Technological and Higher Education Institute of Hong Kong 香港高等科技教育學院

THEi Building, 20A Tsing Yi Road, Tsing Yi Island, New Territories, Hong Kong 香港新界青衣島青衣路20A號 香港高等科技教育學院大樓 www.thei.edu.hk

Telephone No 電話

Facsimile No 傳真

Our Reference 本院檔號

Your Reference 來函檔號

Member of VTC Group

VTC 機構成員

THE GOVERNMENT OF THE HONG KONG SPECIAL ADMINISTRATIVE REGION

Drainage Services Department

CONTRACT NO. SPW 05/2015

Odour Survey for Sha Tin Cavern Sewage Treatment Works

December 2015

Background 1. 2. Scope of the Work..... Sampling Locations and Frequency..... 3. Methodology 4. 4.1. Odour Sampling 4.2. Olfactometry Analysis..... 4.3. Determination of Specific Odour E 4.4. Quality Control (QA/QC)..... 4.5. On-site H₂S Measurements..... 4.6. TVOC Measurement..... 4.7. Quality Assurance..... Odour Sampling and Olfactometry Measured 5. 5.1. Sampling Activities..... 5.2. Additional Sampling Activities at E 5.3. Olfactometry Analysis..... 5.4. Determination of Specific Odour En 5.5. Survey Results..... 5.6. Site Photos..... Appendix A: Location of odour sampling at od deodourizers).....

Appendix B: Operation status of different unit/

By Odour Research Centre

Faculty of Science and Technology Technological and Higher Education Institute of Hong Kong

(Member of VTC Group)

26 – 1

Table of Contents

3
4
4
mission Rate6
6
7
urement8
Deodourizer9
mission Rate9
lourous source at STSTW (excluding
/tanks at STSTW during sampling period16

1. Background

A service of odour sampling and olfactometry analysis was required by the Drainage Services Department of Hong Kong Government to determine the odour conditions at the existing Sha Tin Sewage Treatment Works (STSTW) to build up the odour emission inventory for the future relocated STSTW in caverns.

2. Scope of the Work

- provision of all labour, transportation, materials, equipment and tools necessary for the satisfactory completion of the Services as per Technical Requirements within the course of the Services;
- to conduct odour sampling and olfactometry analysis to determine odour emission rates background odour concentration at the odorous source locations of the existing STSTW and nearby representative air sensitive receivers (ASRs);
- in conjunction with the odour sampling, to conduct on-site H_2S measurement at the identified odorous source locations of the existing STSTW and nearby representative ASRs, and near the relocation site to obtain quantitative data on existing odour level during the odour sampling;

to conduct the measurement of TVOC at inlet and outlet points of the deodourizer; and

preparation and submission of Odour Analysis Report to the Employer's Representative (AECOM Asia Co. Ltd.).

3. Sampling Locations and Frequency

Odour sampling shall be carried out at the odour source locations within the existing STSTW. The sampling shall be conducted at both the inlet and outlet points of the deodourizers (DO) for different facilities as well as the effluent surface / screens surface / sludge surface of the different facilities which are open to the atmosphere. The respective locations are listed below and as shown in Appendix A and Appendix B:

Location of odour sampling at odourous source at STSTW (excluding deodourizers);

- A1 Inlet Fine Screen
- A2 SAS Holding Tank
- A3 Thickened SAS Holding Tank
- A4 Digested Sludge Holding Tank
- F1 Inlet Channel
- F2 Screening Skip
- F3 Aerated Grit Channel
- F4 Primary Influent Channel
- F5 Primary Sedimentation Tank
- F6 Primary Effluent Channel
- F7 Aeration Tank (Anoxic Zone)
- F8 Aeration Tank (Aerobic Zone)
- F9 Final Sedimentation Tank
- F10 MLSS Channel
- F11 Digester Overflow Box
- F12 Dewatered Sludge Skip

Two sampling events will be conducted for each sampling location on separate days with daytime's temperature measures greater than 30°C (during sampling period) at site.

