Traffic from Paved Road

	$E = k(sL)^{0.91}(W)$	1.02						
	Where	E : k : sL : W :	particulate emission facto particulate size multiplier road surface silt loading, average weight, ton	ate emission factor, g/veh-km ate size multiplier for particle size range and units of interest rface silt loading, g/m ² weight, ton				
In this stuc	ly,							
	К:		3.23 g/ven-кт	(AP-42, Table 13.2.1-1)				
	sL :		14 g/m ²	Excavation, loading and unloading of spoils are conducted at construction sites and quarri of these activities are similar. The sL for a quarry is estimated between 2.4 g/m ² and 14 g/m Section 13.2.1 of AP-42. The maximum sL value is assumed for the construction sites.				
	W:		5 ton	(Assumed the materials will be transported by the village vehicles; the weight of village vehicles(5 tonnes) was assumed to be lower than light goods vehicles				
Therefore,	Ε:		184.132 g/veh-km					

A traffic density of 10 veh/hr

The removal effeciency is estimated based on USEPA Control of Open Fugitive dust Sources (EPA-450/3-88-008) By C = 100 - (0.8*n*d*t)/i

By C = 10	0 - (0.8*p*d*t)/i
where	С

ppotential average hourly daytime evaporation rate, in mm/hdaverage hourly daytime traffic rate in vehicles per houriapplication intensity in litre/m²ttime between applications in hour	С	average control efficiency, in percent
daverage hourly daytime traffic rate in vehicles per houriapplication intensity in litre/m²ttime between applications in hour	р	potential average hourly daytime evaporation rate, in mm/h
i application intensity in litre/m ² t time between applications in hour	d	average hourly daytime traffic rate in vehicles per hour
t time between applications in hour	i	application intensity in litre/m ²
	t	time between applications in hour

"The Year's Weather -2011" issued by Hong Kong Observatory, the total annual evaporation recorded in Hong Kong is 1476.7mm (58.14 inches) Therefore,

р	0.37791 mm/h	(0.0065*annual evaporation in inches)
d	10 per hour	peak hourly daytime traffic is used for conservative approach
i	0.5 liter/m ²	

Time Between Application (hour)	Average Control Efficiency (%)
6	63.7
3	81.9
1.5	90.9

For a traffic density of 10 veh/hr, the emission rate due to traffic from paved road is		
Mitigation efficiency:	90.9	(Watering appicated every 1.5 hours)
With Mitigartion		
Emission rate (g/m/s):	2.78341E-05	
Without Mitigartion		
Emission rate (g/m/s):	0.000306886	

ries, and the nature //m² according to

es)

Heavy Construction

Accoording to Section 13.2.3 of AP-42 Emission rate

	Emission rate	=	1.2 tons ar	cs/acce/month of activities	(ref : AP-42 S13.2.3.3)	
		=	2.69 Mg/he	ctare/month of activities	(ref : AP-42 S13.2.3.3)	
In this s	tudy,					
	Percentage active operating area(%) :		100	(usual practice for typical cor	nstruction site)	
	Mitigation efficiency:		90.9	(The removal effeciency is es	timated based on USEPA Control	
	With Mitigartion					
	Emission rate (g/sq.m/day):		0.9383796	(1Mg= 1,000,000g; 1 hectare	= 10 000 square meters; Assume	
	Emission rate (g/sq.m/s):		2.607E-05	(Assume 10 working hours a	day; From 0800 to 1900 exclude 1	
	Without Mitigartion					
	Emission rate (g/sq.m/day):		10.34615385	(1Mg= 1,000,000g; 1 hectare	= 10 000 square meters; Assume	
	Emission rate (g/sq.m/s):		2.874E-04	(Assume 10 working hours a	day; From 0800 to 1900 exclude 1	

Wind Erosion

For the dust calculations, the emission factor as suggested by the USEPA's Compilation of Air Pollutant Emission Factors, 5th edition, 1995 (AP-42), Section 11.9 Table 11.9-4, for wind erosion is 0.85 Mg/ha/yr.

