35%	1%	45%	0%	2%	2%	4%	2%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1417755	1.5644763	0.0038201	0.0421539
1)	114	Lin Cheung Rd (depressed)	Southbound	3	95	95	63%	0%	32%	0%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0970331	0.9105323	0.0002433	0.0022827
	112	Lin Cheung Rd (depressed)	Northbound	3	95	420	55%	1%	23%	0%	2%	2%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1006229	1.1568494	0.0011152	0.0128217
1)	84	Lin Cheung Rd	Southbound	3	56	560	54%	1%	23%	0%	3%	2%	4%	4%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1030646	1.2325114	0.0008978	0.0107365
1)	77	Lin Cheung Rd	Northbound	3	56	665	54%	1%	23%	0%	3%	2%	5%	5%	2%	2%	1%	0%	2%	2%	0%	1%	100%	0.1049602	1.2438549	0.0010858	0.0128670
10	111	Austin Rd W (depressed)	Eastbound	3	52	990	33%	2%	49%	0%	2%	2%	5%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1474459	1.5816576	0.0021085	0.0226177
(0	110	Austin Rd W (depressed)	Westbound	3	52	590	33%	1%	47%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	2%	2%	100%	0.1468227	1.6763221	0.0012513	0.0142860
(0)	98	West Kowloon Highway (WKH)	Northbound	2	1970	3445	55%	0%	14%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0555149	1.3914694		
	A	Internal Rd A	Bothbound	4	404	50	50%	0%	30%	0%	0%	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1547026	1.3396760	0.0008681	0.0075171
	В	Internal Rd B	Bothbound	4	361	90	39%	0%	28%	0%	6%	0%	0%	6%	0%	0%	22%	0%	0%	0%	0%	0%	100%	0.1760864	1.6307366	0.0015892	0.0147174
	С	Internal Rd C	Bothbound	4	521	45	33%	0%	22%	0%	0%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	100%	0.2116818	2.0191565	0.0013786	0.0131498
1)	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1900	35%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	1%	100%	0.1297838	2.6714914	0.0123295	0.2537917
iote: (I): Tunnel name is bas	sed on Portal 8	top opening of underpass in EIA of Ros	ad Works in West	Kowloon.																							
te: Emission rate is calcul	lated by emiss	ion factor provided by Vehicular Emissis	on Control Section	of EPD provided	the vehicle fleet a	average emissio	n factors for po	llutants muli	plied by tra	ffic flow of each	roads.																

Appendix 3.18d - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr15-16)

Scenario 4		max									_	
				Calculated by th (extracted from t of Road Works a Kowloon)	he approved EIA at West	Volume sour calculated b portal/openir	y number of ng involved	rate divided t				
				Emission Ra	te - Portal/				Rate - Por	rtal/		
				Opening		Portal/ O		Opening				
				(g/s)		(g/s) - Vol			Area sour			
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula	
		Portal/ opening	Source Type								trom Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
53.076	0.687	Δ.	Area	0.00057137	0.00603			1 1022E 00	1.4088E-05	401.2	4	Emission cardinaton formula (Extracted from the approved ETA of Road Works at West Rowtoon)
80.935	0.873	R	Area	0.00293138	0.0355027	-	-		0.00010384		1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CE	Area	0.00193582	0.0232442	-		3.0471E-06	3.6588E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section B
		D1-D7		0.00295324	0.0357674			-	-			
		D8-D14	Volume			0.00014063		-	1	-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Sec
30	0.400	F	Area	0.00185359		-		6.6796E-06	7.9784E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
		11-14		0.01761826	0.1957112			-	-	-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x
		15-18	Volume				0.01630927	-		-		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
45.868	0.612	JKO1	Area	0.00453564				2.9401E-06	3.1131E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
		L1-L5	-	0.00212706	0.0242412			-		-	4	1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		L6-L10	Volume	0.00000170	0.0440040	0.0001418		-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of Tunnel Section P
		M1-M4 M5-M8	-l	0.00099178	0.0118018		0.00196696	-	-	-	1.	0.5 x (Tunnel Section M + Tunnel Section N)
			Volume	0.00099178	0.0440040			-	-	-	1	0.5 x (Turine) Section M+ Turiner Section N)
		N1-N4	-l	0.00099178	0.0118018		0.00196696	-	-	-	1.	0.5 x (Tunnel Section M + Tunnel Section N)
		N5-N8	Volume	0.00266803	0.0007055			_	-	-	1	0.5 x (1utrinel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		P1-P4 P5-P8	.	0.00266603	0.0287255		0.004/8/58	-	-	-	4.	Internal Bd B+ Internal Bd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section P / traffic flow Of T
		W1-W8	Volume	0.10465568	0.000474	0.00022234		_	-	-	1	Internal Po B+ Internal Po C) X (trainc now or Tunnel Section P / (trainc now or Tunnel Section F + trainc now or Tunnel Section P
		W1-W8 W9-W16	Volume	0.10465568	2.0231/1		0.21859/58	_	-	-	١.	1 x Tunnel W
		701-710	voiume	0.01232946	0.2537017				-	-		1 X Tuliner VV
		711-720	Volume	0.01232340	0.2337317		0.01691943			-		1 x Tunnel X
		BaseA	Volume	0.0012786	0.0117947		0.00845972	_		-	-	1/3 x Bassment roads A B C
	6 of Serving Rd	BaseC	Volume		0.0117947		0.01179474			+		1/3 x Basement roads A B C
7	Out of 500m	801-820	Volume	0.0012700	0.0177547	0.0012786	0.011/94/4	_	_	_	1	173 K Dasement rodus A, b, C
	Out of 500m	901-903	+ Olumb			-	-		_	_		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	_	-	-	1	
	Out of 500m	V1	Point								from 1-4	

																								Rate		Emissio	
				,										Hr 16-17 (2015 EIA_1	9-12-2011.xls)								(g/km-		(g)	
	WKCD section no.		Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total	PM	NOx	PM	NOx
n .	73	Lin Cheung Rd (underpass)	Northbound	3	73	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%		1.2906422	0.0009323	0.0117
.0	73	Lin Cheung Rd (underpass)	Northbound	3	272	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0034736	0.0438
n .	73	Lin Cheung Rd (underpass)	Northbound	3	110	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0014048	0.017
9	73	Lin Cheung Rd (underpass)	Northbound	3	176	450	54%	1%	21%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1021659	1.2906422	0.0022476	0.028
n .	72		Southbound	3	155	640	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0994555	1.1909776	0.0027406	0.032
)	72	Lin Cheung Rd (depressed)	Southbound	3	172	640	55%	1%	22%	196	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0994555	1.1909776	0.0030411	0.036
i)	118	Lin Cheung Rd (depressed)	Southbound	3	121	655	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.1023337	1.2244056	0.0022529	0.02
)	119	Austin Rd W (depressed)	Eastbound	3	173	1255	35%	1%	47%	0%	2%	2%	4%	3%	1%	1%	0%	0%	0%	2%	196	2%	100%	0.1410136	1.5105051	0.0085045	0.09
	117		Eastbound	3	194	400	38%	1%	46%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1378342	1.3635899	0.0029711	0.029
	116	Austin Rd W (depressed)	Westbound	3	194	520	36%	1%	43%	0%	2%	2%	5%	3%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1416634	1.5803407	0.0039697	0.044
0	114		Southbound	3	95	75	67%	0%	33%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0772351	0.6202375	0.0001529	0.001
)	112	Lin Cheung Rd (depressed)	Northbound	3	95	480	55%	1%	22%	0%	3%	2%	5%	4%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.1000858	1.1605299	0.0012678	0.014
.0	84		Southbound	3	56	540	55%	1%	23%	0%	3%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1033641	1.2487185	0.0008683	0.010
0	77		Northbound	3	56	770	55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.1017174	1.2006051	0.0012183	0.014
	111		Eastbound	3	52	955	36%	1%	46%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1396371	1.5234272	0.0019262	0.021
0	110		Westbound	3	52	575	36%	1%	46%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1435693	1.5721295	0.0011924	0.01
(1)	98	West Kowloon Highway (WKH)	Northbound	2	1970	3510	56%	0%	14%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0543383	1.3756115	0.1043703	2.64
	A		Bothbound	4	404	50	50%	0%	30%	0%	0%	0%	0%	0%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1521985	1.3253152	0.0008540	0.007
	В	Internal Rd B	Bothbound	4	361	85	41%	0%	29%	0%	0%	0%	0%	6%	0%	0%	24%	0%	0%	0%	0%	0%	100%		1.5172152	0.0014713	0.012
	С	Internal Rd C	Bothbound	4	521	45	33%	0%	22%	0%	0%	0%	0%	0%	0%	0%	44%	0%	0%	0%	0%	0%	100%	0.2061317	1.9849207	0.0013424	0.01
	144	Reprovision of Gascoigne Rd Flyover top opening of underpass in EIA of Ros		3	180	1885	36%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	1%	100%	0.1271305	2.6322257	0.0119821	0.24