4. Methodology

- 4.1. Odour Sampling
- 4.1.1 Odour gas sample at each survey location is collected by a Sampling Device Standard consists of sampler are connected by a probe.
- 4.1.2 Due to the evacuation in the sampling device, the sample bag, inside the device, sucks in sample air due to the construction of the sampling device.
- 4.1.3 The only materials, which the odorous air should contact, are stainless steel, borosilicate glass or after use.

Odour Sampling System

a vacuum container, which is evacuated by a vacuum pump. The sampling point and the standard

air via the probe. During this process, none of its components come into contact with the sample

one of polytetrafluoroethylenes (PTFE). The sample bags are to be manufactured from PTFE, Tedlar if the bags to be reused or from nalophane (NATM) if the sample bags are to be discarded

4.1.4 In order to determine a specific odour emission rate from an area source such as water surface, air sampling can use a "hood" method, whereby a Flux Hood is placed on the odour emission surface of selected locations and a stream of odour-free nitrogen gas from a certified gas cylinder is supplied into the Flux Hood to simulate a sweep wind blowing on the main section of sampling hood. The flow rate of odour-free nitrogen gas is 5 (L/min). The emission rate is then determined by the air flow through the hood and the odour concentration of the exit air. Air samples shall be collected using the above Sampling Device Standard and odour bags. The Flux Hood system is shown below.

Flux Hood Systems

- 4.2. Olfactometry Analysis
- 4.2.1 The collected air sample in sample bag should be deliveried to Odour Research Centre of THEi and the odour concentration is determined by a Dynamic Olfactometer (TO9) in accordance with the European Standard Method (EN13725).
- 4.2.2 This European Standard specifies a method for the objective determination of the odour concentration of a gaseous sample using dynamic olfactometry with human assessors and the emission rate of odours emanating from point sources, area sources with outward flow and area sources without outward flow. The primary application is to provide a common basis for evaluation of odour emissions in the member states of the European Union.

4.2.3 This European Standard is applicable to the measurement of odour concentration of pure measurement is typically from $2^2 OU_E/m^3$ to $2^{17} OU_E/m^3$ (excluding pre-dilution).

Olfactometer TO9

4.3. Determination of Specific Odour Emission Rate

A dynamic flux hood system was employed in this sampling work to collect odour samples from water surface, in which an odour-free gas from a nitrogen gas cylinder was supplied to generate a known air inflow at a fixed flow rate of 5 L/min inside the hood. The specific odour emission rates (SOER) at the area source can be calculated by the following equation:

	Odour concentration (OU
SOER $(OU_E/m^2/s) =$	Covered wa

4.4. Quality Control (QA/QC)

During each odour sampling day, one blank sample by purging odour-free nitrogen gas from the certified gas cylinder shall be prepared for a purpose of QA/QC.

substances, defined mixtures and undefined mixtures of gaseous odorants in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor. The unit of measurement is the European odour unit per cubic metre: OU_E/m^3 . The odour concentration is measured by determining the dilution factor required to reach the detection threshold. The odour concentration at the detection threshold is by definition 1 OU_E/m^3 . The odour concentration is then expressed in terms of multiples of the detection threshold. The range of

 U_E/m^3) x Air flow rate inside hood (m³/s) vater surface area (m^2)

4.5. On-site H₂S measurements

The concentration of H_2S is detected on site using Jerome J605 Hydrogen Sulfide Analyzer. The concentration unit is ppb. The detection limit is 3 ppb.

Jerome J605 Hydrogen Sulfide Analyzer

4.6. TVOC measurement

The concentration of TVOC is detected in laboratory using ppbRAE 3000 Portable Handheld VOC Monitor. The concentration unit is ppb. The detection limit is 1 ppb.

ppbRAE 3000 Portable Handheld VOC Monitor

4.7. Quality Assurance

The odour laboratory shall be ventilated to maintain an odour-free environment and to provide fresh air to the panel members.

Each odour testing session shall comprise of at lease five qualified panellists. All of the panellists shall be screened beforehand by using a certified n-butanol standard gas. The qualified panellists should have their individual thresholds of n-butanol in the range of 20-80 ppb/v to comply with the requirement of EN13725.