Emission rate (g/sq.m/s):=([0.85Mg/ha/yr] x [1000000g/Mg])/([10000sq.m/ha] x [(365 x 24 x 3600)s/yr])Emission rate (g/sq.m/s):2.69533E-06

The removal effeciency is estimated based on USEPA Control of Open Fugitive dust Sources (EPA-450/3-88-008), Equation (3-3) and Figure 3-3 By : C = 75 x (M - 1) [for $1 \le M \le 2$]; C = 62+6.7M [for $2 \le M \le 5$]

where C Instantaneous control efficiency, percent

M ratio of controlled to uncontrolled surface moisture contents

According to the Equation (3-3), by increase the surface moisture content by a ratio of 4.18 would achieve 90% dust suppression efficiency: Dust suppression efficiency = 62 + 6.7 x (4.18) = 90%

Area of wind erosion: Soil Density: 2144 m2 2000 kg/m³ (from engineer) l of Open Fugitive dust Sources (EPA-450/3-88-008) and Watering every 1.5 hours)

e 26 woking days per month) 1200 to 1300)

e 26 woking days per month) 1200 to 1300) Outlying Islands Sewerage Stage 2 -

Upgrading of Cheung Chau Sewage Collection, Treatment and Disposal Facilities

Calculations of dust emission factors

Material moisture content; The moisture content for a quarry is estimated between 0.3% and 1.1% according to Section 13.2.4 of AP-42.

If Moisture	content is 0.3%:				
	Uncontrolled Surface Moisture Content:		0.3 %		
	Controlled Surface Moisture Content:		1.3 %		
Assume	Depth of Water Penetrated:		0.02 m	Referenced from the Denr Waste Management Assoc	nis R.Fitz & Kurt Bumiller(2000) " Ev Siation.
Therefore,	Weight of Uncontrolled Wet Surface: Weight of Controlled Wet Surface:		=2144 x 2000 x 0.02/(1-0 =2144 x 2000 x 0.02/(1-1	.3%) = .3%) =	86018 kg 86890 kg
	Water Intensity:		(86890-86018)/2144 =		0.4 L/m²/hour
lf Moisture	content is 1.1%:				
	Uncontrolled Surface Moisture Content:		1.1 %		
	Controlled Surface Moisture Content:		4.6 %		
Assume	Depth of Water Penetrated:		0.02 m	Referenced from the Denr Waste Management Assoc	iis R.Fitz & Kurt Bumiller(2000) " Ev ciation.
Therefore,	Weight of Uncontrolled Wet Surface: Weight of Controlled Wet Surface:		=2144 x 2000 x 0.02/(1-1 =2144 x 2000 x 0.02/(1-4	1%) = 6%) =	86714 kg 89895 kg
	Water Intensity:		(89895-86714)/2144 =		1.5 L/m²/hour
Therefore,	the conservative scenario (moisture conte	ent = 1.1%) is adopted in the asse	ssment.		
	<u>With Mitigartion</u> Emission rate (g/sq.m/s):	=	2.69533E-07		
	<u>Without Mitigartion</u> Emission rate (g/sq.m/s):	=	2.69533E-06		
<u>Water loss</u> The Year's 2011)	of evaporation for each hour Weather -2011 issued by Hong Kong Obse	rvatory, the the range of mean d	aily evaporation recorded i	n Monthly Values is 2.4 to 5.	4mm (Table 13 of SUMMARY OF M
For worst o Evaporatio	case scenario, the mean daily evaporation n rate:	values of 5.4mm is adopted in as	sessment: 0.225 mm/h		

The evaporation rate per m² :