		max																								
				Calculated by th (extracted from to of Road Works a Kowloon)	he approved EIA at West	portal/openir	y number of ng involved	rate divided		,																
				Emission Ra					Rate - Por	tal/	1															
				Opening		Portal/ O		Opening																		
				(g/s)		(g/s) - Vol			- Area sour																	
				PM	NOx	PM	NOx	PM	NOx	(Area)	Formula															
		Portal/ opening	Source Type								from Scenario	Emission calcul	ation 6	annula (E		44		L CD A	Washa at Y	Vant Vanda						
53.076	0.687		Area	0.00064063	ก กกลกดวด			1 20425 00	1.6476E-05		d	0.687 x Tunnel S			xtracteu	rom me a	proveu E	A OI KOM	WOLKS at V	vest Kowio	(011)					_
80.935	0.873			0.00328671			_		0.00012144		1	0.873 x ((1 - 0.			ection A -	1 x Tunne	Section	B)								_
32.646	0.435		Area	0.00201269	0.0246412	-	-		3.8787E-05		1	0.435 x Tunnel S	Section	C + 0.435	x (1 - 0.	873)x(1	- 0.687)	x Tunnel S	ection A +	0.435 x (1	- 0.873) x	Tunnel Se	ction B + 0.	435 x Tunne	Section E	_
		D1-D7		0.00331121	0.0418299			-	-	-																
			Volume			0.00015768	0.0019919	-	-	-	1	(1 - 0.435) x Tu						(1 - 0.687) x Tunnel	Section A -	+ (1 - 0.43	35)x(1-	0.873) x Tu	innel Section	B+(1-0	J.43
30	0.400	F		0.00183551			-		7.9208E-05	277.5	1	0.4 x (1 - 0.435														
		11-14		0.01691802	0.1849501		0.03082502	-		-	1	1 x Tunnel Section														
			Volume			0.00140983	0.01541251	-				Tunnel Section E									al Rd A+ In	ternal Rd E	8+ Internal F	RdC)x(traf	fic flow of T	iuni
45.868	0.612		Area	0.0044339			-		3.0705E-05	1542.7	1	0.612 x Tunnel S														_
		L1-L5		0.00225836	0.0257434				-	-	1	1 x Tunnel Section														
			Volume				0.00171623			-	1	Internal Rd B+ In	nternal	Rd C) x (traffic flov	of Tunne	Section L	./(traffic1	llow of Tun	nel Section	I + traffic t	flow of Tun	nel Section	L + traffic flo	ow of Tunne	<u>₃l S</u>
		M1-M4		0.0010433	0.0124349					-	4	l														
			Volume				0.00103624		-	-	1	0.5 x (Tunnel Se	ction M	/I + Tunnel	Section I	N)										_
		N1-N4		0.0010433	0.0124349		0.00207248			-	4	l														
			Volume				0.00103624		-	-	1	0.5 x (Tunnel Se														_
		P1-P4		0.00260303	0.0277379		0.00462298			-	4	1 x Tunnel Section														
			Volume				0.00231149		-	-	1	Internal Rd B+ In	nternal	Ha C) x (traffic flow	of runne	Section F	// (traffic	tiow of Tun	nei Section	II + traffic	tiow of Tur	nei Section	L + traffic fl	ow of Tunne	31 S
		W1-W8		0.10437029	2.6422058		0.22018382		-	-	4															
			Volume	0.0440000	0.0400070		0.11009191		-	-	1	1 x Tunnel W														_
		701-710		0.01198205	0.2480873		0.01653915				1															
			Volume	0.00122259	0.0440005	0.0003994			-	-	-	1 x Tunnel X 1/3 x Basement	1													_
			Volume				0.01109848		1	1	-															_
% of :	Serving Rd	BaseC 801-820	Makana	0.00122259	0.0110985	0.00122259	0.01109848					1/3 x Basement	roads A	A,B,C				1	1	1						_
	Out of 500m Out of 500m	901-903	Volume						-	-		1 x Tunnel Z	-					-	-	-	-	-	-	l		+
	Out of 500m		Volume									1 A TUINIBLE	_							1				 		+
	Out of 500m		Point								from 1-4	_	_							1				 		+
														-				+	+	1		_		1		+

														Hr 17-18	(2015 EIA 1	19-12-2011.xls	,							Rate (g/km-		Emissio (g/:	
temarks (Tunnel name - fortal & top opening of inderpass in EIA of Rd	WKCD																							PM	NOx	PM	NOx
Norks in WK)		Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				
0	73	Lin Cheung Rd (underpass)	Northbound	3	73	540	55%	19/	21%	0%	4%	294	5%	6%	194	196	196	0%	2%	2%	096	196	100%	0.1014318	1.2563505	0.0011107	0.0137570
0	73	Lin Cheung Rd (underpass)	Northbound	3	272	540	55%	196	21%	0%	4%	2%	5%	6%	1%	196	196	0%	2%	2%	0%	196	100%	0.1014318	1.2563505		0.051259
(i)	73	Lin Cheung Rd (underpass)	Northbound	3	110	540	55%	196	21%	096	4%	294	5%	6%	196	196	196	0%	2%	296	096	196	100%	0.1014318	1.2563505		0.020729
(1)	73	Lin Cheung Rd (underpass)	Northbound	3	176	540	55%	1%	21%	0%	4%	2%	5%	6%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1014318	1.2563505		0.020123
(1)	72	Lin Cheung Rd (underpass)	Southbound	3	155	660	55%	196	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0980087	1.1726445		0.033322
1)	72	Lin Cheung Rd (depressed)	Southbound	3	172	660	55%	196	22%	1%	3%	2%	5%	5%	2%	196	196	0%	2%	2%	0%	2%	100%	0.0980087	1.1726445		0.036977
1)	118	Lin Cheung Rd (depressed)	Southbound	3	121	650	55%	196	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	2%	100%	0.0977730	1,1767631		0.025709
1)	119	Austin Rd W (depressed)	Eastbound	3	173	1215	38%	1%	45%	0%	2%	2%	5%	3%	1%	1%	0%	0%	0%	2%	1%	1%	100%	0.1359502	1,4655880		0.085572
	117	Austin Rd W (depressed)	Eastbound	3	194	395	39%	196	44%	0%	1%	1%	5%	3%	1%	196	0%	0%	0%	196	0%	196	100%	0.1335938	1.3374192	0.0028437	0.028468
0	116	Austin Rd W (depressed)	Westbound	3	194	540	37%	1%	43%	0%	2%	2%	5%	3%	1%	1%	3%	0%	0%	2%	1%	1%	100%	0.1382649	1.5407643	0.0040235	0.044836
0	114	Lin Cheung Rd (depressed)	Southbound	3	95	85	65%	0%	35%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0813252	0.6538889	0.0001824	0.001466
1)	112	Lin Cheung Rd (depressed)	Northbound	3	95	510	57%	1%	22%	0%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0973764	1.1253061	0.0013105	0.015144
0)	84	Lin Cheung Rd	Southbound	3	56	525	55%	1%	22%	0%	3%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.1017097	1.2512942	0.0008306	0.010218
an an an an an an an an an an an an an a	77	Lin Cheung Rd	Northbound	3	56	860	55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0999051	1.1785577	0.0013365	0.0157665
0)	111	Austin Rd W (depressed)	Eastbound	3	52	925	39%	1%	44%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1348947	1,4432168	0.0018023	0.019283
(1)	110	Austin Rd W (depressed)	Westbound	3	52	575	39%	1%	43%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1355976	1.5135493	0.0011262	0.012570
V ⁽¹⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	4165	57%	0%	13%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0531229	1.3581898	0.1210767	3.0955598
	A	Internal Rd A	Bothbound	4	404	65	46%	0%	31%	0%	0%	0%	0%	0%	0%	0%	23%	0%	0%	0%	0%	0%	100%	0.1638192	1.4453496	0.0011950	0.010543
	В	Internal Rd B	Bothbound	4	361	105	43%	0%	29%	0%	0%	0%	0%	5%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1686630	1,4954378	0.0017759	0.015745
	С	Internal Rd C	Bothbound	4	521	55	36%	0%	18%	0%	0%	0%	0%	0%	0%	0%	45%	0%	0%	0%	0%	0%	100%	0.1979458	1.9406644	0.0015756	0.015447
9	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1865	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	1%	10%	4%	0%	100%	0.1245703	2.6362905	0.0116162	0.245834
te: (I): Tunnel name is ba	sed on Portal 8	top opening of underpass in EIA of Ro	ad Works in West	t Kowloon.						•		•		•													
		ion factor provided by Vehicular Emiss			the vehicle fleet :	average emission	factors for po	ollutants mulit	tolied by traffi	flow of each	roads.																

Appendix 3.18d - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr17-18)

Scenario 4		max									1	
				(extracted from t of Road Works a Kowloon)	at West	calculated b portal/openir	y number of ng involved	rate divided t				
				Emission Ra	te - Portal/			Emission	Rate - Por	tal/	1	
				Opening		Portal/O		Opening				
				(g/s)		(g/s) - Vol			Area sou			
		Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from	
	0.687	ID.	Source Type	0.00076323	0.0004505				1.9246E-05		Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon) 0.687 x Tunnel Section A
53.076 80.935	0.687	A	Area	0.00076323			-		0.00014186		1	10.873 x (11 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CE	Area	0.00391371	0.0465007	-	_		4.1873E-05		1	0.435 x (1 * 0.667) x Tunnel Section A + 1 x Tunnel Section B + 0.435 x (1 * 0.873) x Tunnel Section B + 0.435 x Tunnel Section B + 0.435 x Tunnel Section E
02.040	0.400	D1-D7	riicu	0.00394491	0.0488622	0.00037571						Under A Telling Control of Telli
		D8-D14	Volume	0.0000			0.00232677	-		-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Sec
30	0.400	F	Area	0.00186533	0.0223181		-	6.7219E-06	8.0426E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
		11-14		0.01616423	0.1778462	0.00269404	0.02964104	-			1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x
		15-18	Volume			0.00134702	0.01482052	-	-	-		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
45.868	0.612	JKO1	Area	0.00458571	0.0484932	-	-	2.9725E-06	3.1434E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
		L1-L5		0.0023225	0.0262405	0.00030967	0.00349873	-	-	-		1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Pd A+
		L6-L10	Volume			0.00015483	0.00174936	_	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section D
		M1-M4		0.00108357	0.0129927	0.00018059	0.00216545	-	-	-		
		M5-M8	Volume			9.0297E-05	0.00108272	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00108357	0.0129927	0.00018059	0.00216545	-	-	-		
		N5-N8	Volume			9.0297E-05	0.00108272	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4		0.00260361	0.0278603	0.00043393	0.00464338	-				1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		P5-P8	Volume			0.00021697	0.00232169	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P
		W1-W8		0.12107666	3.0955598	0.01008972	0.25796331	-				
		W9-W16	Volume			0.00504486	0.12898166	-	-	-	1	1 x Tunnel W
		701-710		0.01161618	0.2458341	0.00077441	0.01638894	-	-	-	1	
		711-720	Volume			0.00038721	0.00819447	-			-	1 x Tunnel X
		BaseA	Volume	0.00151548	0.013912	0.00151548	0.01391196					1/3 x Basement roads A,B,C
% of	Serving Rd	BaseC		0.00151548	0.013912	0.00151548	0.01391196					1/3 x Basement roads A.B.C
	Out of 500m	801-820	Volume		1	-	-	-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	
]					

