
Basic Flow of Calculation of Engine Run Up Emission

Sample Calculation - Three Runway Scenario

Testing Rec	ord												
Test Number	Start Hour Code	Finish Hour Code	Operator	А/С Туре	Engine UID	Number of Engine Tested	Engine Power(%)	Total Testing Time (mins) [1]					
5	010412	010413	Cathay Pacific	B747	1	1	90%	27					
Note: [1]	Total testing time	are provided by HAECO	as the accumulated te	esting time by all t	he engines tested				-				
Meteorologi	cal Condition												
Test Number	Hour Code	Temperature (°C) T _{amb} [1]	Relative Humidity (-) [1]	Hourly Mean Sea Level Pressure (Pa) [1]						Insert into EDMS	to obtain the adjust	sted engine emissic	on indices/ fuel consumption based on hourly meteorological condition
5	010412	20.1	0.76	101670									
	Data from mm5 g	/)A as the aircraft is o		hay Pacific.								
Test Number	Engine Type	Combuster Model (if any)	Out of Service (if)	Engine Type (J- Jet; T-Turboprop; P-Piston)	ICAO Engine	Mixed Turbofan	Bypass Ratio	Rated Engine Output (kN)	Unadjusted Fuel Flow - Takeoff	Unadjusted Fuel Flow - Climbout	Unadjusted Fuel Flow - Approach	Unadjusted Fuel Flow - Idle	Insert into EDMS in user-created aircraft
5	CPAHDA		FALSE	J	FALSE		8.54058	332.96238	2.71629	2.19766	0.70087	0.24291	
Test Number	Approach	Adjusted Fuel Flo	w (kg/s) [1][2] Takeoff (100%)	Climb Out									
5	(30%) 0.6566	0.2454	2.5199	(85%) 2.0448	/								
5	0.0000	0.2404	2.0100	2.0440	<u></u>								

Notes:

[1] Extracted from EDMS, installation effect for Takeoff, Climbout, Approach and Idle are 1.01, 1.013, 1.02, and 1.1 respectively. D-4, Baughcum, S.L., T.G. Tritz, S.C. Henderson, and D.C. Pickett. "Scheduled Civil Aircraft Emission Inventories for 1992: Database Development and Analysis." NASA CR 4700. April 1996.

[2] IATA suggested that there should be a 0.5% improvement on fuel consumption rate up to 10 years. This rate has been applied into the calculation of the fuel flow rate.

Raw Emission Indecies

Test Number	Engine Type	CO Raw Emission Index - (Takeoff)	CO Raw Emission Index - (Climbout)	CO Raw Emission Index - (Approach)	CO Raw Emission Index - (Idle)
5	CPAHDA	0.39499	0.38603	1.61368	17.54045
5	CPAHDA	0.39499	0.38603	1.61368	17.54045

Test Number	NOx Raw Emission Index - (Takeoff)	NOx Raw Emission Index - (Climbout)	NOx Raw Emission Index - (Approach)	NOx Raw Emission Index - (Idle)
5	34.93978	25.15788	10.99656	4.39993

HC Raw HC Raw Emissio HC Raw Emission HC Raw Emission Test Number ission Inde Index - (Climbout) Index - (Idle) Index - (Approach) (Takeoff) 5 0.01182 0.00796 0.01815 0.97913

Input to EDMS and extract adjusted emission factor based on hourly climatical condition with cancellation of 0.5% fuel consumption improvement

Input to EDMS and extract adjusted emission factor based on hourly climatical condition

Input to EDMS and extract adjusted emission factor based on hourly climatical cond
with cancellation of 0.5% fuel consumption improvement

	Test		Adjusted CO Emissi	ion Index (g/kg)			Adjusted NOx Emissi		Adjusted THC Emission Index (g/kg)					
	Number	Idling (7%) Lakeott (100%)			Climb Out (85%)	Approach (30%)	Idling (7%)	Takeoff (100%) Climb Out (85%)		Approach (30%) Idling (7%		Takeoff (100%)	Climb Out (85%)	
Ē	5	1.7936	19.4965	0.4341	0.4341	10.0573	4.0241	31.9556	23.0092	0.0202	1.0883	0.0110	0.0110	

Tost		Adjusted TOG Emiss	sion Index (g/kg)			Adjusted VOC Emiss	Adjusted NMHC Emission Index (g/kg)					
Number	Test Approach Idl (30%)		Takeoff (100%)	Climb Out (85%)	Approach (30%)	Idling (7%)	Takeoff (100%)	Climb Out (85%)	Approach (30%)	ldling (7%)	Takeoff (100%)	Climb Out (85%)
5	0.0233	1.2583	0.0127	0.0127	0.0232	1.2518	0.0126	0.0126	0.0233	1.2583	0.0127	0.0127

Note: According to the conversion factor extracted from EDMS database, the conversion rate from TOG to NMHC is 1.0. According to the conversion factor extracted from EDMS database, the conversion rate from TOG to VOC is 0.9947855. According to the conversion factor extracted from EDMS database, the conversion rate from THC to TOG is 1.156234049. According to the conversion factor extracted from EDMS database, the conversion rate from RSP to FSP is 1.0.

ndition

Т	est		Adjusted PM Emissi	ion Index (g/kg)		Adjusted SO ₂ Emi	ssion Index (g/kg)	with Sulphur Content	0.068%	
Nur	mber	Approach (30%)	Idling (7%)	Takeoff (100%)	Climb Out (85%)	Approach (30%)	Idling (7%)	Takeoff (100%)	Climb Out (85%)	Input to EDMS
	5	0.0630	0.0643	0.0685	0.0672	1.3274	1.3274	1.3274	1.3274	
				<						

