APPENDIX 7.01 HAZARAD TO LIFE ASSESSMENT FOR STORAGE AND TRANSPORT OF EXPLOSIVES

TABLE OF CONTENT

1	INTRODUCTION	3
1.1 1.2 1.3	Background Objectives EIAO TM Risk Criteria	3
2	PROJECT DESCRIPTION	5
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Project Overview Blasting Requirement Explosives Types Statutory/Licensing Requirement and Best Practice Design and Location of the Explosives Magazine Construction Cycle and Programme Transport of Explosives and Initiation Systems Concurrent Projects during Construction Phase	5 9 .11 .15 .16 .17
3	HAZARD TO LIFE ASSESSMENT METHODOLOGY	.18
3.1 3.2	Study Approach Domino Effects of High Pressure (HP) Town Gas Transmission Pipelines	
4	ESTIMATION OF POPULATION	.21
4.1 4.2 4.3 4.4	Population near the Explosives Magazine Population along Explosives Delivery Route Time Periods and Occupancy Features Considered in this Study	.21 .27
5	HAZARD IDENTIFICATION	.29
5.1 5.2 5.3 5.4 5.5 5.6	Overview Accidental Initiation due to Hazard Properties of Explosives Accidental Initiation Associated with Storage at Magazine Accidental Initiation Associated with Transportation from Magazine Incident Review Hazard Scenarios	.29 .32 .32 .33
6	FREQUENCY ANALYSIS	.36
6.1 6.2 6.3	Storage of Explosives Transport of Explosives Domino Effects of High Pressure (HP) Underground Town Gas Transmission Pipelines	
7	CONSEQUENCE ANALYSIS	.41
7.1 7.2 7.3 7.4	General Physical Effect Modeling Results of Consequence Analysis Secondary Hazards	.41 .43
8	RISK EVALUATION	.46
8.1 8.2 8.3 8.4	Introduction Individual Risk Societal Risk Uncertainty Analysis	.46 .51

9	RISK MITIGATION MEASURES	55
9.1	Risk Results	
9.2	Approach	
9.3	Maximum Justifiable Expenditure	
9.4	Potential Mitigation Measures	
9.5	Cost-Benefit Analysis	59
10	CONCLUSIONS AND RECOMMENDATIONS	62
10.1	Conclusions	
10.2	Recommendations	62
11	REFERENCES	64

List of Annex

Annex 1	Aircraft Crash Frequency Calculat
Annex 2	Population Data

ation

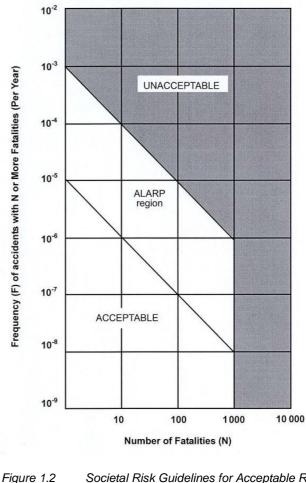
1 INTRODUCTION

1.1 Background

- 1.1.1.1 Explosives are classified as DG Category 1, and fall under the controlling authority of Mines Division, Civil Engineering and Development Department (CEDD). The storage of explosives during construction phase must be placed within a licensed 'Mode A' Store and a license must be obtained in accordance with certain safety and operational criteria to the approval of Mines Division. In addition, the Hazard to Life due to the explosives storage must fall within criteria acceptable to EPD. There will be no explosives handled during the operational phase of the Project.
- While the use of explosives cannot be avoided, the storage quantities at the explosive 1.1.1.2 magazine is to be kept to the minimum and the choice of the explosive magazine location is to be carefully considered such that the distance of transport route from the magazine to the blasting locations is minimised.
- Choosing a suitable location of a magazine site is vital as the transport of explosives has 1.1.1.3 shown to have direct impact to the nearby population along the transport route. Previous similar projects have shown the transport of explosives from a magazine to a project site to be a major contributor to the overall risk. As such, it is important for a magazine to be located close to the works site, minimizing risk from additional transportation but as far as possible from populated areas.

1.2 Objectives

1.2.1.1 The Hazard to Life Assessment requirements are detailed in Appendix G of the EIA Study Brief and are shown below in Figure 1.1.


Requirements for Hazard Assessment

- 1. If the proposed storage, use and transport use of explosives for rock blasting is required and the location of overnight storage of explosives magazine is in close vicinity to populated areas, the Applicant shall carry out hazard assessment as follows:
 - Identify hazardous scenarios associated with the storage, use and (i) transport of explosives and then determine a set of relevant scenarios to be included in a Quantitative Risk Assessment (QRA);
 - (ii) Execute a QRA of the set of hazardous scenarios determined in (i), expressing population risks in both individual and societal terms;
 - (iii) Compare individual and societal risks with the criteria for evaluating hazard to life stipulated in Annex 4 of the TM; and
- (iv) Identify and assess practicable and cost-effective risk mitigation measures.
- The methodology to be used in the hazard assessment should be consistent with previous studies having similar issues (e.g. West Island Line ESB 130/2005).

Figure 1.1 EIA Study Brief – Hazard to Life Requirements

1.3 **EIAO-TM Risk Criteria**

1.3.1.1 presented graphically in Figure 1.2.

1.3.1.2

The risk guidelines specified in the EIAO-TM apply to risk of fatality due to storage, transport and use of explosives. They are only applicable to public outside the boundary of the hazardous installation. Risk to workers on the project construction site, Drainage Services Department (DSD) staff and its contractors have not been included in this study as they are considered as voluntary risk takers.

EIA Report

Appendix 7.01

Annex 4 of the EIAO-TM specifies the Individual and Societal Risk Guidelines. The Hong Kong Government Risk Guidelines (HKRG) per the EIAO-TM Annex 4 states that the individual risk is the predicted increase in the chance of fatality per year to an individual due to a potential hazard. The individual risk guidelines require that the maximum level of individual risk should not exceed 1 in 100,000 per year i.e. 1 x10⁻⁵ per year. Societal risk expresses the risks to the whole population. It is expressed in terms of lines plotting the cumulative frequency (F) of N or more deaths in the population from incidents at the installation. Two F-N risk lines are used in the HKRG that demark "Acceptable" or "Unacceptable" societal risks. To avoid major disasters, there is a vertical cut-off line at the 1000 fatality level extending down to a frequency of 1 in a billion years. The intermediate region indicates the acceptability of societal risk is borderline and should be reduced to a level which is "as low as reasonably practicable" (ALARP). It seeks to ensure that all practicable and cost effective measures that can reduce risk are considered. The HKRG is

Societal Risk Guidelines for Acceptable Risk Levels

2 **PROJECT DESCRIPTION**

2.1 **Project Overview**

- 2.1.1.1 The existing STSTW has been proposed to be relocated to caverns and the location of the caverns is below Nui Po Shan and bounded by Mui Tsz Lam Road to the North and A Kung Kok Street to the West. The location of the overall project layout is shown in **Figure 2.2**.
- 2.1.1.2 The layout of the cavern complex has been developed based on considerations of a number of disciplines, especially the sewage treatment process. The footprint consists of a series of parallel caverns aligned along the long axis of the complex. The process caverns have a generally consistent excavated span of around 32m but the height of the caverns varies dependent on the sewage treatment process being undertaken in each cavern.
- 2.1.1.3 Two access tunnels are proposed to connect to the caverns. One of the tunnel portals is located at the junction of Mui Tsz Lam Road and A Kung Kok Street and the other portal is located close to the current DSD site on Mui Tsz Lam Road.
- A ventilation shaft is also proposed at the southwest side of the cavern. 2.1.1.4
- 2.1.1.5 The proposed Sha Tin Cavern Sewage Treatment Works (CSTW) will be located in caverns excavated within fresh to slightly decomposed granite. Due to the high strength of the rock, the large excavation spans required, the number of access tunnels and connections, drill and blast excavation construction method is the only practical and economical method.
- 2.1.1.6 Construction of the Project is tentatively scheduled to commence in 2017 for completion in 2027, and the peak cavern excavation year will be around 2020 - 2022. After Year 2022, it is anticipated that civil, E&M, testing and commissioning works will be carried out inside the cavern and some building and landscaping works outside the cavern. Assessment year for construction stage is taken as 2022; no explosive will be used during operation stage of the Project and thus hazard assessment for explosives related issue is not necessary for operation stage.