														Hr 18-19 (2	015 EIA_19-	12-2011.xls)								Rate (g/km-		Emissio (g/	on Rate (s)
emarks (Tunnel name - ortal & top opening of derpass in EIA of Rd orks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NOx
0	73	Lin Cheung Rd (underpass)	Northbound	3	73		55%	1%	21%	0%	4%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%		1.2124485	0.0010741	0.01352
)	73	Lin Cheung Rd (underpass)	Northbound	3	272		55%	1%	21%	0%	4%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%		1.2124485	0.0040021	0.05038
	73	Lin Cheung Rd (underpass)	Northbound	3	110		55%	1%	21%	0%	4%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%		1.2124485	0.0016185	0.02037
1	73	Lin Cheung Rd (underpass)	Northbound	3	176		55%	1%	21%	0%	4%	2%	5%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%		1.2124485	0.0025896	0.03260
	72	Lin Cheung Rd (underpass)	Southbound	3	155		56%	1%	22%	1%	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%		1.0975200	0.0032957	0.03910
	72	Lin Cheung Rd (depressed)	Southbound	3	172		56%	1%	22%	1%	3%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%		1.0975200	0.0036572	0.04339
	118	Lin Cheung Rd (depressed)	Southbound	3	121		56%	1%	21%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%		1.1226330	0.0023566	0.02848
	119	Austin Rd W (depressed)	Eastbound	3	173	1226	41%	1%	42%	0%	2%	2%	5%	3%	1%	1%	0%	0%	0%	2%	0%	1%	100%	0.1262322	1.3521806	0.0074382	0.07967
	117	Austin Rd W (depressed)	Eastbound	3	194	436	42%	1%	42%	0%	1%	1%	5%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%		1.2485652	0.0028876	0.02934
	116	Austin Rd W (depressed)	Westbound	3	194	585	38%	1%	40%	0%	2%	2%	4%	3%	1%	1%	6%	0%	0%	2%	1%	1%	100%	0.1336018	1.5150395	0.0042085	0.04772
	114	Lin Cheung Rd (depressed)	Southbound	3	95	177	58%	0%	34%	0%	2%	0%	0%	2%	1%	1%	0%	0%	0%	1%	0%	0%	100%	0.0851190	0.7951788	0.0003982	0.00371
	112	Lin Cheung Rd (depressed)	Northbound	3	95		57%	1%	22%	0%	3%	2%	4%	5%	1%	1%	1%	0%	1%	196	0%	1%	100%		1.0758783	0.0011943	0.01401
	84	Lin Cheung Rd	Southbound	3	56	650	56%	1%	23%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0948205	1.1495555	0.0009583	0.01161
	77	Lin Cheung Rd	Northbound	3	56	844	56%	1%	22%	1%	4%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%		1.1350154	0.0012441	0.01489
	111	Austin Rd W (depressed)	Eastbound	3	52	1003	42%	1%	40%	0%	2%	2%	4%	3%	1%	1%	1%	0%	0%	2%	0%	1%	100%	0.1225279	1.3427378	0.0017748	0.01944
	110	Austin Rd W (depressed)	Westbound	3	52	594	42%	1%	40%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1259363	1.4357436	0.0010807	0.01232
	98	West Kowloon Highway (WKH)	Northbound	2	1970	4849	58%	0%	13%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%		1.3418356	0.1377960	3.56042
	A	Internal Rd A	Bothbound	4	404	174	46%	0%	29%	0%	2%	0%	0%	2%	1%	1%	18%	0%	0%	1%	0%	0%	100%	0.1468798	1.3134771	0.0028631	0.02560
	В	Internal Rd B	Bothbound	4	361	262	43%	0%	27%	0%	1%	0%	0%	2%	1%	1%	23%	0%	0%	1%	0%	0%	100%	0.1569175	1.4449279	0.0041243	0.03797
	С	Internal Rd C	Bothbound	4	521	143	32%	0%	20%	0%	1%	0%	0%	1%	1%	1%	42%	0%	0%	0%	0%	0%	100%	0.1912270	1.8942337	0.0039439	0.03906
	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1845	37%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	1%	11%	4%	0%	100%	0.1172952	2.5348958	0.0108205	0.23384

ario 4		max										
				Calculated by the (extracted from till of Road Works a Kowloon)	he approved EIA It West	portal/openin	number of ginvolved	Area source rate divided b	by area	,		
				Emission Rat				Emission	Rate - Por	rtal/	ĺ	
				Opening		Portal/O		Opening				
				(g/s) PM		(g/s) - Vol PM		(g/m2-s) - PM		(Area)	Formula	1
		Portal/ opening		PM	NOX	PM	NOX	PM	NOX	(Area)	from	
		ID.	Source Type								Scenario	
	0.687		Area	0.00073809		-	-		1.8917E-05		1	0.687 x Tunnel Section A
	0.873		Area	0.00378673		-	-		0.00013943		1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435		Area	0.00237906			-	3.7448E-06	4.5511E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E
		D1-D7		0.00381496	0.048028	0.00036333	0.0045741	-	-	-		(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x
30			Volume	0.00220733	0.0004004	0.00018166	0.00228705	-	9.4387E-05		1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.673)
30	0.400	11-14	Area	0.00220733			0.03069596	7.9544E-06	9.438/E-05	2//.5	1	10.4 x [1 - 0.455] x turner section E + 0.4 x turner section F + 0.14 x Turner section F + 0.14
		11-14 15-18	Volume	0.010/1022	0.1041/30		0.03069596	-		-		Turnel Section E + (1 - 0.4) x Turnel Section F + (1 - 0.612) x (10) x (Turnel Section Internal Rd 4+ Internal Rd B+ Internal Rd C) x (traffic flow of Turnel
45.868	0.612		Area	0.00609706	0.0630633	0.00139302	0.01534798	3.9522E-06	4 4 4005 05	4540.7		10.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
40.008	0.612	L1-L5	Area	0.00247248		0.00022066	0.00380314	3.9022E-00	4.1462E-U5	1542./		1.5 x Tunnel Section L + (1 - 0.612) x (0.14) x Tunnel Section J + (1 - 0.612) x 0.24 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		L6-L10	Volume	0.00247240	0.0200200	0.00032900	0.00380314	_	_	-		Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L)
		M1-M4	voiume	0.00110117	0.0133563			-	-	-		milental no B+ internal no C) X (trainc now or further Section E / (trainc now or further Section E + trainc now or further Section
		M5-M8	Volume	0.00110117	0.0102002		0.00220938	_	_	-		0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4	volume	0.00110117	0.0133563		0.00220936	_	_			6.5 X (Tullifer Section W+ Tullifer Section TV)
		N5-N8	Volume	0.00110117	0.0102002		0.00220938	_	_	-		0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4	volume	0.00300784	0.0215022		0.00526388	_		-		1.3 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Pd A+
		P5-P8	Volume	0.00000764	0.0010000	0.00025065	0.00526388		_	-		Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section C + traffic flow C +
		W1-W8	* Oldring	0.13779605	3 5604241	0.011483	0.29670201			1		Transfer of A transfer of A transfer occurry transfer occ
			Volume	0.13//3003	0.0004241	0.0057415	0.296/0201		_	-		1 x Tunnel W
		701-710	• Gluffle	0.01082048	0.2338441		0.01558961	L	L	L	1	I A TAMENO TE
			Volume	0.01002040	0.2000441	0.00072137	0.0077948			1		1 x Tunnel X
		BaseA	Volume	0.00364375	0.03/2158		0.0077948		_	-		1.3 x Basement roads A.B.C
9 at 0	ervina Rd	BaseC	· Gluille	0.00364375			0.03421579			 		1/3 x Basement roads A,B,C
76 OI SE	Out of 500m	801-820	Volume	0.00004373	0.0042130	0.003043/5	0.03421579		_	_	1	17 X basement rodus A,B,C
	Out of 500m	901-903	Folianid				_	_	_	_		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	_	_	-	1	
	Out of 500m	V1	Point								from 1-4	
												

