Appendix 4.6: Calculation of Dust Suppression Efficiency from Watering

Dust suppression efficiency is assumed to be 87.5%. Assumptions are stated as below.

With reference to the Equation (5-4) of USEPA's Control of Open Fugitive Dust Sources (EPA-450/3-98-008), dust suppression efficiency can be estimated by:

$$C = 100 - \frac{0.8 \cdot p \cdot d \cdot t}{i}$$

where

C = average control efficiency, in percent

p = potential average hourly daytime evaporation rate in mm/hour

d = average hourly daytime traffic rate in vehicles per hour

 $i = application intensity in L/m^2$

t = time between applications in hour (t = 1)

The following assumptions are made for assessment purpose:

Assumption 1:

Potential average hourly daytime evaporation rate p can be estimated by 0.0049 * e, where e is the mean annual average evaporation rate (inches). From past measurement data in Hong Kong's Observatory, evaporation recorded at King's Park between 1981 - 2010 is 1227.3 mm^{1} . Therefore p = 0.0049 * (1227.3 mm) = 0.0049 * (48.3188976 inches) = 0.2368.

Assumption 2:

Estimate average hourly daytime traffic rate in vehicles per hour = 10. (d = 10)

Assumption 3:

Assume watering application intensity as 0.152 L/m^2 . (i = 0.152)

Assumption 4:

Assumes watering frequency as once per hour. (t = 1)

With the above assumptions, dust suppression efficiency is calculated as below:

$$C = 100 - 0.8*(0.2368)*(10)*(1) / 0.152 = 87.5%$$

¹ The Hong Kong's Observatory evaporation recorded at King's Park between 1981 to 2010 is taken from http://www.weather.gov.hk/cis/normal/1981 2010/normals e.htm