2.2 **Blasting Requirement**

- 2.2.1.1 For the tunnels that require blasting, the construction will follow a maximum three-blastsper-two-days cycle from tunnel portal. The tunnel will require an average face excavation area of approximately 170m². Each blast would require, on average 230 production holes and 85 perimeter holes. If a pull length of 2m per blast is assumed, then each blast would need approximately 13.6kg of detonating cord with a Pentaerythritol Tetranitrate (PETN) load density of 40g/m, 40kg of cartridged emulsion (assuming the use of 125g cartridged emulsion), 500 kg bulk emulsion (to be sensitised on site) and 315 detonators.
- 2.2.1.2 For the caverns that require blasting, the construction will also follow a maximum threeblasts-per-two-days cycle, with each blast consisting of up to eight blast faces. The cavern will require an average heading / bench excavation area of approximately 170m². Each blast face would require, on average 220 production holes and 27 perimeter holes. If a pull length of 5.5m per blast is assumed, then each blast face would need approximately 12kg of detonating cord with a PETN load density of 40g/m, 35kg of cartridged emulsion (assuming the use of 125g cartridged emulsion), 1070kg bulk emulsion (to be sensitised on site) and 247 detonators. Bulk emulsion will be adopted as far as practicable; however, in close proximity to sensitive receivers, Mines Division generally does not recommend the use of bulk emulsion where the Maximum Instantaneous Charge (MIC) envisaged for a particular blast is below 2kg. This prevents the occurrence of excessive vibrations due to potential bulk emulsion dosing inaccuracy [4]. Bulk emulsion is proposed to be used extensively for the cavern and some sections of the tunnels and ventilation shaft.
- 2.2.1.3 The blasting activities together with the required amount of explosives is summarised in Table 2.1. The actual amount of explosives (cartridged emulsion and detonating cord) is

types of explosives listed in Table 2.3.

calculated based on different tunnels and caverns profiles described in Table 2.2 and the

Table 2.1 Drill and	d Blast – Explos	ives Requiremen	ts (Summary)	1
Works Area	Delivery Point	Blast Face	Approximate No. of Blasts	Explosive Load (kg/ blast)
Single Access Tunnel Top Heading	Mui Tsz Lam Road	Access Tunnel	40	76.1-433.5
Single Access Tunnel Bench	Mui Tsz Lam Road	Access Tunnel	40	21.7-178.5
Full Access Tunnel Top Heading	Mui Tsz Lam Road	Access Tunnel	202	70.9-382.5
Full Access Tunnel Bench	Mui Tsz Lam Road	Access Tunnel	101	25.1-255
Secondary Access Tunnel Top Heading	Mui Tsz Lam Road	Access Tunnel	81	70.9-382.5
Secondary Access Tunnel Bench	Mui Tsz Lam Road	Access Tunnel	81	20.5-453
Ventilation Shaft	A Kung Kok Shan Road	Ventilation Shaft	36	28.8-100
Ventilation Tunnel	Mui Tsz Lam Road	Ventilation Tunnel	198	51.5-255
Branch Tunnel Top Heading	Mui Tsz Lam Road	Tunnel	114	65.2-326.4
Branch Tunnel Bench	Mui Tsz Lam Road	Tunnel	114	19.7-140.3
Cavern Top Heading	Mui Tsz Lam Road	Cavern	1516	70.9-382.5
Cavern Bench	Mui Tsz Lam Road	Cavern	1516	38.2-510

Table 2.1	Drill and Blast – Ex	plosives Red	quirements	(Summary)

Table 2.2 Drill and Blast – Typical Project Profiles

Tunnels /Caverns Profile Description Single Access Tunnel Top Heading (CE)	Section Area (m ²) 170	No. of production holes 365	No. of perimeter holes 85	Cartridged Emulsion (kg) 423.3	Detonating Cord (kg) 10.2	Detonators (kg) 0.45
Single Access Tunnel Top Heading (BE)	170	160	85	45.5	30.6	0.25
Single Access Tunnel Bench (CE)	70	150	20	176.1	2.4	0.17
Single Access Tunnel Bench (BE)	70	68	20	14.5	7.2	0.088
Full Access Tunnel Top Heading (CE)	150	330	80	372.9	9.6	0.41
Full Access Tunnel Top Heading (BE)	150	145	80	42.1	28.8	0.23

Sha Tin Cavern Sewage Tre	atment Works

Tunnels /Caverns Profile Description	Section Area (m ²)	No. of production holes	No. of perimeter holes	Cartridged Emulsion (kg)	Detonating Cord (kg)	Detonators (kg)
Full Access Tunnel Bench (CE)	100	300	20	252.6	2.4	0.32
Full Access Tunnel Bench (BE)	100	95	20	17.9	7.2	0.12
Secondary Access Tunnel Top Heading (CE)	150	330	80	372.9	9.6	0.41
Secondary Access Tunnel Top Heading (BE)	150	145	80	42.1	28.8	0.23
Secondary Access Tunnel Bench (CE)	60	150	20	150.6	2.4	0.17
Secondary Access Tunnel Bench (BE)	60	58	20	13.3	7.2	0.078
Ventilation Shaft (CE)	50	150	40	96.8	3.2	0.19
Ventilation Shaft (BE)	50	70	40	20.8	8	0.11
Ventilation Tunnel (CE)	100	214	60	247.8	7.2	0.27
Ventilation Tunnel (BE)	100	95	60	21.6	21.6	0.16
Branch Tunnel Top Heading (CE)	128	280	76	317.3	9.1	0.36
Branch Tunnel Top Heading (BE)	128	120	76	37.8	27.4	0.20
Branch Tunnel Bench (CE)	55	140	20	137.9	2.4	0.16
Branch Tunnel Bench (BE)	55	52	20	12.5	7.2	0.072
Cavern Top Heading (CE)	150	330	80	372.9	9.6	0.41
Cavern Top Heading (BE)	150	145	80	42.1	28.8	0.23
Cavern Bench (CE)	200	400	20	507.6	2.4	0.42
		200 g abbreviations	20 apply: CE - Ca	31 artridged Emulsio	7.2 on, BE – Bulk En	0.22 nulsion
	Typical proje	ect profiles giver e due to the prop			4.5m. For some	tunnel sectior

t – Initiating Explosive Types
Quantity per Production/ Perimeter Hole
0.125 kg (125 g per cartridged emulsion) ¹
0.08 kg/m based on density of 0.04 kg/m (40 g/m)

EIA Report Appendix 7.01

Т

Explosive Type	Quantity per Production/ Perimeter Hole
Detonator	0.001 kg (0.9 g each)

Note 1: For blast where MIC is lower than 2 kg and Bulk Emulsion cannot be used; 0.208 kg cartridged types may be used.

2.3 **Explosives Types**

2.3.1 **Proposed Explosives**

- 2.3.1.1 Two types of explosives will be used for the construction of cavern by drill and blast method. They are:
 - Initiating explosives: cartridged emulsion explosives, detonating cord and detonators; and
 - Blasting explosives: site sensitised bulk emulsion explosives.
- The cartridged emulsion and bulk emulsion contain an oxidising agent mainly composed of 2.3.1.2 ammonium nitrate, water, and a hydrocarbon such as fuel oil. The cartridged emulsion may also contain 2-3% aluminium powder (depending on the manufacturer) to increase the explosion temperature and the explosion power.
- 2.3.1.3 Cartridged emulsion will be delivered from the Explosive Magazine to the construction site by the appointed contractor using Contractor's licensed explosives carrying vehicles.
- 2.3.1.4 Bulk emulsion precursor (an oxidizing agent) will be transported to the blasting sites by the appointed third party supplier. The bulk emulsion precursor will only become classified as an explosive after being sensitised at the blast location or work face, by the addition of a gassing agent as it is pumped into the blast holes at the excavation face.
- 2.3.1.5 Detonators, cartridged emulsion and detonating cords will be used to initiate the blast at the work faces depending on the blasting requirements. The primer will comprise one cartridge of emulsion explosives, into which the detonator will be inserted. Small loops of detonating cord will be used to connect all detonators within one delay sector in the blast pattern. The detonators approved for use in Hong Kong are of the non-electric type and are initiated by shock tube.