													H= 10.20 /	001E EIA 1	0 12 2011 +14								Rate (a/km		Emissio	
WKCD																							PM	NOx	PM	NOx
section no.			Road Type	Length (m)			taxi		LGV4							NFB6	NFB7	NFB8	FBSD	FBDD	MC					
73			3	73			1%		0%							1%	0%	2%	2%	0%	1%					0.0119
/3			3				1%		0%			4%			1%	1%	0%	2%	2%	0%	1%					0.0445
73			3				1%		0%			4%		1 /0	1%	1%	0%	2%	2%	0%	1%					0.018
70			2			D4 /6	10/		10/		10/	40/	50/	176	199	10/	0.76	40/	49/	0.76	10/					0.028
72			3			D0% E00/	176		176	070	176	4%	D76	1 /0	176	176	0%	176	176	0%	176					0.036
110			3				170					E0/		1 70	197	10/	0.70	170	170	0.76	170					0.042
			3				196					4%		1 /0	196		0%	0%	296	0%	196					0.02
			9				197		090			E0/			19/	09/	09/	09/	19/	097	10/					0.02
			3				196		0%			4%			196	6%	0%	0%	296	196	196					0.02
			3	95			096		0.0			094				0%	0%	0%	0%	096	096					0.003
112			3	95			1%		0%			4%		1%	1%	1%	0%	1%	1%	0%	1%					0.003
84			3	56			196		0%	3%	2%	4%	5%	1%	196	196	0%	2%	2%	0%	1%					0.011
77			3	56			1%		1%	3%	2%	5%	5%	1%	196	1%	0%	1%	196	0%	196					0.013
111			3	52			196			2%		4%		1%	196	196	0%	196	2%	196	1%					0.019
110	Austin Rd W (depressed)	Westbound	3	52			1%	42%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1316538	1.4708751	0.0011220	0.012
98	West Kowloon Highway (WKH)	Northbound	2	1970			0%		0%	3%		5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0526031	1.3506539	0.1037721	2.664
A	Internal Rd A	Bothbound	4	404	160	47%	0%	28%	0%	3%	0%	0%	3%	0%	0%	19%	0%	0%	0%	0%	0%	100%	0.1500838	1.3633630	0.0026948	0.024
В	Internal Rd B	Bothbound	4	361	245	43%	0%	27%	0%	2%	0%	0%	2%	2%	0%	24%	0%	0%	0%	0%	0%	100%	0.1581700	1.4628400	0.0038859	0.03
С	Internal Rd C	Bothbound	4	521	130	35%	0%	19%	0%	0%	0%	0%	0%	0%	0%	46%	0%	0%	0%	0%	0%	100%	0.1930660	1.9136558	0.0036323	0.03
144	Reprovision of Gascoigne Rd Flyover	Westhound	3	180	1850	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	1%	11%	4%	0%	100%	0.1202781	2.5526715	0.0111257	0.23
7 7 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1	section no. 73 73 73 73 77 72 72 1118 119 1117 1116 1114 1112 84 4 77 77 1111	section no. Road name 73 Lin Chorup R5 (inchepses) 73 Lin Chorup R5 (inchepses) 73 Lin Chorup R5 (inchepses) 73 Lin Chorup R5 (inchepses) 74 Lin Chorup R5 (inchepses) 75 Lin Chorup R5 (inchepses) 75 Lin Chorup R5 (inchepses) 76 Lin Chorup R5 (inchepses) 77 Lin Chorup R5 (increased) 78 Lin Chorup R5 Lin Chorup R5 (increased) 78 Lin Chorup R5 (increased) 78 Lin Chorup R5 (increased) 78 Lin Chorup R5 (increased) 78 Lin Chorup R5 Lin Chorup R5 (increased) 78 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R5 Lin Chorup R	section no. Road name 73 Lin Chewing Rd (underpass) Northbound 73 Lin Chewing Rd (underpass) Northbound 73 Lin Chewing Rd (underpass) Northbound 73 Lin Chewing Rd (underpass) Northbound 73 Lin Chewing Rd (underpass) Northbound 73 Lin Chewing Rd (underpass) Northbound 74 Lin Chewing Rd (underpass) Southbound 75 Lin Chewing Rd (underpass) Southbound 76 Lin Chewing Rd (underpass) Southbound 77 Lin Chewing Rd (underpass) Southbound 77 Lin Chewing Rd (underpass) Eastbound 78 Lin Chewing Rd (underpass) Eastbound 78 Lin Chewing Rd (underpass) Westbound 78 Lin Chewing Rd (depressed) Westbound 78 Lin Chewing Rd (depressed) Northbound 79 Lin Chewing Rd (depressed) Northbound 79 Lin Chewing Rd (depressed) Northbound 70 Lin Chewing Rd (depressed) Northbound 70 Lin Chewing Rd (depressed) Northbound 70 Lin Chewing Rd (depressed) Northbound 70 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 71 Lin Chewing Rd (depressed) Northbound 72 Lin Chewing Rd (depressed) Northbound 73 Lin Chewing Rd (depressed) Northbound 74 Lin Chewing Rd (depressed) Northbound 75 Lin Chewing Rd (depressed) Northbound 75 Lin Chewing Rd (depressed) Northbound 75 Lin Chewing Rd (depressed) Northbound 75 Lin Chewing Rd (depressed) Northbound 75 Lin Chewing Rd (depressed) Northbound 75 Lin Chewing Rd (depressed) Northbound 75 Lin Chewing Rd (depressed) Northbound 75 Lin Chewing Rd (Recision no. Road name Road Type							Rood Funds			WKCO Road name Bound Road Type Length (m) Total (weither) PC saxi LCV3 LCV4 LCV6 HCV7 HCV8 PLB To Chang RE (underpass) Northbound 3 73 470 54% 1% 21% 0% 3% 2% 46% 5% To Chang RE (underpass) Northbound 3 73 470 54% 1% 27% 0% 9% 2% 46% 5% To Chang RE (underpass) Northbound 3 170 470 54% 1% 27% 0% 9% 2% 46% 5% To Chang RE (underpass) Northbound 3 170 470 54% 1% 27% 0% 9% 2% 46% 5% To Chang RE (underpass) Northbound 3 170 470 54% 1% 27% 0% 9% 2% 46% 5% To Chang RE (underpass) Northbound 3 170 470 54% 1% 27% 0% 0% 0% To Chang RE (underpass) Northbound 3 170 470 54% 1% 27% 0% 0% 0% To Chang RE (underpass) Northbound 3 170 470 54% 1% 27% 0% 0% 0% To Chang RE (underpass) Northbound 3 170 170 56% 1% 27% 1% 0% 0% To Chang RE (underpass) Southbound 3 170 170 56% 56% 1% 27% 1% 0% 1% 0% To Chang RE (underpass) Eastbound 3 170 170 10% 1% 1% 44% 0% 1% 1% 0% 0% To Chang RE (underpassed) Eastbound 3 194 426 44% 1% 44% 0% 1% 1% 0% 2% 0% To Chang RE (underpassed) Wellbound 3 194 470 47% 1% 44% 0% 1% 1% 0% 0% 0% To Chang RE (underpassed) Northbound 3 194 470 47% 1% 44% 0% 1% 1% 0% 0% 0% 0% To Chang RE (underpassed) Northbound 3 194 470 47% 1% 44% 0% 1% 1% 0% 0% 0% 0% 0	WKCO period name Road name Road Type Length (m) Total (vehibr) PC Saxi LOV3 LCV4 LCV6 HCV7 HCV8 PLB PV4	Note No. WKCO Read name Bound Road Type Langlin (m) Total (web/hr) PC saxi LLOV3 LOV4 LLOV5 HAV7 NOV8 PLB PV4 PV5 NPBB RPB RPB RPB RPB RPB RPB RP	WKCO Rection on Road name Bound Road Type Langth (m) Total (velvite) PC Issai LCV3 LCV4 LCV6 HCV7 HCV8 PLB PV4 PV5 NFB6 NFB7 In Change R5 (undepasse) Northbound 3 73 470 54% 1% 1% 21% 0% 5% 2% 4% 5% 1% 1% 1% 1% 1% 0% 273 Lin Change R5 (undepasse) Northbound 3 10 470 54% 1% 1% 21% 0% 5% 5% 2% 4% 5% 1% 1% 1% 1% 1% 0% 273 Lin Change R5 (undepasse) Northbound 3 110 470 54% 1% 1% 21% 0% 5% 5% 2% 4% 5% 1% 1% 1% 1% 1% 1% 0% 273 Lin Change R5 (undepasse) Northbound 3 110 470 54% 1% 21% 0% 5% 5% 2% 4% 5% 1% 1% 1% 1% 1% 1% 1% 0% 273 Lin Change R5 (undepasse) Northbound 3 110 470 54% 1% 21% 0% 5% 5% 2% 4% 5% 1% 1% 1% 1% 1% 1% 1% 0% 273 Lin Change R5 (undepasse) Northbound 3 170 470 54% 1% 21% 0% 5% 5% 4% 5% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	WKCO Assection on Road name Bound Road Type Lingth (m) Total (webfin) PC sixt LCV3 LCV4 LCV6 HOV7 HCV6 PLB PV4 PV5 NPB6 NFB7 NFB8 T NFB8 T NFB8 T NFB9 T NF	WKCO Rection on Road name Bound Road Type Length (m) Total (vehibr) PC task: LOV3 LOV4 LOV6 HOV7 NOV8 PLB PV4 PV5 NF86 NF87 NF86 F8SD NF87 LoV6 PV5 LOV6 PV5 NF86 NF87 NF86 F8SD NF87 LOV6 PV5 LOV6 PV5 NF86 NF87 NF86 F8SD NF87 NF86 F8SD NF87 NF86 NF87 NF86 NF87 NF86 F8SD NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF87 NF86 NF87 NF86 NF87 NF86 NF87 NF87 NF86 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF86 NF87 NF87 NF87 NF86 NF87 NF87 NF87 NF86 NF87 NF87 NF87 NF87 NF87 NF87 NF87 NF87	MXCO assection no. Road name Bound Road Type Length (n) Total (vehibr) PC Issa'l LOV3 LOV4 LOV6 HOV7 HOV8 PLB PV4 PV5 NF86 NF87 NF86 F850 F850 F850 F850 F850 F850 F850 F850	MXCO assiction on Road name Bound Road Type Length (m) Total (Vehibr) PC task LOV3 LOV6 HOV7 HOV8 PLB PV4 PV5 NFBS NFB7 NFBS FBSD FBDD MC PART OF THE PV5 NFB NFB7 NFBS NFB7 NFBS NFB7 NFBS NFB7 NFBS NFB7 NFBS NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB7 NFB NFB NFB NFB7 NFB NFB NFB NFB NFB7 NFB NFB NFB NFB NFB NFB NFB NFB NFB NFB	MXCO Assection on Road name Bound Road Type Length (m) Total (Vehibh) PC Issai LOV3 LOV6 HOV7 HOV8 PLB PV4 PV5 NFBS NFB7 NFB8 FBSD FBDD MC Total Total (Vehibh) PC Issai LOV3 LOV6 HOV7 HOV8 PLB PV4 PV5 NFB8 NFB7 NFB8 FBSD FBDD MC Total Total Total (Vehibh) PC Issai LOV6 HOV7 HOV8 PLB PV4 PV5 NFB8 NFB7 NFB8 FBSD FBDD MC Total Tota	## 19-20 (2015 EA), 91-12-2011-1.dig WKCD Rood name	## 19-20 (2015 EA_ 19-12-2011-146) WKCD ## COMMITTION ## FROM Type Length (m) Total (veh hr) PC Law LGV3 LGV4 LGV6 HGV7 HGV3 PLB PV4 PV5 NFB6 NFB7 NFB6 FBSD FBSD MC Total	## 1920 (2015 EA] \$9-132 001 1.50 FBO	
		max																								
--------	----------------------------	--------------------	-------------	--	---------------------------	----------------	----------------------	----------------	------------	--------	-----------------	--														
				Calculated by the (extracted from ti of Road Works a Kowloon)	ne approved EIA t West	portal/opening	number of g involved	rate divided t																		
				Emission Rat				Emission	Rate - Por	rtal/																
				Opening		Portal/ O		Opening																		
				(g/s)		(g/s) - Vol		(g/m2-s) -																		
		Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from															
			Source Type									Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)														
53.076	0.687	A	Area	0.00065096		-	-	1.3252E-06	1.6737E-05	491.2	1	0.687 x Tunnel Section A														
80.935	0.873	В	Area	0.00333974		-	-		0.00012337		1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)														
32.646	0.435	CE	Area	0.0022705		-	-	3.5739E-06	4.3012E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E														
		D1-D7		0.00336464	0.0424939			-	-	-																
		D8-D14	Volume				0.00202352	-		-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435)														
30	0.400	F	Area	0.00221185			-	7.9706E-06	9.318E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F														
		11-14	-	0.01709692	0.1853095		0.03088492	-		-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.4)														
		15-18	Volume	0.0050000	0.0000000	0.00142474	0.01544246	-	-	-		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section Internal Rd B+ Interna														
45.868	0.612	JKO1	Area	0.0059896		-	-	3.8825E-06	4.0554E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O														
		L1-L5	-	0.00236105	0.02/542		0.00367227	-		-		1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd														
		L6-L10	Volume			0.0001574	0.00183613	-		-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of T														
		M1-M4	-	0.00105141	0.0125168		0.00208613	-		-		AS (7) 10 (1) 17 10 (1)														
		M5-M8	Volume				0.00104306	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)														
		N1-N4	-	0.00105141	0.0125168		0.00208613	-		-	4															
		N5-N8	Volume				0.00104306	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)														
		P1-P4	-	0.00302415	0.0312624		0.00521039	-		-		1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd /														
		P5-P8	Volume			0.00025201	0.0026052	-		-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of														
		W1-W8	-	0.10377213	2.6644837		0.22204031	-		-		1 x Tunnel W														
		W9-W16	Volume	0.01112573	0.0004004		0.11102015	-		-	1	1 x runner w														
		701-710	-	0.011125/3	0.2361221	0.00074172		-			1	-l,														
		711-720	Volume	0.000.10.100		0.00037086	0.00787074	-		-	-	1 x Tunnel X														
		BaseA	Volume	0.00340436		0.00340436	0.03214079					1/3 x Basement roads A,B,C														
% of :	Serving Rd	BaseC		0.00340436	0.0321408	0.00340436	0.03214079					1/3 x Basement roads A,B,C														
	Out of 500m Out of 500m	801-820 901-903	Volume				-	-	-	-	1	1 x Tunnel Y														
	Out of 500m	901-903	Volume			_			_			1 A Turner Z														
	Out of 500m	V1	Point								from 1-4															
	22. 2. 23011																									

