Appendix 4.6

Justification for Dust Suppression Efficiency

Calculation of Watering Efficiency (for construction site)

With reference to Cowherd et al., "Control of Open Fugitive Dust Sources, EPA-450/3-88-008, U.S. Environmental Protection Agency, Research Triangle Park, NC, percentage of dust mitigation efficiency is calculated from Equation (3-2) :

$$C = 100 - \frac{0.8 \, pdt}{i}$$

where

- p = Potential average hourly daytime evaporation rate, mm/hour = 0.25916 [1]
- d = Average hourly daytime traffic rate per hour = 45 per hour [2]
- I = Application intensity = 1.1 L/sq.m [3]

Note:

- p = 0.0049 x 52.8898 inch, where 52.8898inch is equivalent to the total evaoporation of 1343.4mm obtained from Hong Kong Observatory
 (http://www.weather.gov.hk/cis/normal/1971 2000/normals e.htm)
- [2] Estimated by Engineer
- [3] The assumptions provided are for the purpose of assessment predictions and is rounded to one decimal place only.

By applying the Equation (3-2) with the above assumptions,

Dust suppression efficiency = $100 - 0.8 \times (0.25916 \times 45 \times t) / 1.1$ [t = time between application, hr]

Therefore,

For watering once per hour (i.e. t =1 hour), the estimated dust suppression efficiency is 91.7%.

Calculation of Watering Efficiency (for Stockpile)

With reference to Cowherd et al., "Control of Open Fugitive Dust Sources, EPA-450/3-88-008, U.S. Environmental Protection Agency, Research Triangle Park, NC, percentage of dust mitigation efficiency is calculated from Equation (3-3) and Figure 3-3 :

 $C = 75 \times (M-1) \quad \text{[for } 1 \le M \le 2\text{]}$ $C = 62 + 6.7M \quad \text{[for } 2 \le M \le 5\text{]}$

where c = Instanteous control efficiency (%)

M = Ratio of controlled to uncontrolled surface moisture contents

According to the Equation (3-3), by increasing the surface moisture content by a ratio of 1.67 would achieve 50% dust suppression efficiency :

Dust suppression efficiency = $75 \times (1.67 - 1) = 50\%$

Watering Intensity

Given

Area of Stockpile = 16985 m^2 Dry Fill Density = 1700 kg/m^3

Uncontrolled Surface Moisture Content	=	2 %	
Controlled Surface Moisture Content	=	3.3 %	
Assume			
Depth of Water Penetrated into Stockpile	=	0.02 m see Note [1]	
Therefore,			
Weight of Uncontrolled Wet Stockpile Surface	=	16985.2 x 1700 x 0.02 / (1 - 0.02)=	589282 kg
Weight of Controlled Wet Stockpile Surface	=	16985.2 x 1700 x 0.02 / (1 - 0.03 =	597410 kg
Watering Intensity	=	(597410 - 589282) / 16985.2 =	0.5 L/m²/hour

Note [1] Referenced from the Dennis R. Fitz & Kurt Bumiller (2000) "Evaluation of Watering to Control Dust in High Winds", Journal of the Air & Waste Management Association