2.3.2 **Explosives Properties**

2.3.2.1 Properties of the two types of explosives to be used in this Project are shown in Table 2.4.

> Table 2.4 Explosives Types

Туре	Function	Use	Example
Initiating explosives	To initiate the main blasting explosives	Initiation of secondary explosives	Cartridged emulsion, Detonators, Detonating cord
Blasting explosives	Used as the main blasting explosives	General blasting, shattering rock / structures	Bulk emulsion, Cartridged emulsion in closed proximity to sensitive receivers

2.3.3 **Cartridged Emulsion**

2.3.3.1 The cartridged emulsion is packaged in plastic films with the tips clipped at each end to form a cylindrical sausage, or wrapped in waxed paper. It can be used for both priming and full column applications, such as mining, quarrying and general blasting work.

Sha Tin Caver	m Sewage Treatment Works
2.3.3.2	Cartridged emulsion is classified as a UN C Category 1 explosive under the Hong Kong of 0.96, i.e. 0.96kg of TNT in 1kg of emuls
2.3.3.3	Cartridged emulsion consists of a mixture water which is typically around 14%. The or nitrate or sodium nitrate. The fuels are was is complete with small amounts of er homogeneous. It is detonator sensitive and to detonate.
2.3.4	Bulk Emulsion Precursor
2.3.4.1	Bulk emulsion has a similar composition contain aluminium. The bulk emulsion pre- sensitisation, it is not considered as an e- agent and DG Category 7 strong suppor Category 7 store and controlled by the Fir
2.3.4.2	Before sensitisation, bulk emulsion precur is no major fire hazard. The oxidising prop the major hazard of it, which can cause emulsion precursor is only possible under energy projectile impact.
2.3.4.3	Due to its stability under normal condition precursor will not be further considered in
2.3.5	Blasting Explosives
2.3.5.1	Bulk emulsion will be used as the main blas It will be manufactured on-site and require
2.3.5.2	The bulk emulsion precursor will be sension solution which contains sodium nitrate.
2.3.5.3	The gassing solution will be injected into the to 0.8-1.1 g/cc at the discharge end of bubbles that aid the propagation of the determined the sensitised emulsion can then be detored a detonator.
2.3.5.4	The bulk emulsion, once being gassed, is of 1 explosive under the Hong Kong class explosives once it is mixed should be pure
2.3.6	Detonating Devices
2.3.6.1	Detonators are small devices used to safe manner. The detonators commonly used in initiated by shock tube. Unlike normal tunn is necessary for the timely completion of will be blasted per day during construction. considered to be implemented, and electro system.
2.3.6.2	Detonators are classified as either UN 1.

Class 1.1D explosive and Dangerous Goods (DG) ng classification system. It has a TNT equivalence lsion.

e of oxidisers and fuel. It contains high quantity of oxidisers are typically ammonium nitrate, calcium axes or oils such as diesel fuel. The whole mixture emulsifiers to keep the water and oil mixture ind does not require the use of booster to cause it

n to cartridged emulsion except that it does not recursor has a density of 1.38-1.40 g/cc. Prior to explosive, and is classified as UN 5.1 oxidising orters of combustion. They are stored in a DG ire Services Department.

ursor is stable under normal conditions and there perties of bulk emulsion precursor are considered se irritation to eyes and skin. Explosion of bulk ler prolonged fire, supersonic shock or very high

ions, the storage and transport of bulk emulsion n this study.

asting explosives to excavate rock by rock blasting. es the use of initiating explosives.

nsitised at the blasting site by adding a gassing

the bulk emulsion precursor to reduce the density the loading hose. This produces nitrogen gas tonation wave, and the emulsion is said sensitised. onated with the assistance of a small booster and

classified as UN 1.5D explosive or a DG Category assification system. The bulk emulsion blasting mped into and completely fill the blast hole.

fely initiate the blasting explosives in a controlled in Hong Kong are of the non-electric type and are nnelling projects in Hong Kong, multi-face blasting this Project. It is expected that up to eight faces . Centralised Blasting System (CBS) is thus being ronic detonators will be used associated with this

Detonators are classified as either UN 1.1B, 1.4B or 1.4S, and DG Category 1 explosive under the Hong Kong classification system. Although detonators contain the most sensitive types of explosives in common use, they are packaged in a manner that no serious effects outside the package if accidentally initiated, this minimises the risk associated with handling and use of the detonators.

- Detonators are manufactured with in-built delays of various durations to facilitate effective 2.3.6.3 blasting and allow shots to be initiated at one time but to fire sequentially. The delay time of a detonator is controlled by the burning time of a pyrotechnic ignition mixture pressed into a 6.5mm diameter steel tube. This delay element causes the primary explosive to detonate. This in turn causes the secondary explosive PETN to detonate. The delay time of a detonator is based on the length of steel tube and the compaction of the pyrotechnic mixture. In designing the blasting of a blasting face, the general principle is to select the required detonators to ensure that each individual detonating blast hole is separated by a minimum of 8ms.
- 2.3.6.4 Detonating cords are thin and flexible tubes with explosive core. They detonate along its length continually and are suitable for initiating explosives that are detonator sensitive such as the cartridged emulsion. The core of the cord is a compressed powdered explosive which is usually the PETN, and it is initiated by the use of detonator.

2.4 Statutory/Licensing Requirement and Best Practice

2.4.1 Storage of Explosives

- 2.4.1.1 The explosives magazine will comply with the general requirements from the Commissioner of Mines. These general requirements are stated in the document "How to Apply for a Mode A Store Licence for Storage of Blasting Explosives". Each magazine will be a single storey detached bunded structure with dimensions as specified on Mines and Quarries Division Drawing MQ1630 "Typical Details of Explosives Magazine - Plan A". The magazine buildings will each be fenced and secured, and surfaced road access for 11 tonne trucks will be provided for delivery of explosives.
- 2.4.1.2 The general requirements for the approval of an explosives magazine are listed as follows in accordance with "Guidance Note on How to Apply for a Mode A Store Licence for Storage of Blasting Explosives" by Mine's Division of CEDD:
 - The maximum storage quantity should normally not exceed 1000kg;
 - Regarding the suitability of the proposed magazine location, the safety distance requirements as stated in the Explosives Regulations 2014, United Kingdom will be referenced;
 - The proposed magazine should be located on plan at least 45m and 75m from any high tension power cables carrying 440V and 1KV respectively;
 - The security aspects of the Mode A store location and the security company should be approved by the Commissioner of Police; and
 - · Other materials likely to cause fire or explosion should not be transported in the explosives carrying vehicles, and only the persons assigned to assist in handling explosives should be permitted on an explosives carrying vehicle. Driver and all workers engaged in the loading, unloading and conveying of explosives should be trained in firefighting and precautions for the prevention of accident by fire or explosion.
- 2.4.1.3 The general requirements for the construction of an explosives Mode A store magazine are listed as follows:
 - The store should be a single storeved detached structure with lightning protection and outer steel store doors:

- All hinges and locks should be made of non-ferrous metal;

- of the Mode A store;
- intrusion;
- a drainage system should be constructed;
- Licence for Storage of Blasting Explosives";
- be installed to protect this guardhouse;
- fitted with a lock is required;
- should normally be provided for the store; and
- be provided at the nearest convenient locations to the Mode A door.
- 2.4.2 Transport of Explosives Supply of Detonators and Cartridged Emulsion Explosives
- 2.4.2.1 required.