																							Rate		Emissio	
													Hr 20-21 (2015 EIA_1	9-12-2011.xls)								(g/km-		(g)	
KCD ction no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				NOx
	Lin Cheung Rd (underpass)	Northbound	3	73	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%				0.011
	Lin Cheung Rd (underpass)	Northbound	3	272	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0032827	0.042
	Lin Cheung Rd (underpass)	Northbound	3	110		54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516			0.017
	Lin Cheung Rd (underpass)	Northbound	3	176	460	54%	1%	21%	0%	3%	2%	4%	5%	1%	1%	1%	0%	2%	2%	0%	1%	100%	0.0944516	1.2245355	0.0021241	0.027
	Lin Cheung Rd (underpass)	Southbound	3	155	540	56%	1%	23%	1%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0906412	1.0507031	0.0021074	0.024
	Lin Cheung Rd (depressed)	Southbound	3	172	540	56%	196	23%	196	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0906412	1.0507031	0.0023385	0.02
8	Lin Cheung Rd (depressed)	Southbound	3	121	515	55%	1%	21%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0929131	1.1244962	0.0016083	0.01
9	Austin Rd W (depressed)	Eastbound	3	173	1035	38%	196	45%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1275903	1.3494626	0.0063460	0.06
7	Austin Rd W (depressed)	Eastbound	3	194	355	39%	1%	44%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1231362	1.2569750	0.0023557	0.02
6	Austin Rd W (depressed)	Westbound	3	194	475	35%	1%	41%	0%	2%	2%	4%	2%	1%	1%	6%	0%	0%	2%	1%	1%	100%	0.1336804	1.5647378	0.0034218	0.04
4	Lin Cheung Rd (depressed)	Southbound	3	95	130	58%	0%	35%	0%	4%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0855512	0.7767962	0.0002935	0.00
2	Lin Cheung Rd (depressed)	Northbound	3	95	455	56%	1%	22%	0%	3%	2%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0914883	1.0890215	0.0010985	0.01
	Lin Cheung Rd	Southbound	3	56	455	56%	1%	23%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0908042	1.0737254	0.0006427	0.00
	Lin Cheung Rd	Northbound	3	56	750	55%	1%	22%	1%	3%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0958090	1.1643613	0.0011178	0.01
	Austin Rd W (depressed)	Eastbound	3	52	845	38%	1%	44%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%		0.1283496	1.4139561	0.0015666	0.01
0	Austin Rd W (depressed)	Westbound	3	52	505	39%	1%	43%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1276585	1.4798679	0.0009312	0.01
	West Kowloon Highway (WKH)	Northbound	2	1970	2370	57%	0%	14%	0%	3%	2%	5%	4%	2%	2%	1%	0%	4%	2%	3%	0%	100%	0.0541399	1.3754610	0.0702149	1.78
	Internal Rd A	Bothbound	4	404	125	44%	0%	28%	0%	4%	0%	0%	4%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1511370	1.4181344	0.0021201	0.01
	Internal Rd B	Bothbound	4	361	185	43%	0%	27%	0%	3%	0%	0%	3%	0%	0%	24%	0%	0%	0%	0%	0%	100%	0.1573047	1.4827939	0.0029182	0.02
	Internal Rd C	Bothbound	4	521	95	32%	0%	21%	0%	0%	0%	0%	0%	0%	0%	47%	0%	0%	0%	0%	0%	100%	0.2026860	2.0048960	0.0027867	0.02
4	Reprovision of Gascoigne Rd Flyover	Westhound	3	180	1245	36%	0%	11%	1%	8%	4%	10%	12%	1%	1%	1%	0%	0%	10%	4%	0%	100%	0.1159785	2.4957565	0.0072197	0.15
8 9 7 6 4 2	3 3 9 7 7 3 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pillon no. Read name Jun Cheung Ri Jurdepass) Lin Cheung Ri Jurdepass) Lin Cheung Ri Jurdepass) Lin Cheung Ri Jurdepass) Lin Cheung Ri Jurdepass) Lin Cheung Ri Jurdepass) Lin Cheung Ri Jurdepass) Lin Cheung Ri Jurdepass) Lin Cheung Ri Jurdepass) Ri Lin Cheung Ri Jurdepass) Ri Lin Cheung Ri Jurdepass) Ri Lin Cheung Ri Jurdepass and Austin Ri W (depressed) Lin Cheung Ri (depressed)	### ORD No. Read name Bound Unit Cheung Ré (undergass) Northbound Unit Cheung Ré (undergass) Southbound Unit Cheung Ré (undergass) Southbound Unit Cheung Ré (undergass) Southbound Unit Cheung Ré (undergasse) Southbound Eastbound Sale Unit Cheung Ré (undergasse) Eastbound Sale Unit Cheung Ré (undergasse) Eastbound Unit Cheung Ré (undergasse) Eastbound Unit Cheung Ré (undergasse) Southbound Unit Cheung Reverseud Unit Cheung Rev	### ### ### ### ### ### ### ### ### ##							Pack Pack		Ellinon No. Road rame Sound Road Type Length (m) Total (vellshift) PC Last LGV3 LGV4 LGV6 HGV7 HGV9		Part Part	Part Part	Ellinon Road rame Sound Road Type Length (m) Total (verbind) PC Last LGV3 LGV4 LGV6 HGV7 HGV7 HGV6 PLB PV4 PV5 NRB8	Fig. Fig.	Program Prog	Processor Proc	Figure Part	Figure F	CO Bloom Do. Road name Bound Road Type Length (m) Total (wehlin) P.C. Iss's LOYS LOYS LOYS HOV? HOV? PLB PV4 PV5 NFB6 NFB7 NFB6 FBSD FBDD MC Total In Change Rd (underpass) No. Photocord 3 2 22 460 55% 1% 2% 0% 3% 2% 4% 6% 5% 1% 1% 1% 0% 2% 2% 0% 0% 1% 1% 1% 1% 0% 2% 2% 0% 0% 1% 1% 1% 1% 1% 0% 2% 2% 0% 0% 1% 1% 1% 1% 1% 0% 2% 2% 0% 0% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%	CO - Story Co - Co - Co - Co - Co - Co - Co - Co		