0.2 L/m²/hour

Appendix 3.2

valuation of Watering to Control Dust in High Winds", Journal of the Air &

valuation of Watering to Control Dust in High Winds", Journal of the Air &

METEOROLOGICAL AND TIDAL OBSERVATIONS IN HONG KONG

Material Handling

Accoording to Section 13.2.4 of AP-42

E		=	k (0.0016) x (U/2.2)^1.3	/ (M/2)^1.4	(kg/Mg)					
Where	Ε:	Emission factor, g/meg	agram							
	k :	Particulate size multip	ier, k=0.74 as defined accordir	ng to Table 2 of Se	ction 13.2.4					
	U :	Average wind speed at	Average wind speed at Cheung Chau from 2006 to 2010 (i.e. ~ 4.93m/s)							
	M :	Material moisture con	tent; Material handling at const	struction sites and	stone quarrying, and the nature of these activit					
		for the construction sit	es.							
	E	=	0.04813 kg/mega	gram						
Volume of C	&D material, m ^{3:}		15352							
Soil Density,	kg/m [°] :		2000	(from engineer						
Duration of	excavation:		444 days	(excluding holi	days)					
Average am	ount of matorial to be removed	=	4440 nours	(10 WORKING NO	burs per day - 07:00 to 12:00 and 13:00 to 18:00)					
	soil X Density / Number of one	ration hours								
6915 315	301 × Density / Number of ope			(from engineer	·)					
0515.515	515			(nom engineer	1					
Maximum N	o of trucks loading/unloading a	at stoclpile per hour =	10	(from engineer	·)					
Maximum ca	arrying capacity for each truck(kg) =	960	(from engineer	-)					
Maximum o	f materials loading at stockpile	per hour (R), kg/hr=	9600							
Matavial II.			1102							
Material Ha	ndling Area(stockpile), m	=	1103							
<u>Without Mit</u>	igartion									
Emission rat	e (g/sq.m/s):	=	E x R / Area							
		=	1.16351E-07							

ties are similar. The moisture content for a num moisture content value (0.3%) is assumed

Concrete Batching Plant			
Unloading of raw material			
TSP emsiion factor (kg/Mg):		0.0035	(AP-42, Section 11.12, Table 11.12-1- Aggregate transfer)
Maximum Loading Rate(kg/hr)		9600	
Area of unloading material(m ²)		20	
Without Mitigartion		/ .	
Emission rate (g/sq.m/s):	=	E x R / Area	
- · · · · · · · ·	=	0.000467	
Emission Height :		0.5	
Cement/PFA Silos			
Small Cement Silos			
Maximum TSP emsiion factor (mg/m ³):		50	(According to the Guidance Note on the Best Practicable Mea
Dust extraction flow rate for each mixed	r (m ³ /hr)	1700	the design emission concentrations of the dust collectors for
Number of operation hours:		12	concrete batching plant should not exceed 50 mg/m ³ .)
Number of small cement silos:			
Emission height (m)		20	
Maximum Emission rate (g/s) :	=	=[Maximum TSP em	sijon factor (mg/m ³)] x [Dust extraction flow rate for each mixer (m ³)
	=	0.0236	
		0.0200	
PFA Silos			
Maximum TSP emsiion factor (mg/m ³):		50	(According to the Guidance Note on the Best Practicable Mea
Dust extraction flow rate for each mixed	r (m ³ /hr)	1700	emission concentrations of the dust collectors for cement/ Pu
Number of operation hours:		12	should not exceed 50 mg/m ³ .)
Number of PFA silos:		2	
Emission height (m)		20	
Maximum Emission rate (g/s):	=	=[Maximum TSP em	sijon factor (mg/m ³)] x [Dust extraction flow rate for each mixer (m ³)
	=	0.02361111	
Large Capacity Cement Silos			
Maximum TSP emsiion factor (mg/m ³):		50	(According to the Guidance Note on the Best Practicable Mea
Dust extraction flow rate for each mixed	r (m³/hr)	2200	emission concentrations of the dust collectors for cement/ Pu
Number of operation hours:		12	should not exceed 50 mg/m ³ .)
Number of cement silos:		1	
Emission height (m)		20	
Maximum Emission rate (g/s):	=	=[Maximum TSP em	siion factor (mg/m ³)] x [Dust extraction flow rate for each mixer (m ³
	=	0.030556	
Mixing Tower			
Mixer			
Maximum TSP emsijon factor (mg/m ³):		50	(According to the Guidance Note on the Best Practicable Mea
Dust extraction flow rate for each mixed	$r(m^3/hr)$	1700	emission concentrations of the dust collectors for cement/ Pu
Number of operation hours	(m/m/	1700	should not exceed 50 mg/m ³)
Number of mixing tower:		1	
Emission height (m)		20	
Maximum Emission rate (g/c):	_		siion factor (mg/m ³)] y [Dust extraction flow rate for each mixer (m ³)
Emission rate (g/s).	-		
	-	0.0250	

eans for Cement Works (Concrete Batching Plant) BPM 3/2(93), r cement/ Pulverised Fuel Ash (PFA) silos and mixer of the

n³/hr)] / (3600 x 1000)

eans for Cement Works (Concrete Batching Plant) BPM 3/2(93), the design Pulverised Fuel Ash (PFA) silos and mixer of the concrete batching plant

n³/hr)] / (3600 x 1000)

eans for Cement Works (Concrete Batching Plant) BPM 3/2(93), the design Pulverised Fuel Ash (PFA) silos and mixer of the concrete batching plant