No ferrous metal should be left exposed in the interior of the Mode A store;

The interior and exterior walls of the Mode A store should be printed white;

The outer side of the steel door of the Mode A store should be painted red. The words "DANGEROUS – EXPLOSIVES" and "危險 – 爆炸品" should be written in white on the outside of the door. The letters and characters should be at least 100mm high. No ferrous metal shall be exposed on the inner face of the door forming part of an interior

A security fence surrounding the Mode A store should be installed and set back at least 6m from the store. The fence should be 2.5m high, stoutly constructed of chain link fencing with a mesh size not exceeding 50mm. the fence should be firmly fixed to metal or concrete posts and topped with a 0.7m high outward overhang of razor wire. The base of the fence located between the posts should be secured with pegs to prevent

The area between the security fence and the Mode A store should be cleared of all vegetation. Vegetation clearance should also apply to a minimum distance of 1m on the exterior of the fence. A uniform cross-fall of at least 1 in 100 away from the store to

The road leading to the Mode A store should have a concrete surface and it should be constructed and maintained so that 11 tonne trucks can use it under all weather conditions. A suitable turning circle or other alternative means for these trucks to turn should be provided so that the trucks can be driven up to the gate of the security fence;

The gate in the security fence should be fitted with a lock of close shackle design with a key-intention feature. A warning signboard with prohibited articles and substances painted in red and black, shown in symbols and in Chinese and English characters should be posted at the gate. Each symbol should be at least 100mm in diameter. A typical warning signboard is available in Annex 4 of "How to Apply for a Mode A Store

A guardhouse should be provided. For surface Mode A store, security guards should be on duty outside the inner security fence adjacent to the fate when there is no receipt or issue of explosives inside the Mode A store. A separate outer security fence should

Inside the guardhouse, an arms locker constructed as an integral part of the house and

A telephone should be provided for use by the guard in the guardhouse. A watchdog

Fire-fighting installations consisting of at least four 6 litre foam and one 4.5kg dry powder fire extinguishers to be positioned on two racks and four buckets of sand should

Detonators are imported into Hong Kong and stored at the Mines Division Kau Shat Wan (KSW) explosives depot. Users will place orders from Mines Division for delivery to their on-site explosives magazine or to their blasting sites as appropriate on a daily basis as

Application for Removal of Explosives

2.4.2.2 A Removal Permit is required for any person to move explosives in and out of the explosives stores under Regulation 4 of the Dangerous Goods (General) Regulations.

Application for Approval of an Explosives Delivery Vehicle

- 2.4.2.3 The explosives trucks should comply with the safety requirements set in the "Guidance Note on Requirements for Approval of an Explosives Delivery Vehicle" issued by the Mines Division.
- The minimum safety requirements are listed as follows: 2.4.2.4

Condition of Vehicle

- The vehicle should be powered by a diesel engine;
- The vehicle's design, construction and strength must comply with the Road Traffic (Construction and Maintenance of Vehicles) Regulations, Chapter 374; and
- The vehicle should be kept clean, in sound mechanical condition and roadworthy.

Condition of Cargo Compartment

- The cargo compartment including the roof should be constructed with sheet metal at least 3mm thick and lined internally with at least 13mm thick plywood, and there should be no exposed ferrous metal in the interior of the goods compartment;
- The interior of the cargo compartment including doors should be kept in good condition and free from defects or projections which might cause accidental damage to the packages;
- Electric wiring or electrical devices should not be installed inside the cargo compartment;
- The door of the cargo compartment should be capable of being locked; and
- Proper stowage facilities should be provided to secure the load in a stable manner during transportation.

Safety Provisions

- The driver's cabin should be separated by a distance of not less than 150mm from the cargo compartment of the vehicle;
- The exhaust system must be located as far from the cargo compartment as possible, preferably at the front of the vehicle;
- An emergency fuel cut-off device should be located at an easily accessible position with a label, in Chinese and English, prominently and legibly stating: "EMERGENCY ENGINE STOP 緊急死火掣";
- For a typical vehicle with gross vehicle weight of 9 tonnes or above, four fire extinguishers, comprising two 2.5kg dry powder and two 9-litre foam fire extinguishers of an approved type, with certificates, shall be provided. They shall be mounted in front and on both sides of the rear body in easily accessible positions with securely mounted brackets and quick release clamps;

- shrouded in fire resisting conduits;
- on any part of the vehicle;
- compartment;
- Requirements for Approval of an Explosives Delivery Vehicle".; and

Display on Vehicle

- 300mm;
- is empty; and
- compartment.

2.4.3 Use of Explosives

- 2.4.3.1
- 2.4.3.2 Dangerous Goods Licence" from the Fire Services Department.
- 2.4.3.3 blasting.

 All electrical installations shall be designed, constructed and protected so that they cannot cause any ignition or short-circuit under normal conditions of use of the vehicle or its electrical installations, and to ensure that the risk of this occurring will be minimized in the event of a traffic accident. All electrical wiring and fittings shall be

The fuel tank shall be located below the cargo compartment of the vehicle. It shall be protected from accidental damage and designed to prevent accumulation of spilt fuel

Fire resistant material shall be fitted between the wheel arches and the cargo

Detonators and other types of blasting explosives shall not be loaded or transported within the same cargo compartment of the vehicle, unless the cargo compartment fulfils the additional requirements as specified in Annex B of "Guidance Note on

A hand-held lightning detector shall be provided in the vehicle for detection of lightning before and during loading and unloading of explosives. Should lightning be detected within a distance of 16 km from the loading/unloading point by the hand-held detector, loading or unloading of explosives shall cease until the lightning signal has cleared.

• Whenever the vehicle is carrying explosives, it shall display: (i) on both sides and on the rear door of the cargo compartment, placards (of minimum dimensions 250mm x 250mm) showing the label of the highest Hazard Code of explosives, and (ii) a rectangular red flag, in a prominent position, of dimensions not less than 230mm x

Placards showing "EMPTY 空車" or blank placards shall be displayed when the vehicle

 The vehicle should be printed in white with warning words in the Chinese and English of at least 150mm height. The word "DANGER - EXPLOSIVES" and "危險 - 爆炸品" should be printed in red colour and displayed on both sides and rear face of the goods

Bulk emulsions are manufactured at the blast sites and use immediately for rock blasting. A licence is required to manufacture a nitrate mixture outside a factory as DG Category 1 under Regulation 31A of the Dangerous Goods (General) Regulations Cap. 295B.

For the manufacturing of bulk emulsion at blast sites, ammonium nitrate (AN), which is classified as DG Category 7 - Strong Supporters of Combustion under Regulation 3 of the Dangerous Goods (Application and Exemption) Regulations Cap. 295A, is used. A licence for the storage of DG Category 7 is required according to "A Guide to Application for

For the use of explosives, a blasting permit is required from the Mines Division so that the use of explosives at a work site for the carrying out of blasting is allowed; and a Mine Blasting Certification is required so that the shotfirer is permitted to use explosives in

2.5 **Design and Location of the Explosives Magazine**

2.5.1.1 The site is located in area of low population density. A configuration that comprises 3 magazine structures storing maximum 500kg of explosives each will be adopted. A preliminary magazine design plan is shown in Figure 2.1. Location of the magazine and the transport route of explosives from the magazine to project site are shown in Figure 2.2.

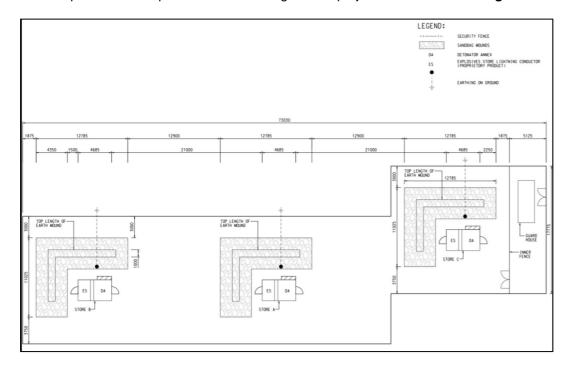


Figure 2.1 General Magazine Site Layout

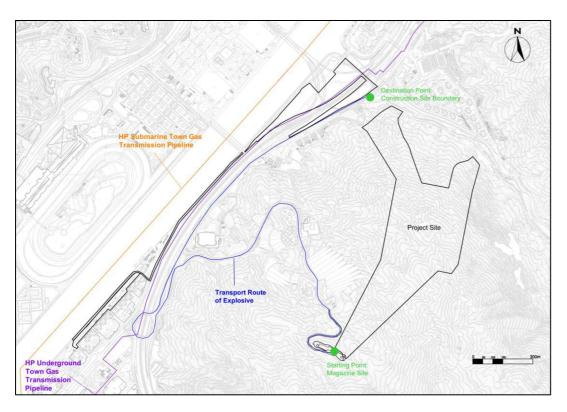


Figure 2.2 Location of Explosive Magazine, HP Pipeline and Transport Route of Explosive