Scenario 4		max																					
Scenario 4		max		(extracted from of Road Works Kowloon)	at West	calculated b portal/openii	ny number of ng involved	rate divided I															
				Emission Ra	te - Portal/				Rate - Por	rtal/													
				Opening		Portal/O		Opening															
			1	(g/s) PM	INTO.	(g/s) - Vol			NOx														
		Portal/ openir	ng Source Type	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from Scenario												
53.07	6 0.687	A	Area	0.00060542	0.007849		-	1.2325E-06	1.5979E-05	491.2	1	0.687 x Tunnel Section A											
80.93	5 0.873	В	Area	0.00310606			-	9.0847E-06	0.00011778	341.9	1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)											
32.64	6 0.435	CE	Area	0.00169204	0.0206775		-	2.6634E-06	3.2548E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E											
		D1-D7		0.00312922	0.0405693			-															
		D8-D14	Volume				0.00193187	-		-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Sec											
3	0.400	F	Area	0.00141146					5.896E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F											
		11-14		0.012973	0.1409474			-	-		1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x											
		15-18	Volume				0.01174561	-	-	-													
45.86	8 0.612	JKO1	Area	0.00480033				3.1116E-06	3.3535E-05	1542.7	1	Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Pd A+ Internal Pd B+ Internal Pd B) x (traffic flow of Ti 0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O 1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Pa											
		L1-L5		0.00214531	0.0250225			-		-	4												
		L6-L10	Volume				0.00166817	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section D + traffic flow of Tunnel Section D											
		M1-M4		0.00088023	0.0105919			-		-	4												
		M5-M8	Volume				0.00088266	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)											
		N1-N4		0.00088023	0.0105919			-	-	-													
		N5-N8	Volume				0.00088266	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)											
		P1-P4		0.00242846	0.0263038			-		-		1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+											
		P5-P8	Volume				0.00219198	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section F											
		W1-W8		0.07021488	1.7838583			-		-													
		W9-W16	Volume				0.07432743	-		-	1	1 x Tunnel W											
		701-710		0.00721966	0.1553608			-	-	-	1												
		711-720	Volume				0.00517869	-		-	-	1 x Tunnel X											
		BaseA	Volume	0.00260833	0.0249886		0.02498857					1/3 x Basement roads A,B,C											
	% of Serving Rd	BaseC		0.00260833	0.0249886	0.00260833	0.02498857					1/3 x Basement roads A,B,C											
	Out of 500m	801-820	Volume				-	-			1	1 x Tunnel Y											
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z											
	Out of 500m	904-906	Volume			-	-	-	-	-	1												
	Out of 500m	V1	Point								from 1-4												

														Hr 21-22 (2	015 EIA_19-1	2-2011.xls)		
Remarks (Tunnel name - Portal & top opening of underpass in EIA of Rd Works in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7
A ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	73	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%

Appendix 6: 100 - Ellisaioi		tai, rop Openings and ventulation E	cinada (intrict)																								
																								Rate		Emissio	
														Hr 21-22 (2	015 EIA_19-1	12-2011.xls)								(g/km-		(g/:	s)
																								PM	NOx	PM	NOx
Remarks (Tunnel name -																											i i
Portal & top opening of																											i i
underpass in EIA of Rd	WKCD																										1 1
Works in WK)	section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	MC	Total				i i
A ⁽¹⁾	73	Lin Cheung Rd (underpass)	Northbound	3	73	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0007250	0.008992
B ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	272	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0027015	0.033505
C ^(l)	73	Lin Cheung Rd (underpass)	Northbound	3	110	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0010925	0.013550
D _(i)	73		Northbound	3	176	380	54%	1%	21%	0%	4%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0940925	1.1669996	0.0017480	0.021680
E ⁽¹⁾	72	Lin Cheung Rd (underpass)	Southbound	3	155	540	55%	1%	23%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0945830	1.1215795	0.0021991	0.026076
E(I)	72	Lin Cheung Rd (depressed)	Southbound	3	172	540	55%	1%	23%	1%	3%	1%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0945830	1.1215795	0.0024402	0.028936
G ⁽¹⁾	118	Lin Cheung Rd (depressed)	Southbound	3	121	530	55%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0948913	1.1392194	0.0016904	0.020293
H ^(f)	119	Austin Rd W (depressed)	Eastbound	3	173	1050	36%	1%	46%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	1%	1%	100%	0.1321211	1.4500809	0.0066666	0.073168
lu .	117	Austin Rd W (depressed)	Eastbound	3	194	355	38%	1%	45%	0%	1%	1%	4%	3%	1%	1%	0%	0%	0%	1%	0%	1%	100%	0.1260448	1.2793054	0.0024113	0.024473
J ⁽¹⁾	116	Austin Rd W (depressed)	Westbound	3	194	465	34%	1%	42%	0%	2%	2%	4%	2%	1%	1%	5%	0%	0%	2%	1%	1%	100%	0.1345154	1.5696270	0.0033707	0.039332
K ^{II)}	114	Lin Cheung Rd (depressed)	Southbound	3	95	115	61%	0%	35%	0%	0%	0%	0%	4%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0818698	0.6878634	0.0002485	0.002087
L ⁽⁰⁾	112	Lin Cheung Rd (depressed)	Northbound	3	95	405	54%	1%	22%	0%	2%	2%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0955293	1.1445932	0.0010210	0.012232
M ⁽¹⁾	84	Lin Cheung Rd	Southbound	3	56	455	54%	1%	23%	0%	3%	2%	4%	4%	1%	1%	1%	0%	2%	1%	0%	1%	100%	0.0982598	1.1898591	0.0006955	0.008421
N ^(l)	77	Lin Cheung Rd	Northbound	3	56	645	54%	1%	22%	1%	3%	2%	5%	5%	2%	1%	1%	0%	2%	2%	0%	1%	100%	0.0969162	1.1919187	0.0009724	0.011958
O ⁽¹⁾	111	Austin Rd W (depressed)	Eastbound	3	52	840	36%	1%	45%	0%	2%	2%	4%	3%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1320770	1.5074457	0.0016025	0.018290
P ^(l)	110	Austin Rd W (depressed)	Westbound	3	52	500	36%	1%	45%	0%	2%	2%	4%	2%	1%	1%	1%	0%	1%	2%	1%	1%	100%	0.1332813	1.5280592	0.0009626	0.011036
W ⁽ⁱ⁾	98	West Kowloon Highway (WKH)	Northbound	2	1970	1765	57%	0%	14%	0%	3%	2%	5%	4%	3%	2%	1%	0%	4%	2%	3%	0%	100%	0.0533533	1.3774921	0.0515311	1.330447
	A	Internal Rd A	Bothbound	4	404	100	45%	0%	30%	0%	0%	0%	0%	5%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1526722	1.3576760	0.0017133	0.015236
	В	Internal Rd B	Bothbound	4	361	160	41%	0%	28%	0%	3%	0%	0%	3%	0%	0%	25%	0%	0%	0%	0%	0%	100%	0.1653254	1.5557151	0.0026526	0.024960
	С	Internal Rd C	Bothbound	4	521	80	31%	0%	19%	0%	0%	0%	0%	0%	0%	0%	50%	0%	0%	0%	0%	0%	100%	0.2096886	2.0813385	0.0024277	0.024097
X ⁹³	144	Reprovision of Gascoigne Rd Flyover	Westbound	3	180	1250	36%	0%	1196	1%	7%	4%	11%	12%	1%	196	196	0%	0%	10%	4%	0%	100%	0.1159747	2 5378733	0.0072484	0.158617

P^(*) 144 Reprovision of Classcoipe RR Pflyower | Westbound | 3 | 180 | 1250 | 38% | 17%

Appendix 3.18d - Emission Rates of Portal, Top Openings and Ventilation Exhaust (Hr21-22)

Scenario 4		max										
				Calculated by the (extracted from to of Road Works a Kowloon)	he approved EIA it West	portal/openin	number of g involved	Area source rate divided t	oy area	,		
				Emission Ra		Emission		Emission	Rate - Por	tal/		
				Opening		Portal/O		Opening				
				(g/s)		(g/s) - Vol		(g/m2-s) -				
		Portal/ opening	Source Type	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from Scenario	Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)
53.076	0.687	Δ.	Area	0.00049822	0.0061793	_	_	1.01//3E-08	1.258E-05	491.2	1	10.687 x Tunnel Section A
80.935	0.873	R	Area	0.00255612			-		9.2725E-05		1	10.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)
32.646	0.435	CE	Area	0.00159476			-		3.0313E-05		1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E
		D1-D7		0.00257518	0.0319391			-	-	-		
		D8-D14	Volume			0.00012263	0.00152091	-	-	-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Sec
30	0.400	F	Area	0.00147284		-	-	5.3075E-06	6.2937E-05	277.5	1	0.4 x (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F
		11-14	_	0.0134967	0.1495925		0.02493208	-		-	1	1 x Tunnel Section I + 1 x Tunnel Section G + 1 x Tunnel Section H + 0.14 x Tunnel Section K + (1 - 0.612) x 0.38 x Tunnel Section O + (1 - 0.4) x (1 - 0.435) x
		15-18	Volume			0.00112473	0.01246604	-		-		Tunnel Section E + (1 - 0.4) x Tunnel Section F + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel
45.868	0.612	JKO1	Area	0.00455712		-	-	2.954E-06	3.2051E-05	1542.7	1	0.612 x Tunnel Section J + 0.612 x (1 - 0.14) x Tunnel Section K + 0.612 x Tunnel Section O
		L1-L5	_	0.00200386	0.0238274	0.00026718	0.00317699	-		-		1 x Tunnel Section L + (1 - 0.612) x 0.24 x Tunnel Section J + (1 - 0.612) x 0.62 x Tunnel Section O + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		L6-L10	Volume			0.00013359	0.00158849	-		-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section P
		M1-M4	_	0.00083393	0.0101902		0.00169837	-		-		
			Volume				0.00084919	-		-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		N1-N4		0.00083393	0.0101902	0.00013899	0.00169837	-		-		
		N5-N8	Volume				0.00084919	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)
		P1-P4	J	0.00238969	0.0256792	0.00039828	0.00427987	-	-	-		1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A+
		P5-P8	Volume			0.00019914	0.00213994	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section F
		W1-W8		0.05153115	1.330447	0.00429426	0.11087058	-	-	-		
		W9-W16	Volume			0.00214713	0.05543529			-	1	1 x Tunnel W
		701-710		0.00724842	0.1586171	0.00048323	0.01057447	-	-	-	1	
		711-720	Volume			0.00024161	0.00528724	-	-	-	-	1 x Tunnel X
		BaseA	Volume	0.00226453	0.0214313	0.00226453	0.02143133					1/3 x Basement roads A,B,C
% o	Serving Rd	BaseC		0.00226453	0.0214313	0.00226453	0.02143133					1/3 x Basement roads A,B,C
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y
	Out of 500m	901-903				-	-	-	-	-		1 x Tunnel Z
	Out of 500m	904-906	Volume			-	-	-	-	-	1	
	Out of 500m	V1	Point								from 1-4	
			1					l	l	<u> </u>	<u> </u>	