Panel members must not eat or smoke for one hour prior to the testing session. Panel members should not use perfumes, shave lotions or any other fragment essences before the session. Panel member should not attend a session if he/she has a cold, influenza or any other health problems which will affect his/her nose.

Eating, drinking or smoking is not permitted while a session is in progress. The exception is during the mid-session break when water can be taken. If a lunch break is taken, food can also be eaten at one hour before the session. Smoking is not permitted during any breaks.

Each odour testing session should not last for more than 4 hours, in which at lease two breaks (ten minutes each) for olfactometry test shall be taken.

Exposure to direct sunlight shall be avoided for the samples. If any condensate is observed on the inner surface of the air bag, the sample should be discarded.

After sampling, the odour samples should be delivered to an odour laboratory as soon as possible and the odour samples shall be analysed within 24 hours.

Regular calibrations of the olfactometer should be performed to check the accuracy and repeatability of its dilution settings and to establish its calibration history. The calibration should be regularly performed using sulfur hexafluoride as a tracer gas and a sulfur hexafluoride monitor.

5. Odour Sampling and Olfactometry Measurement

5.1. Sampling Activities

- 5.1.1 Two sampling events were conducted at identified odour source and representative air locations are shown in Table 1 and Appendix A and C.
- 5.1.2 On the effluent surface / screens surface / sludge surface of the different facilities at twelve 5 L/min and the outlet gas from the Flux Hood was taken as odour samples.
- 5.1.3 At the four odour source locations and the five nearest representative air sensitive receivers, the ambient air was collected as odour samples.
- 5.1.4 During the sampling period, the concentration of H_2S was detected on site at twenty-one locations using Jerome J605 Hydrogen Sulfide Analyzer.

sensitive receiver of twenty one locations respectively on 15 and 17 July 2015 with daytime's temperature measures greater than 30°C (during sampling period) at site. The sampling

locations, the odour sample was taken from the surface using the Flux Hood, where a stream of odour-free nitrogen gas from a certified gas cylinder is supplied into the Flux Hood to simulate parallel winds blowing on the main section of sampling hood at a fixed flow rate of

	1	1	1		1	1		1	1	1	1	1		1	1		1			1			1
	SOER OU _E /m ² .s	0.025	0.017	1.14		0.81	0.071	0.10	4.55	2.71	3.22	3.83	5.42	2.28									
	OC OU _E /m³	38	26	1722	2896	1218	107	152	6888	4096	4870	5792	8191	3444	1024	512	6653	7	< 4	< 4	< 4	< 4	< 4
	H ₂ S (ppb) On Site	< 3.00	< 3.00	< 3.00	4.49	< 3.00	29.5	157	1033	322	141	37.6	128	121	< 3.00	< 3.00	1185	4.25	< 3.00	< 3.00	< 3.00	< 3.00	
	Wind Speed m/s	0.5	0.1	0.2	0.1	1.7	1.5	0.8	0.4	0.9	0.3	0.4	0.2	0.3	0.1	0.1	0.5	0.9	0.2	0.8	1.4	1.7	
	Wind Direction	NE	NE	NE	NE	ш	ш	ш	ш	ш	ш	ш	E-SE	E-SE	E-SE	E-SE	E-SE	S	SW	SW	s	SE	
	Humidity %	72.9	69.2	70.3	71.0	69.0	68.4	67.8	67.5	67.3	6.99	70.2	69.0	72.7	72.8	72.6	69.1	70.0	70.2	70.6	71.2	73.0	
Event 1	Ambient Temp. ^o C	31.4	33.0	32.4	31.9	33.9	34.7	35.2	35.5	35.8	36.2	32.5	33.8	31.4	31.2	31.5	33.2	32.7	32.4	32.0	31.7	31.2	
	Sampling Method	Ŧ	H	H	A	Ŧ	Ŧ	Ŧ	H	Ŧ	Ŧ	H	Ŧ	Ŧ	A	A	A	A	A	A	A	A	
	Time	9:15	9:35	10:02	10:26	10:50	11:20	11:34	11:49	12:04	12:21	12:53	13:26	13:57	14:30	14:40	15:00	10:54	15:20	15:40	16:00	16:15	14:10
	Date	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015	15-7-2015
	Sampling Location	Final Sedimentation Tank	MLSS Channel	Dewatered Sludge Skip	Digested Sludge Holding Tank	Digester Overflow Box	Aeration Tank (Aerobic Zone)	Aeration Tank (Anoxic Zone)	Primary Effluent Channel	Primary Sedimentation Tank	Primary Influent Channel	Screening Skip	Inlet Channel	Aerated Grit Channel	SAS Holding Tank	Thickened SAS Holding Tank	Inlet Fine Screen	Marine North Division Headquarter	Seaview Villa	Kam Tai Court	Chevalier Garden	Sha Tin Fishermen's New Village	QA/QC
	Sample ID	F9	F10	F12	A4	F11	F8	F7	F6	F5	F4	F2	F1	F3	A2	A3	A1						