Takeoff PM EI = (0.062702 - 0.0432)+ (0.72*0.068) = 0.06846

Empirical Equation: PMEI = (REI-0.0432)+(0.72*S%) <---

	Test	Engine Model	PM REI from EDMS (g/kg Fuel) [1][2]										
N	lumber	Engine woder	Approach	Idle	Takeoff	Climb Out							
	5	PW1127G	0.057246	0.058533	0.062702	0.061481							

Notes

[1] PM REI are weighted average value. See Appendix 5.3.8-3 for details

Mode Ratio of Emission Indices at Different Power Settings

% POWER	MODE	REMARK	Takeoff %	Climbout %	Approach %	Idle %
90%	21	CLIMBOUT+TAKEOFF	33%	67%	0%	0%

Notes: From Appendix 5.3.8-4

For power setting between 85% and 100%, emission is calculated from the weighted average between the two modes at Takeoff and Climbout. For example, if the power setting is 90%, the weighted average emission Ew is calculated as follows: Ew = Ec x (100-90)/(100-85) + Et x (90-85)/(100-85), where Ec and Et are pollutant emissions for Climbout and Takeoff modes respectively taken from EDMS for the respective aircraft and engine type.

Calculation of Emission

Test	Start	Finish				Number of	Engine	Total Testing Time						Approach				
Number	Hour Code	Hour Code	Operator	А/С Туре	Engine UID		Power(%)	(mins) [1]	Fuel (g)	CO (g)	THC (g)	NMHC (g)	VOC (g)	TOG (g)	NOx (g)	SO2 (g)	PM10 (g)	PM2.
5	010412	010413	Cathay Pacific	B747	1	1	90%	27	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.
											Emission is 0 as m	node ratio is 0.						

[1] Emission (kg) = Emission Index (g/kg fuel) * Fuel consumption (kg fuel/s) * Time in Mode (min/mode) * No. of Engines * 60(s/min) / 1000 (g/kg) *Mode Ratio

[2] It is assumed by EDMS that the conversion factor from PM10 to PM2.5 is 1.0

ſ	Test					lo	lle										Startup [1]		
	Number	Fuel (g)	CO (g)	THC (g)	NMHC (g)	VOC (g)	TOG (g)	NOx (g)	SO2 (g)	PM10 (g)	PM2.5 (g) [2]	Fuel (g)	CO (g)	THC (g)	NMHC (g)	VOC (g)	TOG (g)	NOx (g)	
Γ	5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	246.4812	284.9899	283.5039	284.9899	0.0000	

Emission is 0 as mode ratio is 0.

STARTING EMISSIONS (grams of THC) = 1 *(0.5* 332.96238 + 80)

Note: [1]

Aircraft main engine startup produces only THC, VOC, NMHC, and TOG emissions.

STARTING EMISSIONS (grams of THC) = Number of Engines *(0.5* Thrust Rating (KiloNewtons) + 80)

The constants "0.5" and the "80" are empirically derived from proprietary engine cycle decks from Rolls Royce, Pratt and Whitney, and General Electric.

This methodology is based on certified jet engines and should therefore only be applied to those aircraft engines. Therefore, EDMS version 5.1 results come with the caveat that "Startup emissions are not included for all aircraft".

Based on the assumptions:

- that all combustion inefficiency has been conservatively attributed alone to HC with no correction for starting CO

- speciation of HC emission will not be performed

- the analysis is based on testing results for typical day engine starting conditions

- engines analyzed are of a current production standard based on modern combustor architecture

- engine start NOx emissions are negligible compared to LTO NOx emissions

AEDT Newsletter_October 2008

Test					Tal	eoff								Climb Out				
Number	Fuel (g)	CO (g)	THC (g)	NMHC (g)	VOC (g)	TOG (g)	NOx (g)	SO2 (g)	PM10 (g)	PM2.5 (g) [2]	Fuel (g)	CO (g)	THC (g)	NMHC (g)	VOC (g)	TOG (g)	NOx (g)	
5	1360.7344	590.6365	14.9532	17.2893	17.1992	17.2893	43483.0652	1806.1844	93.1588	93.1588	2208.3874	958.5664	24.2680	28.0595	27.9132	28.0595	50813.1209	29
		Emission (kg) = Emission Index (g/kg fuel) * Fuel consumption (kg fuel/s) * Time in Mode (min/mode) * No. of Engines * 60(s/min) / 1000 (g/kg) *Mode Ratio																
				Emission (kg) =	0.0109890348339527	* 2.51987848202387 * 2	27 * 1 * 60 / 1000 *	33% = 14.9532										

Test		Total								
Number	Fuel (kg)	CO (kg)	THC (kg)	NMHC (kg)	VOC (kg)	TOG (kg)	NOx (kg)	SO2 (kg)	PM10 (kg)	PM2.5 (kg)
5	3569	1.55	0.29	0.33	0.33	0.33	94.30	4.74	0.24	0.24

Total emission

PM2.5 (g) [2]			
0.0000			
	Total E	Emission at each TIM	3
SO2 (g)	PM10 (g)	PM2.5 (g) [2]	
0.0000	0.0000	0.0000	
SO2 (g)	PM10 (g)	PM2.5 (g) [2]	
2931.3251	148.4948	148.4948	
			>
			`