																								Rate		Emissio	
														Hr 22-23 (2015 EIA_19-	12-2011.xls)								(g/km-		(g/:	(s)
emarks (Tunnel name - ortal & top opening of iderpass in EIA of Rd orks in WK)	WKCD section no.	Road name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NO
1)	73	Lin Cheung Rd (underpass)	Northbound	3	73	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0005798	0.007
1)	73	Lin Cheung Rd (underpass)	Northbound	3	272	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0021605	0.027
1)	73	Lin Cheung Rd (underpass)	Northbound	3	110	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0953154	1.2002245	0.0008737	0.011
1)	73	Lin Cheung Rd (underpass)	Northbound	3	176	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%		1.2002245	0.0013980	0.017
0	72	Lin Cheung Rd (underpass)	Southbound	3	155	410	55%	1%	23%	0%	2%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0925218	1.1036981	0.0016333	0.019
1)	72	Lin Cheung Rd (depressed)	Southbound	3	172	410	55%	1%	23%	0%	2%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0925218	1.1036981	0.0018124	0.02
,	118	Lin Cheung Rd (depressed)	Southbound	3	121	400	55%	1%	23%	0%	3%	1%	5%	5%	1%	1%	1%	0%	1%	1%	0%	1%	100%		1.1094109	0.0012385	0.01
)	119	Austin Rd W (depressed)	Eastbound	3	173	860	35%	1%	47%	0%	2%	2%	5%	2%	1%	1%	1%	0%	1%	1%	1%	2%	100%	0.1358599	1.5011441	0.0056148	0.06
	117	Austin Rd W (depressed)	Eastbound	3	194	280	38%	2%	46%	0%	2%	2%	4%	2%	2%	0%	0%	0%	0%	2%	0%	2%	100%	0.1256163	1.2766566	0.0018954	0.01
)	116	Austin Rd W (depressed)	Westbound	3	194	360	35%	1%	43%	0%	1%	1%	4%	3%	1%	0%	6%	0%	0%	1%	1%	1%	100%	0.1326806	1.5171168	0.0025740	0.02
i)	114	Lin Cheung Rd (depressed)	Southbound	3	95	110	59%	0%	32%	0%	5%	0%	0%	5%	0%	0%	0%	0%	0%	0%	0%	0%	100%		0.7553685	0.0002356	0.00
)	112	Lin Cheung Rd (depressed)	Northbound	3	95	335	54%	1%	22%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0921965	1.1342608	0.0008150	0.01
0)	84	Lin Cheung Rd	Southbound	3	56	355	55%	1%	24%	0%	3%	1%	4%	4%	1%	1%	1%	0%	1%	1%	0%	0%	100%	0.0929667	1.1149716	0.0005134	0.00
1)	77	Lin Cheung Rd	Northbound	3	56	525	54%	1%	23%	0%	3%	2%	5%	5%	2%	1%	1%	0%	2%	1%	0%	1%	100%	0.0956100	1.1435129	0.0007808	0.00
1)	111	Austin Rd W (depressed)	Eastbound	3	52	705	36%	1%	46%	0%	1%	1%	4%	3%	1%	1%	1%	0%	1%	1%	1%	1%	100%		1.4324072	0.0013457	0.01
)	110	Austin Rd W (depressed)	Westbound	3	52	410	35%	1%	45%	0%	1%	1%	5%	2%	1%	1%	1%	0%	1%	1%	1%	1%	100%	0.1351002	1.5335894	0.0008001	0.00
00	98	West Kowloon Highway (WKH)	Northbound	2	1970	1755	56%	0%	14%	0%	3%	2%	5%	4%	3%	2%	1%	0%	4%	2%	3%	0%	100%	0.0535651	1.3757223	0.0514425	1.32
	A	Internal Rd A	Bothbound	4	404	105	43%	0%	29%	0%	5%	0%	0%	5%	0%	0%	19%	0%	0%	0%	0%	0%	100%	0.1513914	1.4363008	0.0017839	0.01
	В	Internal Rd B	Bothbound	4	361	155	42%	0%	26%	0%	3%	0%	0%	3%	0%	0%	26%	0%	0%	0%	0%	0%	100%	0.1631965	1.5598607	0.0025366	0.02
	С		Bothbound	4	521	75	33%	0%	20%	0%	0%	0%	0%	0%	0%	0%	47%	0%	0%	0%	0%	0%	100%		2.0557596	0.0022880	0.02
	144	Reprovision of Gascoigne Rd Flyover		3	180	1575	36%	0%	11%	1%	7%	4%	11%	11%	1%	1%	1%	0%	1%	10%	4%	0%	100%	0.1165184	2.5438244	0.0091758	0.20
		top opening of underpass in EIA of Roa ion factor provided by Vehicular Emission	ad Works in We		the vehicle fleet	•	factors for pr	ollutants mulit	plied by traffic	c flow of each	roads.							1									

		max																						
				Calculated by the (extracted from to of Road Works a Kowloon)	ne approved EIA t West	Volume sour calculated by portal/openin	number of g involved	Area source rate divided t	oy area	,														
				Emission Ra				Emission	Rate - Por	tal/														
				Opening		Portal/O		Opening																
				(g/s)		(g/s) - Vol		(g/m2-s) -																
		Portal/ opening		PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from													
		ID.	Source Type									Emission calculation formula (Extracted from the approved EIA of Road Works at West Kowloon)												
53.076	0.687	A	Area	0.00039845		-	-	8.1117E-07	1.0214E-05	491.2	1	0.687 x Tunnel Section A												
80.935	0.873	В	Area	0.00204422	0.0257411	-	-		7.5288E-05		1	0.873 x ((1 - 0.687) x Tunnel Section A + 1 x Tunnel Section B)												
32.646	0.435	CE	Area	0.00122081		-	-	1.9216E-06	2.3455E-05	635.3	1	0.435 x Tunnel Section C + 0.435 x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + 0.435 x (1 - 0.873) x Tunnel Section B + 0.435 x Tunnel Section E												
		D1-D7		0.00205946	0.025933	0.00019614		-				14 AMEL T. 10 % O. 44 AMEL 44												
		D8-D14	Volume	0.0010939	0.0400404	9.8069E-05	0.0012349	-	 4.7024E-05	-	1	(1 - 0.435) x Tunnel Section C + (1 - 0.435) x (1 - 0.873) x (1 - 0.687) x Tunnel Section A + (1 - 0.435) x (1 - 0.873) x Tunnel Section B + (1 - 0.435) x Tunnel Section E + 0.4 x Tunnel Section F												
30	0.400	11-14	Area	0.0010939		0.00180914	0.02011436	3.942E-06	4./024E-05	2//.5	1	0.4 x (1 * 0.435) x Turnet Section E + 0.4 x Turnet Section F 1 x Turnet Section I + 1 x Turnet Section G + 1 x Turnet Section H + 0.14 x Turnet Section K + (1 * 0.612) x 0.38 x Turnet Section O + (1 * 0.4) x (1 * 0.4)												
		11-14 15-18	Volume	0.01085485	0.1200001		0.02011436	-	-	-	1													
45 868	0.612	JKO1	Area	0.00386827	0.0410154	0.00090457		2.5075E-06	2 0007E 00	1540.7														
43.000	0.012	L1-L5	Alea	0.00165872		0.00022116		2.0070E-00	2.000/E-00	1042.7		Section E + (1 · 0.4) x Tunnel Section F + (1 · 0.612) x (1/3 x (Tunnel Section Internal Rd A+ Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Trunnel Section J + 0.612 x (1 · 0.14) x Tunnel Section K + 0.612 x Tunnel Section O + (1 · 0.612) x (1/3 x (Tunnel Section D + (1 · 0.612) x (1/3 x (Tunnel Section Internal Rd A+												
		L6-L10	Volume	0.00100072	0.0107720	0.00011058	0.00131815	_		_	,	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section L / (traffic flow of Tunnel Section L + traffic flow of Tunnel Section L)												
		M1-M4	VOIGING	0.0006471	0.0077479		0.00129132	-			_	The state of A trainer of the state of the s												
		M5-M8	Volume			5.3925E-05	0.00064566	-	-	-	1	0.5 x (Tunnel Section M + Tunnel Section N)												
		N1-N4		0.0006471	0.0077479	0.00010785	0.00129132	-	-	-														
		N5-N8	Volume			5.3925E-05	0.00064566	-			1	0.5 x (Tunnel Section M + Tunnel Section N)												
		P1-P4		0.0019809	0.0207994	0.00033015	0.00346656	-	-	-		1 x Tunnel Section P + (1 - 0.612) x 0.76 x Tunnel Section J + (1 - 0.612) x 0.86 x Tunnel Section K + (1 - 0.612) x (1/3 x (Tunnel Section Internal Rd A												
		P5-P8	Volume			0.00016507	0.00173328	-	-	-	1	Internal Rd B+ Internal Rd C) x (traffic flow of Tunnel Section P / (traffic flow of Tunnel Section I + traffic flow of Tunnel Section L + traffic flow of Tunnel Section I + traffic flow of T												
		W1-W8		0.05144254	1.3212093		0.11010077	-	-	-														
		W9-W16	Volume				0.05505039	-	-	-	1	1 x Tunnel W												
		701-710		0.00917582	0.2003262	0.00061172	0.01335508	-	-	-	1													
		711-720	Volume			0.00030586	0.00667754	-		-	-	1 x Tunnel X												
		BaseA	Volume	0.00220282		0.00220282	0.02116099					1/3 x Basement roads A,B,C												
% of \$	Serving Rd	BaseC		0.00220282	0.021161	0.00220282	0.02116099					1/3 x Basement roads A,B,C												
	Out of 500m	801-820	Volume			-	-	-	-	-	1	1 x Tunnel Y												
	Out of 500m Out of 500m	901-903				-	-	-	-	-	1.	1 x Tunnel Z												
	Out of 500m	904-906 V1	Volume Point			-	-	-	-	-	1 from 1-4													
	Out 0. 000111	• • • • • • • • • • • • • • • • • • • •	· Onn								1.0111 1.4													