- 5.1.5 During the odour sampling, relevant weather conditions including ambient temperature, relative humidity, wind speed, and wind direction were recorded on the sites for references. The data are shown in Table 1. The operation status of different unit/tanks at STSTW during sampling period are referred to Appendix D.
- 5.1.6 In every sampling day, one blank sample by purging odour-free nitrogen gas from the certified gas cylinder was also prepared for a purpose of QA/QC.
- 5.1.7 A total of fourty-four gas samples on 15 and 17 July 2015 were collected and immediately transported to the Odour Research Centre of THEi after the sampling.
- 5.2. Additional Sampling Activities at Deodourizer
- 5.2.1 Two sampling events were conducted at inlet and outlet points of the deodourizer of twelve locations respectively on 13 and 17 November 2015. The sampling locations are shown in Table 2 and Appendix B.
- 5.2.2 During the odour sampling, relevant weather conditions including ambient temperature, relative humidity, wind speed, and wind direction were recorded on the sites for references. The data are shown in Table 2.
- 5.2.3 In every sampling day, one blank sample by purging odour-free nitrogen gas from the certified gas cylinder was also prepared for a purpose of QA/QC.
- 5.2.4 A total of fifty gas samples on 13 and 17 November 2015 were collected and immediately transported to the Odour Research Centre of THEi after the sampling.
- 5.2.5 The concentrations of H₂S and TVOC were detected in laboratory using Jerome J605 Hydrogen Sulfide Analyzer and ppbRAE 3000 Portable Handheld VOC Monitor.
- 5.3. Olfactometry Analysis

Olfactometry analysis was conducted within 24 hours after the sampling work using a dynamic olfactometer in accordance with the European Standard Method (EN13725). Five qualified panellists participated in the odour testing session, who were previously selected through a set of screening tests using a certified n-butanol gas (60 ppm/v) as a standard reference.

5.4. Determination of Specific Odour Emission Rate

From the odour concentrations determined by olfactometry, the specific odour emission rates (SOER) at twelve sampling locations (F1 – F12) were calculated by the following equation and the final results are shown in Table 1:

 $SOER (OU_E/m^2/s) = \frac{Odour \text{ concentration } (OU_E/m^3) \text{ x Air flow rate inside hood } (m^3/s)}{Covered water surface area } (m^2)$

Where air flow rate inside hood = 5.0 (L/min) x $10^{-3} / 60 = 8.33 \text{ x } 10^{-5} \text{ (m}^{3}\text{/s)}$, and covered surface area = 0.2 (m) x 0.2 (m) x $3.14 = 0.126 \text{ m}^{2}$.

Table 1. Summary of sampling condition and results for odour survey

Summary of sampling

5.5. Survey Results

i

condition and results for odour sampling and olfactometry measurement are shown in Table 1 and Table