Sha	Tin	Cavern	Sewage	Treatment	Works
-----	-----	--------	--------	-----------	-------

Sha Tin Ca	vern Sewage Treatment Works		Appendix 7.01
2.6	Construction Cycle and P	rogramme	
2.6.1	Construction Cycle		
2.6.1.1	After commissioning of the consist of the following elem		livery-storage-blasting cycle will
	 Weekdays and Saturda magazine by Mines Div 		losives and initiating systems to
	Storage in the magazine	e stores;	
		osive stores to the delivery p e transport route is shown in F	points of the construction areas
	Transfer to the working	faces of the excavation; and	
	common firing point onc		cular area will be initiated from a entry routes to each blast site are eekdays and Saturdays.
2.6.2	Explosives Transport Req	uirements	
	Base Case for the Hazard t	o Life Assessment	
2.6.2.1	estimated to be 540kg in to day (e.g. cartridge explosiv	tal per day. Delivery frequency	I, consumption of explosives is y for explosives will be 3 times a maximum loading of 200kg per sives carrying vehicles.
2.6.2.2	annual number of explosiv	es delivery is thus estimated	out 25 days per month, and the to be 900. The corresponding period is shown in Table 2.5 .
	Table 2.5 Explosive Deliver	ries for every 12 month period du	
		Total Explosive Delivery T period	rips within the 12 month
	12 month delivery period	Main Access Tunnel Portal (via A Kung Kok Shan Road and A Kung Kok Street)	Ventilation Shaft (via access road uphill by hand delivery)
	Apr 2019 - Mar 2020	651	20
	Apr 2020 - Mar 2021	730	448
	Apr 2021 - Mar 2022	900	0
	Apr 2022 - Mar 2023	240	0

Worst Case for the Hazard to Life Assessment

2.6.2.3 in the worst case based on previous similar project experience.

EIA Report

Appendix 7.01

There is a possibility that the actual construction programme may differ from the envisaged construction programme due to construction uncertainties or contractors' method of working. In such case, more delivery trips and return trips may be resulted. Typically, a 20% increase in the number of deliveries compared to the base case scenario may result

2.7 Transport of Explosives and Initiation Systems

2.7.1 Explosives Transport Strategy

- 2.7.1.1 Explosives will be transferred from the magazine to the cavern construction site by the contractor. Two licensed explosive trucks will be required for each delivery. One of them will only transport detonators while the other will transport a cargo of cartridged emulsion and detonating cord.
- 2.7.1.2 No more than one truck convoy loaded with explosives (made up of vehicle carrying the detonators and the vehicle carrying the cartridged emulsion and detonating cord) is generally expected within the magazine complex at any one time. The explosives carrying vehicles will also maintain separation headway of about 10 minutes.

2.7.2 Explosive Delivery Route

- 2.7.2.1 The explosives will be delivered from the magazine, via the access road to A Kung Kok Shan Road, A Kung Kok Shan Road and A Kung Kok Street to the construction site boundary as shown in **Figure 2.2**. The total length of transport route is around 4km.
- 2.7.2.2 There will only be one delivery point from magazine to construction site. For the blasting of ventilation shaft, explosives will be hand delivered to blasting site due to the relatively short distance away from magazine site. This section of hand delivery is carried out within the construction site of ventilation shaft and hence considered as part of Use of Explosives. The assessment is presented in **Appendix 7.02 Use of Explosives**.

2.8 Concurrent Projects during Construction Phase

2.8.1.1 Apart from during construction phase, explosives are not expected to be used, stored or transported, particularly during operation and decommissioning. However, as no other concurrent, planned or committed projects leading to any other hazardous events have been identified at the present stage, it is then reasonable to conclude there will be no potential cumulative impacts expected to arise during the Project cycle.

3

3.1

3.1.1.1

3.1.1.2

Study Approach

6 main tasks:

projects.

scenarios.

and use of explosives.

principle used in the HKRG.

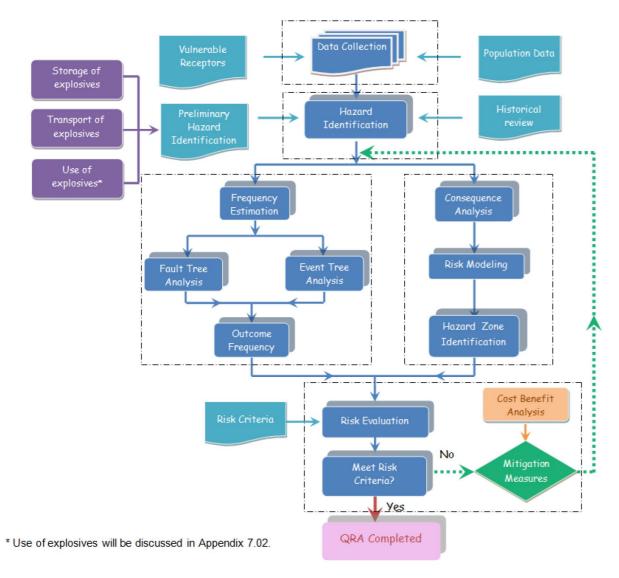
HAZARD TO LIFE ASSESSMENT METHODOLOGY

In dealing with the risk issues concerning on-site overnight storage of explosives, the "Avoid – Minimize – Mitigate" approach will be adopted. Quantitative Risk Assessment (QRA) is required as part of mitigation measures when avoidance and minimization are not possible. From risk perspectives, the choice of alternative options for cavern formation will aim at avoiding/ minimizing the use of explosives if its use and storage cannot be avoided.

The elements of the QRA are shown schematically in Figure 3.1. It consists of the following

(a) **Data / Information Collection and Update:** Collect relevant data / information which is necessary for the hazard assessment.

(b) Hazard Identification: Identify hazardous scenarios associated with storage, transport


(c) **Frequency Estimation:** Estimate the frequencies of each hazardous event leading to fatalities with full justification by reviewing historical accident data and previous similar

(d) Consequence Analysis: Analyse the consequences of the identified hazardous

(e) **Risk Integration and Evaluation:** Evaluate the risks associated with the identified hazardous scenarios. The evaluated risks will be compared with the HKRG to determine their acceptability. Where necessary, risk mitigation measures will be identified and assessed to comply with the "as low as reasonable practicable (ALARP)

(f) **Identification of Mitigation Measures:** Review the recommended risk mitigation measures from previous studies, practicable and cost-effective risk mitigation measures will be identified and assessed as necessary. Risk outcomes of the mitigated case will then be reassessed to determine the level of risk reduction.

EIA Report

Schematic Diagram of QRA Process Figure 3.1

3.2 Domino Effects of High Pressure (HP) Town Gas Transmission Pipelines

- 3.2.1.1 The Hong Kong and China Gas Company (HKCG) operates the town gas network to supply gas for domestic and industrial uses. Town gas is a mixture of hydrogen, methane and carbon dioxide. It is produced at the Tai Po Gas Production Plant and supplied through a network of high pressure (HP) underground town gas transmission pipelines (operating at 35 bar) to various districts of Hong Kong.
- 3.2.1.2 The HP underground town gas transmission pipelines to Sha Tin originates at the Tai Po Gas Production Plant, runs subsea along Tolo Harbour and Shing Mun River to the offtake and pigging station in City One, Sha Tin. The HP underground town gas transmission pipeline continues towards Ma On Shan along Tate's Cairn Highway and Sai Sha Road, and arrives the downstream Sai O pigging station. According to the information provided by the Hong Kong and China Gas Company (HKCG), the length of HP underground town gas transmission pipeline between the 2 pigging stations is approximately 7.8km, of which 1.9km lies in the vicinity of the proposed transport route of explosives between A Kung Kok Shan Road and the Project Site.
- 3.2.1.3 Along this section, there is also one HP submarine town gas transmission pipeline running along Shing Mun River more than 150m away from the transport route of explosives as well as the Project Site. With reference to the approved East Rail Extensions - Tai Wai to Ma On Shan EIA Report, the individual risk of 1E-09 per year is well confined within 150m from

the HP underground town gas transmission pipeline. The technical specifications of the HP submarine town gas transmission pipelines provided by HKCG including the most critical parameter, i.e. operating pressure, shows that it is similar to those of the HP underground town gas transmission pipeline, and also the submarine gas pipelines are at least 2m beneath the seabed. It is thus considered that the hazard distance from the submarine gas pipelines would not be greater than that of the underground one. Therefore, with the separation distance of more than 150m between the HP submarine town gas transmission pipelines and the explosives transport route / the Project Site, they are not further considered in this study. Figure 2.2 shows the locations of the HP pipelines.