³/hr)] / (3600 x 1000)

eans for Cement Works (Concrete Batching Plant) BPM 3/2(93), the design Pulverised Fuel Ash (PFA) silos and mixer of the concrete batching plant

³/hr)] / (3600 x 1000)

Infomration of TSP emission sources <u>Point Sources</u>

				Elevation	Emission Rate	Emission Point		Exit Velocity
ID	Description	X-Coordinate	Y-Coordinate	(meters)	(Unmitigated)	Hight(m)	Temperature (K)	(m/s)
SRC1	Small Cement Silo 1	820391.9	808322.9	3.9	0.0236	20	298	12
SRC4	PFA Silo 1	820403.9	808316.8	3.9	0.0236	20	298	12
SRC8	PFA Silo 2	820410.2	808313.7	3.9	0.0236	20	298	12
SRC19	Large Capacity Cement Silo 1	820402.2	808312.1	3.9	0.030556	20	298	12
SRC21	Mixer 1	820386.6	808315.7	3.9	0.0236	20	298	12

<u>Area sources</u>

					Working Hour		Non-working Hour				
ID	Description	X-Coordinate	Y-Coordinate	Elevation (meters)	Emission Rate (Unmitigated)	Emission Rate (Mitigated)	Emission Rate-Wind Erosion (Unmitigated)	Release Height (m)	X-Length (m)	Y-Length (m)	Angle
SRC5	Paved road 1	820389.8	808331.7	4.5	3.07E-04	2.78E-05		0	2.5	105	114.8
SRC6	Paved road 2	820480.8	808285.9	4.5	3.07E-04	2.78E-05		0	48.5	2.5	114.8
SRC7	Paved road 3	820422.1	808312.9	4.5	3.07E-04	2.78E-05		0	28	2.5	115.0
SRC12	Storage Area 1	820322.4	808308.4	4	1.16E-07	1.16E-07	2.70E-06	0	19	26	116.3
SRC14	Storage Area 2	820635.7	808174.7	4.6	1.16E-07	1.16E-07	2.70E-06	0	20.1	30	80.5
SRC15	Demolish Sludge Digester	820377.2	808315.3	4.4	2.87E-04	2.61E-05	2.70E-06	0	20	36	115.6
SRC16	Demolish Primary Sedimentation Tank	820453.8	808294.3	4.4	2.87E-04	2.61E-05	2.70E-06	0	9	24	112.9
SRC3	sewage work	820864.6	808706.2	18	2.70E-06	2.70E-07	2.70E-06	0.5	1.3	20	-171.3
SRC9	sewage work 1	820841.1	808621	34	2.70E-06	2.70E-07	2.70E-06	0.5	2.2	20	-140.0
SRC10	sewage work 2	820713.8	808397.2	37	2.70E-06	2.70E-07	2.70E-06	0.5	2	20	141.0
SRC11	sewage work 3	820815.5	808380	42	2.70E-06	2.70E-07	2.70E-06	0.5	2	20	159.4
SRC13	sewage work 4	820872.9	808280	15.1	2.70E-06	2.70E-07	2.70E-06	0.5	1.5	20	174.0
SRC17	Construction Area	820448.9	808339.2	4.4	2.87E-04	2.61E-05	2.70E-06	0	28	55	115.4
SRC18	Unpaved Area	820398.2	808350.1	4.4	2.70E-06	2.70E-06	2.70E-06	0	18	23	114.9
SRC22	Unloading area 1	820340.8	808285.8	4	1.16E-07	1.16E-07	2.70E-06	0.5	1.5	2	117.8
SRC25	Unoading area 2	820635.2	808164.6	4	1.16E-07	1.16E-07	2.70E-06	0.5	1.5	2	-2.9
SRC26	Storage area (CBP)	820406.4	808307.4	4	0.000467	0.000467	2.70E-06	0.5	4	5	111.8