K. H. Ng

26 - 10

	SOER OU _E /m ² .s	0.030	0.020	0.83		1.26	0.050	0.14	4.82	2.90	3.41	1.07	5.15	2.71									
	OC OU∈/m³	45	31	1261	2195	1911	76	208	7298	4390	5160	1625	7796	4096	955	549	7643	6	< 4	< 4	< 4	< 4	< 4
	H ₂ S (ppb) On Site	< 3.00	< 3.00	4.42	6.86	7.74	94.9	116	263	227	154	9.61	3438	1178	118.5	9.98	567	< 3.00	< 3.00	< 3.00	< 3.00	< 3.00	
	Wind Speed m/s	0.5	0.4	0.1	0.1	0.2	6.0	0.1	1.3	1.8	1.0	0.1	0.4	0.2	0.1	0.1	0.1	0.3	0.4	0.7	0.8	0.3	
	Wind Direction	SW	SW	SW	SW	SW	SW	SW	SW	S-SW	S-SW	S-SW	S	s	SW	SW	SW	SW	SW	S	S	SW	
	Humidity %	78.3	L'LL	6'89	71.4	70.7	70.6	70.2	69.4	68.7	68.2	68.5	67.8	66.5	71.0	71.5	66.8	70.8	70.4	70.3	68.4	70.7	
Event 2	Ambient Temp. ^o C	30.8	31.2	33.0	31.3	32.5	32.8	33.1	33.5	33.8	34.3	33.6	34.9	35.4	31.7	31.4	35.2	32.0	32.6	32.9	34.2	32.1	
	Sampling Method	ΗJ	ΗJ	ΕH	A	ΗH	Η	ΗJ	Η	ΗH	ΗH	ΗJ	ΕH	ΗJ	A	A	A	A	A	A	A	A	
	Time	90:6	9:24	13:26	13:46	9:57	10:26	10:41	10:59	11:14	11:33	12:00	12:32	12:49	14:14	14:21	13:10	14:38	14:52	15:10	15:19	15:30	13:40
	Date	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015	17-7-2015
	Sampling Location	Final Sedimentation Tank	MLSS Channel	Dewatered Sludge Skip	Digested Sludge Holding Tank	Digester Overflow Box	Aeration Tank (Aerobic Zone)	Aeration Tank (Anoxic Zone)	Primary Effluent Channel	Primary Sedimentation Tank	Primary Influent Channel	Screening Skip	Inlet Channel	Aerated Grit Channel	SAS Holding Tank	Thickened SAS Holding Tank	Inlet Fine Screen	Marine North Division Headquarter	Seaview Villa.	Kam Tai Court	Chevalier Garden	Sha Tin Fishermen's New Village	QA/QC
	Sample ID	F9	F10	F12	A4	F11	F8	F7	94	F5	F4	F2	ΓJ	E	A2	A3	A1						

Remark: A: Ambient sampling; FH: Flux hood method; OC: Odour concentration; SOER: Specific odour emission rate;

26 - 11

K. H. Ng

Odour Research Centre at THEi

A

F1 - Inlet Channel

5.6. Site Photos

below:

During the sampling, relevant photos were taken at the all sampling locations and are shown