- 3.2.1.4 of the transport of explosives.
- 3.2.1.5 secondary and/or tertiary hazards as discussed in Section 7.

The transport route of explosives is in close vicinity of a section of the HP underground town gas transmission pipelines from the Sha Tin Hospital to Mui Tsz Lam Road. Separation distance between the transport route of explosives and the pipelines is around 50m. Thermal outcomes from town gas release may trigger failure of explosives when the explosives carrying vehicles hit the point of pipelines failure. This HA assesses the domino effects of the failure of HP underground town gas transmission pipelines affecting the failure

For the HP underground town gas transmission pipelines, major hazards arising from failure of explosives during storage, transport and use are the pipelines failure due to ground vibration and the subsequent release consequences. These are treated as

ESTIMATION OF POPULATION 4

4.1 Population near the Explosives Magazine

- Figure 4.1 shows the location of the proposed explosive magazine on a hill. It is remote 4.1.1.1 from buildings and inhabited areas. There are no known buildings or any structures in the hazard zone of the explosive magazine. The nearest building is Manor Harmony, which is located over 200m away from the explosive magazine.
- 4.1.1.2 The public section of the access road is more than 180m from the magazine and is therefore excluded in the modelling.

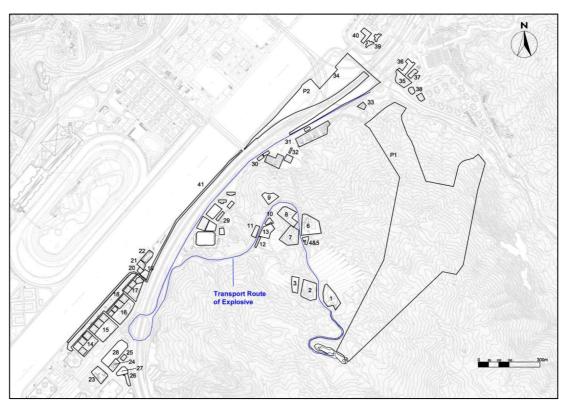


Figure 4.1 Aerial Photo of the Magazine Site

4.2 Population along Explosives Delivery Route

- 4.2.1 General
- 4.2.1.1 Four types of population are considered:
 - Building population;
 - Road population;
 - Train Population; and
 - Pedestrian population on footpaths and pavements next to the delivery route. •
- 4.2.1.2 Considering that the maximum licensing limit of 200kg for the transport of explosives, all buildings within a 100m corridor each side of the transport route are included in the

Detailed population data can be found in **Annex 2** of this Appendix.

Population ID	Description
1	The Neighbourhood Advice-Action Council Manor Harmony
2	Shing Mun Springs
}	Hang Fook Camp
4	Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village)
5	Open Car Park (near Breakthrough Youth Village)
6	Breakthrough Youth Village
7	Richard Butler Chalets
3	Cheshire Home Shatin
9	A Kung Kok Fresh Water Service Reservoir
10	Open Car Park (near Bradbury Hospice)
11	Bradbury Hospice
12	Pump House (on A Kung Kok Shan Road)
13	Jockey Club Home for Hospice
15	Pictorial Garden (Stage 1)
15a	Abbey Court
15b	Belleve Court
15c	Capilano Court
15d	Car park under podium

assessment. Figure 4.2 and Table 4.1 show all population groups included in this study.

Figure 4.2 Population Groups

15e Podium 16 Pictorial Garden (Stage 2) 16a Delite Court	
16a Delite Court	
16a Delite Court	
16h Elegent Court	
16b Elegant Court	
16c Forum Court	
16d Galaxy Court	
16e Car park under podium	
16f Podium	
17 Pictorial Garden (Stage 3)	
17a Hillview Court	
17b Iris Court	
17c Juniper Court	
17d Car park under podium	
17e Podium	
18 On King Street Park	
19 Open Car Park (near Jockey Club Shek Mun Rowing Cer	ntre)
20 Jockey Club Shek Mun Rowing Centre	
21 Hong Kong China Dragon Boat Association Shatin Shek Training Centre	Mun
22 Hong Kong Canoe Union Shatin Training Centre	
23 Site Offices (DSD / LandsD)	
24 Petrol Station	
25 Shek Mun Fresh Water Booster Pumping Station	
28 Open Car Park (near Pumping House on On Ping Street)	
29 Shatin Hospital	
29a Shatin Hospital	
29b Open Car Park	
29c Transport Terminus	
29d Football Field	
29e Basketball Court	
29f Jockey Club Centre for Positive Ageing	
29g A Kung Kok Government Quarters Block B	
29h A Kung Kok Government Quarters Block C	
29i Tennis Court	
30 A Kung Kok Sewage Pumping Station	
31 Ah Kung Kok Fishermen's Village	
31a Ah Kung Kok Fishermen's Village (a)	
31b Ah Kung Kok Fishermen's Village (b)	
31c Basketball Court	
31d Football Field	
31e A Kung Kok Sitting-out Area	
32 Hong Kong Mountaineering Union	

Population ID		Description
33		utheran Church of Hong Kong Shatin Youth Centre Camp and Training Centre
34	Custom and I Centre (will b	Excise Department Shatin Vehicle Detention e relocated)
35	A Kung Kok S	Street Garden
36	Ma On Shan	Tsung Tsin Secondary School
37	Kowloon City	Baptist Church Hay Nien Primary School
38	Chevalier Ga	rden
38a	Chevalier G	Garden Block 6
38b	Chevalier G	Garden Block 5
41	Shing Mun R	iver Promenade
P1	Proposed Pro	oject Site
P2	Proposed Pro	pject Site Office and works area
I buildings wir ttended only uilding along t able 4.2 belo	part into the co he transport ro w presents da	study corridor (both sides of transport route), including midor, are included in the assessment. Populations in ute are analysed individually. ta sources that are considered and adopted in this re
I buildings with tended only uilding along t able 4.2 belo oreover, the formation and	thin the 200m s part into the co he transport ro w presents da data sources l/or to serve as	study corridor (both sides of transport route), including prridor, are included in the assessment. Populations in ute are analysed individually. ta sources that are considered and adopted in this re are supplemented with site surveys to fill out unava cross-reference where necessary.
I buildings with tended only with tended only wilding along the tender of the tender of the tender of the tender of tender of the tender of tender	thin the 200m s part into the co he transport ro w presents da data sources l/or to serve as	study corridor (both sides of transport route), including midor, are included in the assessment. Populations in ute are analysed individually. ta sources that are considered and adopted in this mare are supplemented with site surveys to fill out unava
I buildings wit tended only uilding along t able 4.2 belo oreover, the formation and able 4.2 Lar Sou	thin the 200m s part into the co he transport ro w presents da data sources l/or to serve as	study corridor (both sides of transport route), including prridor, are included in the assessment. Populations in ute are analysed individually. ta sources that are considered and adopted in this mare supplemented with site surveys to fill out unava cross-reference where necessary.
l buildings wit ttended only uilding along t able 4.2 belo oreover, the formation and <u>able 4.2 Lar</u> Sou Census at Depa	thin the 200m s part into the co he transport ro w presents da data sources l/or to serve as ad and Building F rces	study corridor (both sides of transport route), including prridor, are included in the assessment. Populations in ute are analysed individually. ta sources that are considered and adopted in this re are supplemented with site surveys to fill out unava cross-reference where necessary. Population Data Sources Details Domestic Household Size and Population; Characteristics for Shatin and Ma On Shan Districts relevant Tertiary Planning Units (TPU);
I buildings wit tended only uilding along t able 4.2 belo oreover, the formation and able 4.2 Lar Sou Census au Depa Planning I	thin the 200m s part into the co he transport ro w presents da data sources l/or to serve as ad and Building F rces	study corridor (both sides of transport route), including prridor, are included in the assessment. Populations in ute are analysed individually. ta sources that are considered and adopted in this re- are supplemented with site surveys to fill out unava cross-reference where necessary. Population Data Sources Details Domestic Household Size and Population; Characteristics for Shatin and Ma On Shan Districts relevant Tertiary Planning Units (TPU); 2011 Population Census Data published in the websit Projections of Population Distribution for the pro- construction year using enhanced 2011-based TPED
l buildings wit ttended only uilding along t able 4.2 belo oreover, the formation and able 4.2 Lan Sou Census an Depa Planning I Educatio	thin the 200m so part into the co he transport ro w presents da data sources l/or to serve as ad and Building F rces nd Statistic rtment	study corridor (both sides of transport route), including prridor, are included in the assessment. Populations in ute are analysed individually. ta sources that are considered and adopted in this mare supplemented with site surveys to fill out unava cross-reference where necessary. Population Data Sources Details Domestic Household Size and Population; Characteristics for Shatin and Ma On Shan Districts relevant Tertiary Planning Units (TPU); 2011 Population Census Data published in the websit Projections of Population Distribution for the pri construction year using enhanced 2011-based TPED Future land use and planned developments
l buildings wit ttended only uilding along t able 4.2 belo oreover, the formation and able 4.2 Lar Sou Census an Depa Planning I Educatio Cent	thin the 200m so part into the co he transport ro w presents da data sources l/or to serve as ad and Building F rces nd Statistic rtment Department n Bureau	study corridor (both sides of transport route), including prridor, are included in the assessment. Populations in ute are analysed individually. ta sources that are considered and adopted in this re- are supplemented with site surveys to fill out unava cross-reference where necessary. Population Data Sources Details Domestic Household Size and Population; Characteristics for Shatin and Ma On Shan Districts relevant Tertiary Planning Units (TPU); 2011 Population Census Data published in the websit Projections of Population Distribution for the pu construction year using enhanced 2011-based TPED Future land use and planned developments School Information lists by District