														Hr 23-00 /	2015 EIA 19-1	12-2011 vie)								Rate (g/km-		Emissio (g)	
emarks (Tunnel name - ertal & top opening of iderpass in EIA of Rd orks in WK)	WKCD section no.	Bood name	Bound	Road Type	Length (m)	Total (veh/hr)	PC	taxi	LGV3	LGV4	LGV6	HGV7	HGV8	PLB	PV4	PV5	NFB6	NFB7	NFB8	FBSD	FBDD	мс	Total	PM	NOx	PM	NO
)	72		Northbound	2	72	300	F20/	29/	22%	09/	20/	20/	E0/	E0/	20/	20/	20/	OS/	20/	29/	09/	00/	100%	0.0933621	1,1916912	0.0005680	0.00
)	73		Northbound	3	272	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0003080	0.00
)	73		Northbound	3	110	300	53%	2%	22%	0.0	3%	294	5%	5%	2%	2%	2%	0%	2%	296	0%	0%	100%	0.0933621	1.1916912	0.0008558	0.01
)	73		Northbound	3	176	300	53%	2%	22%	0%	3%	2%	5%	5%	2%	2%	2%	0%	2%	2%	0%	0%	100%	0.0933621	1.1916912	0.0013693	0.01
)	72		Southbound	3	155	425	56%	1%	24%	0%	2%	1%	5%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0887885	1.0621039	0.0016247	0.01
	72		Southbound	3	172	425	56%	1%	24%	0%	2%	1%	5%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0887885	1.0621039	0.0018029	0.02
	118	Lin Cheung Rd (depressed)	Southbound	3	121	405	54%	1%	22%	0%	2%	1%	5%	5%	2%	1%	1%	0%	1%	1%	0%	1%	100%	0.0895458	1.0911759	0.0012189	0.01
	119	Austin Rd W (depressed)	Eastbound	3	173	680	35%	1%	48%	0%	1%	1%	4%	2%	1%	1%	1%	0%	1%	196	1%	1%	100%	0.1335898	1.4637242	0.0043654	0.0
	117	Austin Rd W (depressed)	Eastbound	3	194	245	37%	2%	45%	0%	2%	2%	4%	2%	2%	0%	0%	0%	0%	2%	0%	2%	100%	0.1238049	1.3101097	0.0016346	0.0
	116	Austin Rd W (depressed)	Westbound	3	194	295	32%	2%	41%	0%	2%	2%	3%	2%	2%	0%	10%	0%	0%	2%	2%	2%	100%	0.1314081	1.5991364	0.0020890	0.02
	114	Lin Cheung Rd (depressed)	Southbound	3	95	170	56%	0%	35%	0%	3%	0%	3%	3%	0%	0%	0%	0%	0%	0%	0%	0%	100%	0.0948358	0.9132334	0.0004254	0.0
	112	Lin Cheung Rd (depressed)	Northbound	3	95	355	54%	1%	23%	0%	3%	1%	6%	4%	1%	1%	1%	0%	1%	1%	0%	1%	100%	0.0939261	1.1694007	0.0008799	0.0
)	84	Lin Cheung Rd	Southbound	3	56	400	54%	1%	25%	0%	4%	1%	4%	5%	1%	1%	1%	0%	1%	1%	0%	0%	100%	0.0918391	1.0991535	0.0005714	0.0
)	77	Lin Cheung Rd	Northbound	3	56	545	54%	1%	23%	0%	3%	2%	6%	5%	2%	1%	1%	0%	2%	196	0%	1%	100%	0.0958762	1.1629589	0.0008128	0.00
)	111		Eastbound	3	52		35%	1%	46%	0%	2%	2%	3%	3%	1%	1%	1%	0%	1%	2%	1%	2%	100%	0.1287058	1.4387418	0.0011340	0.01
)	110	Austin Rd W (depressed)	Westbound	3	52	330	32%	2%	47%	0%	2%	2%	5%	2%	2%	2%	2%	0%	2%	2%	2%	2%	100%	0.1374171	1.6234948	0.0006550	0.00
ų .	98	West Kowloon Highway (WKH)	Northbound	2	1970		56%	0%	15%	0%	3%	2%	5%	4%	3%	2%	2%	0%	4%	2%	3%	0%	100%	0.0544161	1.3969034	0.0348399	0.89
	A		Bothbound	4	404	175	43%	0%	29%	0%	3%	0%	3%	3%	0%	0%	20%	0%	0%	0%	0%	0%	100%	0.1597945	1.5484876	0.0031382	0.00
	В		Bothbound	4	361		39%	0%	26%	0%	4%	0%	2%	4%	2%	2%	23%	0%	0%	0%	0%	0%	100%	0.1588280	1.5535335	0.0045392	0.04
	С		Bothbound	4	521	140	29%	0%	18%	0%	4%	0%	0%	4%	0%	0%	46%	0%	0%	0%	0%	0%	100%	0.2034716	2.0812462	0.0041226	0.0
	144	Reprovision of Gascoigne Rd Flyover		3	180	1265	35%	0%	11%	1%	7%	4%	11%	11%	2%	1%	1%	0%	0%	10%	4%	0%	100%	0.1142516	2.4953576	0.0072264	0.1
	ed on Portal &	top opening of underpass in EIA of Ros ion factor provided by Vehicular Emission	d Works in We		1.00			10.00	1	c flow of each	oads.	476	11.00	11.00	je.n	1.00	1.00	Je se	JU 70	1070	1.00	D 10	1907	0.1142010	L-4300070	0.3072234	

Scenario 4			max																					
					Calculated by th (extracted from to of Road Works a Kowloon)	he approved EIA it West	portal/openin	number of g involved	Area source rate divided t	by area														
					Emission Ra	te - Portal/			Emission	Rate - Por	tal/													
					Opening		Portal/O		Opening															
			_		(g/s)	laro.	(g/s) - Vol		(g/m2-s) - PM															
			Portal/ openii	ng Source Type	PM	NOx	PM	NOx	PM	NOx	(Area)	Formula from Scenario	ission calculation formula (Extracted fre	om the an	oproved EL	A of Road V	Vorks at W	Vest Kowlo	on)					
	53.076	0.687	A	Area	0.00039028			-		1.0142E-05		1	87 x Tunnel Section A						,					
	80.935	0.873	В	Area	0.00200233					7.4753E-05		1	73 x ((1 - 0.687) x Tunnel Section A + 1											
	32.646	0.435	CE	Area	0.00120663					2.335E-05	635.3	1	35 x Tunnel Section C + 0.435 x (1 - 0.8)	73)x(1	- 0.687)	Tunnel Se	ction A + 0	0.435 x (1	- 0.873) x	Tunnel Se	ection B +	0.435 x Tunr	nel Section E	ž .
			D1-D7		0.00201725	0.0257486					-		0.40E) T 10 " 0 /4 0.40E		0.070									
			D8-D14	Volume	0.00108816	0.0400400		0.00122612	 3.9213E-06		-	1	 0.435) x Tunnel Section C + (1 - 0.435 x (1 - 0.435) x Tunnel Section E + 0.4 x 			1 - 0.687	x runner:	Section A -	F (1 - U.4k	55) X (1 -	0.8/3) X	Tunnel Section	on B + (1 -	0.435) x Iun
	30	0.400	F	Area	0.00108816					4.690/E-05	2//.5	1	Tunnel Section I + 1 x Tunnel Section E + 0.4 x			. H . O 14	Tunnal C	ontion V .	(1 0.612	1 1 1 20 2	Tunnal Ca	otionO . (1	0.4) v / 1	0.425 \ v
			II-I4 I5-IR	Volume	0.00946061	0.1003093		0.01775159	-	-	-		nel Section E + (1 - 0.4) x Tunnel Section G											
	45.868	0.612	JKO1	Area	0.00460041	0.0493017	0.00075003		2.0021E.00	3.1958E-05	1540.7		12 x Tunnel Section J + 0.612 x (1 - 0.14	L) v Tuni	nel Section	K - 0.612	v Tunnal S	action O	IIIUATIII	torrarrar	JT III(GITIG	1 kd O) x (u c	anne now or	TUITIO
	40.000	0.012	L1-L5	ricu	0.00193095		0.00025746		-		1042.7		Tunnel Section L + (1 - 0.612) x 0.24 x						tion O ± (1 - 0.612	x / 1/3 x /	Tunnel Sect	ion Internal	Pd ∆⊥
			L6-L10	Volume				0.00153455	_	_	_	1	ernal Rd B+ Internal Rd C) x (traffic flow											
			M1-M4		0.00069213	0.0083492			-	_	-													
			M5-M8	Volume			5.7678E-05	0.00069577	-			1	x (Tunnel Section M + Tunnel Section N)											
			N1-N4		0.00069213	0.0083492	0.00011536	0.00139154	-	-	-		•											
			N5-N8	Volume			5.7678E-05	0.00069577	-	-	-	1	x (Tunnel Section M + Tunnel Section N)											
			P1-P4		0.00195595	0.0205595	0.00032599	0.00342659	-				Tunnel Section P + (1 - 0.612) x 0.76 x	Tunnel S	Section J +	(1-0.612) x 0.86 x	Tunnel Sec	tion K + (1 - 0.612) x (1/3 x	Tunnel Sect	ion Internal	Rd A+
			P5-P8	Volume				0.00171329		-	-	1	ernal Rd B+ Internal Rd C) x (traffic flow of	of Tunne	I Section P	/ (traffic f	ow of Tunn	nel Section	I + traffic	flow of Tui	nnel Section	n L + traffic	flow of Tunn	nel Section P
			W1-W8		0.0348399	0.8943674	0.00290332	0.07453062	-	-	-													
			W9-W16	Volume				0.03726531	-	_	-	1	Tunnel W											
			701-710		0.00722642	0.1578314			-	-	-	1												
			711-720	Volume				0.00526105	-			-	Tunnel X											
			BaseA	Volume									x Basement roads A,B,C											
	% of:	Serving Rd	BaseC		0.00393331	0.0389925	0.00393331	0.03899254					x Basement roads A,B,C											
		Out of 500m	801-820	Volume			-	-	-	-	-	1	Tunnel Y								1		1	
		Out of 500m	901-903				-	-	-	-	-	1.	Tunnel Z								1	-	+	+
		Out of 500m Out of 500m	904-906	Volume Point			-		-	-	-	1 from 1-4									1	+	+	+
		Out or Goodil	•••	· Ont								1.0111 1.4			-			-		-	+	+	+	+