A2 - SAS Holding Tank

A4 - Digested Sludge Holding Tank

F2 - Screening Skip

K. H. Ng

F3 - Aerated Grit Channel

F4 - Primary Influent Channel

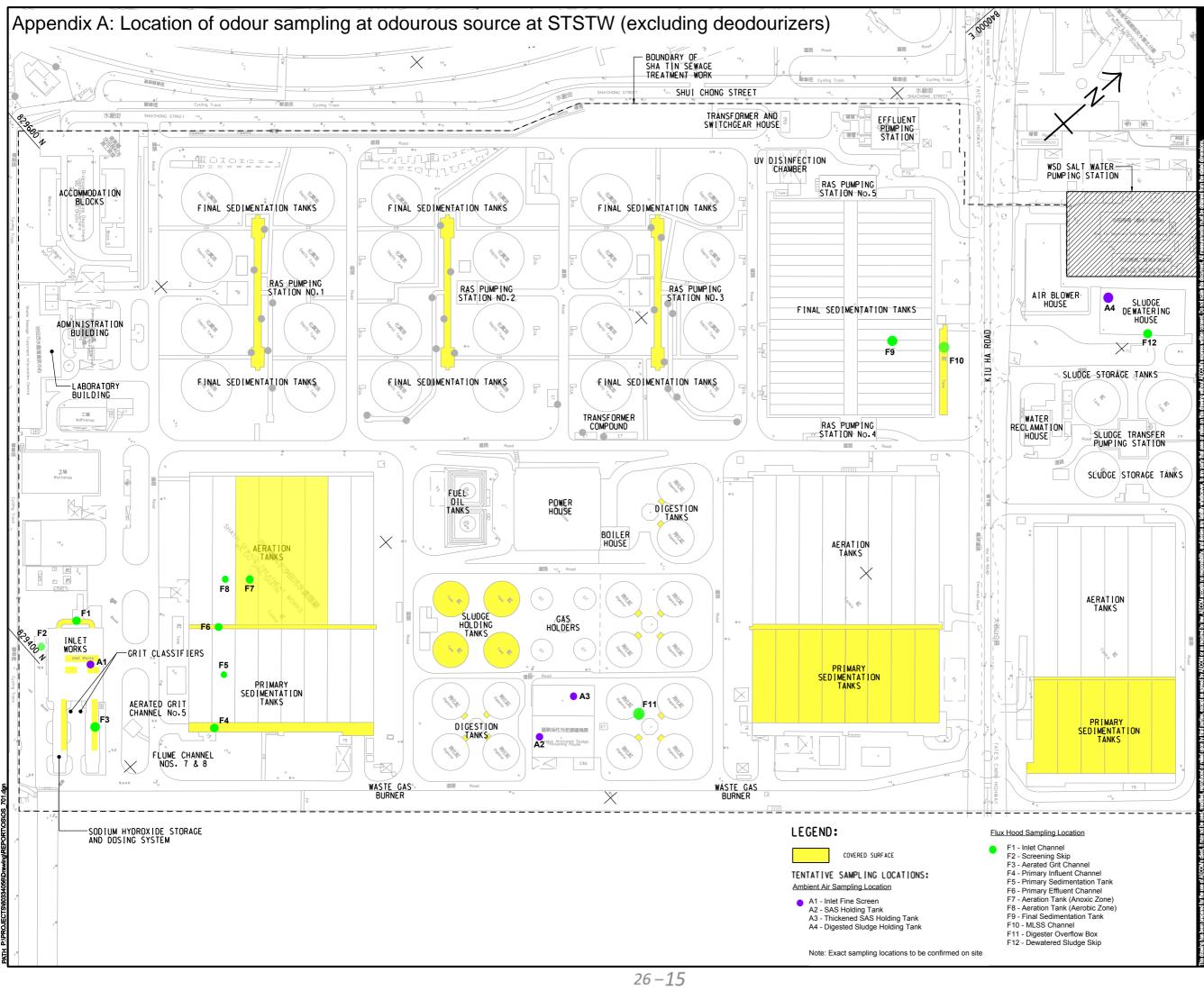
F9 - Final Sedimentation Tank


F5 - Primary Sedimentation Tank

F6 - Primary Effluent Channel

F11 - Digester Overflow Box

F7 - Aeration Tank (Anoxic Zone)


F8 - Aeration Tank (Aerobic Zone)

F10 - MLSS Channel

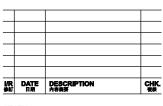
F12 - Dewatered Sludge Skip

Plot File by: ZHILZ

PROJECT

ODOUR SURVEY FOR SHA TIN CAVERN SEWAGE TREATMENT WORKS

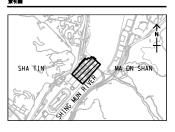
CLIENT


渠 務 署 **Drainage Services De**

AECOM Asia Company Ltd. www.aecom.com

ISSUE/REVISION

STATUS


SCALE 比例

A1 1 : 1000

METRES

KEY PLAN A1 1 : 50000

PROJECT NO.

60334056

CONTRACT NO.