4.2.2.3 4.2.2.4

EIA Report

Appendix 7.01

4.2.2

4.2.2.1

4.2.2.2

Population in private residential developments are generated based on the number of households in each building and the average household size defined by different Tertiary Planning Units (TPU) as adopted in census and planning data. Centamap is a source to obtain building information including number of storeys and number of units per floor. It is considered that data shown in the website is reasonably reliable and accurate.

GeoInfo Map is a web-based application showing common facilities with the latest street map. The service is provided by Lands Department. Although GeoInfo Map does not contain building information in details, it is considered that information on its website is updated more frequent than Centamap. It is appropriate data source for cross checking.

Sha Tin Ca	vern Sewage Treatment Works	EIA Report Appendix 7.01	Sha Tin Ca	vern Sewage Treatment Work	rks Aj	EIA Report opendix 7.01
4.2.2.5	Regarding the population in community and health ca collected from the individual website and verified by sit			Population density (persons/m ²)		le
4.2.2.6	Moreover, the latest Outline Zoning Plan (OZP) in the to assess any potential population in the project constr			Traffic Jam Condition	Venicie speca x road width	
4.2.2.7	Adjustment of Building Population The maximum hazard zone for 1% fatality level for	the detonation of explosives in an	4.2.3.7	initiation occurs on t to lead to a vehicle	e, it is possible that the traffic flow might be disrupted when an the explosives carrying vehicles. If a traffic accident is seve e fire, a traffic jam could be developed before the fire sprea	re enough ads to the
	explosives carrying vehicle will be determined in th maximum hazard zone will be used to determine the nu be affected and an adjustment factor to be assigned t buildings in the risk analysis.	e consequence assessment. This umber of floors of a building that will			sing initiation. Population of traffic in a traffic jam is estimated road, number of traffic lanes, length of vehicle, vehicle lifferent vehicles.	
4.2.2.8	Centamap is one of the publicly available sources to c	obtain building information including	4.2.3.8		occupied by different vehicle types would be based on thos dies [1][2][3], as follows:	se used in
	number of storeys and number of units per floor. It is co is reasonably reliable and accurate. Building height of	onsidered data shown in the website data is also available from the GIS		• Private cars, tax	xis and motorcycles – 5m	
	database for most buildings, the number of floors for from the Centamap will be estimated from the GIS da 3m. When neither of the above information is ava	ata assuming floor-to-floor height of		Public light buse	es – 10m	
	supplemented by site surveys.			Goods vehicles	s – 20m	
4.2.3	Road Population			• Buses – 20m		
4.2.3.1	Traffic population considered in this report covers pop A Kung Kok Street, Tate's Cairn Highway, Ma On Shar		4.2.3.9		or each vehicle type and vehicle mix are taken from the latest a e 4.3) are selected to represent the transport route from the site.	
4.2.3.2	It is considered that the road population being affected on the explosion scenarios. A spontaneous explosion	due to vehicle collision or transport		Table 4.3 Core Sta	ations Considered	
	of unsafe explosives would impact free flowing traffic. be jammed and an explosion initiated following a vel			Core Station	Description	
	traffic. In low traffic conditions such as non-peak hou	rs, road users may use alternative		5022	Tate's Cairn Tunnel (from Toll Plaza to South Portal)	
	lanes or reverse when there is a vehicle fire, it is thus a to develop into jammed traffic for such fire scenarios is			5024	Lion Rock Tunnel (from Toll Plaza to South Portal)	
				5037	Eagle's Nest Tunnel (from Toll Plaza to South Portal)	
4.2.3.3	The traffic density information is based on the latest An Based District Traffic Model (BDTM) developed by supplemented by site surveys where necessary. The	y the Transport Department, and		5013	Tolo Highway (from North of Ma Liu Shiu Interchange to Road Interchange)	Yuen Shin
	vehicles is modelled as 100% indoor.		4.2.4	Train Population		
	Flowing Traffic Condition		4.2.4.1	The Ma On Shan I in	ine runs along the Tate's Cairn Highway and Ma On Shan Ro	ad, and is
4.2.3.4	The Annual Average Daily Traffic (AADT) data is extra	acted from the latest ATC and used		in close proximity of	of the transport route of explosives. The maximum carrying c	apacity of
	to estimate normal traffic flows at non-peak hours,				s currently 30,500 people per hour per direction with the use train [11]. With the commissioning of the section between Ta	
	occupancy will also be obtained from the same data normal traffic flow condition is calculated by the following			Hung Hom stations Line will be increase	s of SCL in 2018, the number of train compartments of Man ed to 8 [11]. It is assumed that the maximum carrying capacit	On Shan
		of person per vehicle		calculated by the foll	,000 per hour per direction. The maximum train population illowing equation:	density is
	(persons/m ²) = 24 x Vehicle	speed x Road width				
4.2.3.5	An annual growth rate of 1% is assumed to proje	ct the current data to the project		Population density	•	
r.2.0.0	construction year.			(persons/m)	= Train speed	
4.2.3.6	The BDTM data is used to estimate traffic flows at peak mix during peak hour at respective assessment years i		4.2.4.2		nsity is calculated to be 1.5 persons/m, assuming that th verage speed of 80km/hr.	ne train is

4.2. mix during peak hour at respective assessment years is also obtained from the same data source. The vehicle occupancy used for calculating the road population during normal traffic flow condition is adopted for the calculation of road population during peak flowing traffic condition. The road population during peak traffic flow condition is calculated by the following equation:

4.2.5 **Pedestrian Population**

Pedestrian flow on pavement along the explosives delivery route is assessed by site survey. 4.2.5.1 The pedestrian density is estimated by the following equation:

Pedestrian density	Number of pedestrians passing a given point
(persons/m ²) =	Pedestrian speed x Pavement width

4.2.5.2 Roads to be covered in the assessment are A Kung Kok Shan Road, A Kung Kok Street and Mui Tsz Lam Road.

4.3 Time Periods and Occupancy

To be consistent with previous similar studies [1][2][3], 3 day categories (Weekdays, 4.3.1.1 Saturdays and Sundays) with 4 time periods (AM Peak, Daytime, PM Peak and Night) for population have been considered in this study. The time periods are summarised in Table 4.4.