SPW 05/2015

SHEET TITLE

REVISED LOCATIONS FOR ODOUR SURVEY FOR SHA TIN CAVERN SEWAGE TREATMENT WORKS

SHEET NUMBER

Appendix B

Appendix B: Operation status of different unit/tanks at STSTW during sampling period

Sample ID	Sampling Location	Date	Time	Sewage/Sludge Temperature (°C)	Flow Speed (m/s)	Capacity of the units/ tanks (m ³)	Operation status of the units/ tanks
F9	Final Sedimentation Tank No.32	15-7-2015	9:15	Unknown	Unknown		Operation
F10	MLSS Channel (at Final Sedimentation Tank No.32)	15-7-2015	9:35	Unknown	Unknown	N.A.	Operation
F12	Dewatered Sludge Skip	15-7-2015	10:02	N.A.	Unknown	N.A.	Operation
A4	Digested Sludge Holding Tank	15-7-2015	10:26	Unknown	Unknown	11.5 m high	Operation
F11	Digester Overflow Box No.5	15-7-2015	10:50	Unknown	Unknown	Unknown	Operation
F8	Aeration Tank No.8 (Aerobic Zone)	15-7-2015	11:20	Unknown	SS flow is 141 l/s , RAS flow is 143 l/s		Operation
F7	Aeration Tank No.8 (Anoxic Zone)	15-7-2015	11:34	Unknown	SS flow is 141 l/s , RAS flow is 143 l/s		Operation
F6	Primary Effluent Channel (towards Aeration Tank No.8)	15-7-2015	11:49	Unknown	Unknown	Unknown	Operation
F5	Primary Sedimentation Tank No.8	15-7-2015	12:04	Unknown	Unknown	Unknown	Operation
F4	Primary Influent Channel (at Primary Sedimentation Tank No.8)	15-7-2015	12:21	Unknown	Unknown	Unknown	Operation
F2	Screening Skip	15-7-2015	12:53	N.A.	Unknown	Unknown	Operation
F1	Inlet Channel	15-7-2015	13:26	Unknown	2207 l/s	N.A.	Operation
F3	Aerated Grit Channel No.1	15-7-2015	13:57	Unknown	Unknown	Unknown	Standby
A2	SAS Holding Tank	15-7-2015	14:30	Unknown	Unknown		Operation
A3	Thickened SAS Holding Tank No.5	15-7-2015	14:40	Unknown	Unknown	1.464m3	Operation
A1	Inlet Fine Screen No.2	15-7-2015	15:00	N.A.	Unknown	N.A.	Operation
F9	Final Sedimentation Tank No.32	17-7-2015	9:06	Unknown	Unknown		Operation
F10	MLSS Channel (at Final Sedimentation Tank No.32)	17-7-2015	9:24	Unknown	Unknown	N.A.	Operation
F12	Dewatered Sludge Skip	17-7-2015	13:26	N.A.	Unknown	N.A.	Operation
A4	Digested Sludge Holding Tank	17-7-2015	13:46	Unknown	Unknown	11.2 m high	Operation
F11	Digester Overflow Box No.5	17-7-2015	9:57	Unknown	Unknown	Unknown	Standby
F8	Aeration Tank No.8 (Aerobic Zone)	17-7-2015	10:26	Unknown	SS flow is 199 l/s , RAS flow is 245 l/s		Operation
F7	Aeration Tank No.8 (Anoxic Zone)	17-7-2015	10:41	Unknown	SS flow is 199 l/s , RAS flow is 245 l/s		Operation
F6	Primary Effluent Channel (towards Aeration Tank No.8)	17-7-2015	10:59	Unknown	Unknown	Unknown	Operation
F5	Primary Sedimentation Tank No.8	17-7-2015	11:14	Unknown	Unknown	Unknown	Operation
F4	Primary Influent Channel (at Primary Sedimentation Tank No.8)	17-7-2015	11:33	Unknown	Unknown	Unknown	Operation
F2	Screening Skip	17-7-2015	12:00	N.A.	Unknown	Unknown	Operation
F1	Inlet Channel	17-7-2015	12:32	Unknown	3002 l/s	N.A.	Operation
F3	Aerated Grit Channel No.1	17-7-2015	12:49	Unknown	Unknown	Unknown	Standby
A2	SAS Holding Tank	17-7-2015	14:14	Unknown	Unknown	11.3 m high	Operation
A3	Thickened SAS Holding Tank No.5	17-7-2015	14:21	Unknown	Unknown	1.5m3	Operation
A1	Inlet Fine Screen No.2	17-7-2015	13:10	N.A.	Unknown	N.A.	Operation
	Remark: The operation data were provided by STSTW.						