> Table 4.4 Population Time Periods

Day Category	Time Period	Description
Weekdays	AM Peak	7:00am to 9:00am
	Daytime	9:00am to 6:00pm
	PM Peak	6:00pm to 8:00pm
	Night	8:00pm to 7:00am
Saturdays	AM Peak	7:00am to 9:00am
	Daytime	9:00am to 6:00pm
	PM Peak	6:00pm to 8:00pm
	Night	8:00pm to 7:00am
Sundays	AM Peak	7:00am to 9:00am
	Daytime	9:00am to 6:00pm
	PM Peak	6:00pm to 8:00pm
	Night	8:00pm to 7:00am

The 12 time periods are further grouped into 6 time modes for risk assessment and are 4.3.1.2 summarised into Table 4.5.

> Definitions of Time Modes Table 4.5

Time Mode	Definition	Proportion of Time
Night	All days 8:00pm to 7:00am	0.4583
AM Peak	All days 7:00am to 9:00am	0.0833
PM Peak	All days 6:00pm to 8:00pm	0.0833
Weekday Daytime	Weekdays 9:00am to 6:00pm	0.2679
Saturday Daytime	Saturdays 9:00am to 6:00pm	0.0536
Sunday Daytime	Sundays 9:00am to 6:00pm	0.0536

4.3.1.3 Occupancy of populations during each time mode is based on assumptions as listed in Table 4.6. For building populations, the distribution across time modes are referred to previous similar studies [1][2][3]. For road, train and pedestrian populations, distribution

Sha Tin Cavern Sewage Treatment Works

surveys.

Day Category			00	cupancy		
	Night (Weekdays / Saturdays / Sundays)	AM Peak (Weekdays / Saturdays / Sundays)	PM Peak (Weekdays / Saturdays / Sundays)	Weekday Daytime	Saturday Daytime	Sunday Daytime
Residential Building	100%	50%	50%	20%	50%	80%
Hospital	80%	80%	80%	100%	90%	80%
Leisure	0%	10%	10%	70%	85%	100%
MTR / bus terminus	10%	100%	100%	70%	60%	50%
Car Park / Podium - residential	10%	100%	100%	70%	70%	70%

4.4 Features Considered in this Study

4.4.1.1 A number of manmade slopes have been identified in the vicinity of the A Kung Kok Shan magazine site as shown in Table 4.7. These features are considered in this assessment.

Table 4.7	Slope Id	lentified				
Slopes	Slope height (m)	Slope length (m)	Slope angle (m)	Slope Material	Distance from Explosives Stores (m)	Population
7 SE-A/F 140	15	23	35	Soil & Rock	130	Adjacent to A Kung Kok Shan Road
7 SE-A/C 274	7.1	15	50	Soil & Rock	130	Adjacent to A Kung Kok Shan Road
7 SE-A/F 44	15	40	31	Soil	170	Adjacent to A Kung Kok Shan Road
7 SE-A/C 272	38	155	50	Soil & Rock	130	Adjacent to The Neighbourhood Advice-Action Council Harmony Manor
7 SE-A/C 141	5	27	40	Soil	210	Adjacent to Shing Mun Springs

EIA Report

Appendix 7.01

across time modes are based on data provided in Annual Traffic Census, BDTM and site

					EIA Repor					
	vern Sewage Treatment Works				Appendix 7.01					
5	HAZARD IDENTIFICATION									
5.1	Overview									
5.1.1.1	Hazard identification consists of a review of the following:									
	Properties of the e	explosives;								
	Scenarios present	ted in previou	us similar studies;							
	Historic accidents	; and								
	Discussion with bl	asting specia	alists							
5.2	Accidental Initiation	due to Haza	rd Properties of E	xplosives						
5.2.1	Explosives Types an	d their Prop	oerties							
5.2.1.1	The types and prope shown in Table 5.1 be		osives to be stored	and transported in th	is project are					
	Table 5.1 Types and		of Explosives	1	1					
	Explosives Type	TNT Equivalent	Melting Point at 1atm	Auto-ignition Point @ 1atm	UN Hazard Division					
	Cartridged Emulsion	0.96	170	230-265	1.1D					
	PETN (for detonating cords)	1.4	135-145	190	1.1D					
	PETN (for detonators)	1.4	120	190	1.4B / 1.4S					
5.2.1.2	can result in a vigor detonation. It is noted mechanism is still und between deflagration front while detonation	ous burning that a deflage er research. and detonat produces a s and hence	without progression ration may transit to Fravelling speed of to ion, whereas defla supersonic one. Ho should be consider	nermic reaction. Explose on to explode, a defla a detonation and the or the flame front is the ma gration produces a su owever, either kind of e ed in the Hazard Asse	agration or a corresponding ajor difference ubsonic flame explosion can ssment.					

- 5.2.1.2
- 5.2.1.3 to be under extreme heat, shock, impact or vibration with sufficient intensity to trigger a detonation. The most common scenario of accidental initiation is basically the cause of fire. Other scenarios of accidental initiation include severe impact and friction.
- 5.2.1.4 In general, an event with casualty concerns should be at least a deflagration. To induce a deflagration, the explosives should be, at least but not only, exposed to the following stimulus:
 - Local stimulus: to generate a 'hot spot' like sparks, friction, impact, static electricity, etc;
 - Shock stimulus: shock or high velocity impact such as bullet impact, detonation of other explosives, etc; or
 - Thermal stimulus: intense heat or fire. It can be assumed that there can be no significant event until the medium becomes molten. In the case of the emulsion, there can be no significant event until much of the water has lost.

However, not all of these causes are necessarily leading to a deflagration or detonation for the types of explosives used in this project.

Accidental initiation of explosives has been categorized as either fire or non-fire induced in

Hazard Properties of Emulsion Type Explosives

Sha Tin Cavern Sewage Treatment Works

this study.

to the presence of sensitizer.

the following sections.

composition.

pressure.

5.2.1.5

5.2.1.6

5.2.2

5.2.2.1

5.2.2.2

5.2.2.3

5.2.2.4

5.2.2.5

5.2.2.6

5.2.3

5.2.3.1

5.2.3.2

5.2.3.3

5.2.3.4

Typical emulsion explosives contain more than 78% Ammonium Nitrate (AN), which is considered as a powerful oxidizing agent. Friction or impact found in normal handling would not trigger initiation of emulsion based explosives. However, heat and confinement or severe shock (e.g. from other explosion) can cause explosion of them. The sensitivity of AN based explosives to deflagration or detonation is proportional to temperatures.

There are two broad categories of emulsions:

Packaged emulsion (sensitized); and

Bulk emulsion precursor (void-free liquid).

Cartridged emulsions are sensitized before transportation in ordered to fulfill their intended function. They are sensitized by either adding gassing solution or plastic microspheres at the point of manufacture. Bulk emulsions are sensitized at the point of use on sites. The difference of chemical properties for these two categories of emulsion is hence mainly due

Matrix or bulk emulsion (no voids) is not shock-sensitive since there is no know mechanism for the shock front to propagate. Also, heating a void-free liquid requires a very high

A local stimulus generating 'hot spots' including sparks, friction, impact, static electricity, extreme ambient temperature etc. does not cause packaged emulsions (sensitized) to readily deflagrate in normal atmosphere conditions. To generate a deflagration which may subsequently transit to a detonation, a pressure in excess of 5 bars above atmospheric pressure is additionally required in the "deflagration mass".

The behaviour of packaged emulsion following a shock or thermal stimulus is discussed in

Accidental Packed Emulsion Initiation by Fire

Pools of molten AN may be formed in a fire. They may explode particularly if they are contaminated with other materials such as copper. AN may also melt and decompose with a release of toxic fumes which are mainly oxides of nitrogen. AN's sensitivity to local stimuli increases when the temperature is beyond 140°C [3] or in its molten form.

When the explosives are subjected to fire engulfment, many of them ignite and burn, deflagrate, and in some cases even detonate. These were indicated by a number of tests. The time for an explosive to ignite is dependent to its physical characteristics and chemical

Cartridged emulsions are generally considered less sensitive to fire engulfment as a mean of initiation due to their high water content. However, the water content of the emulsion will be driven off when exposed to heat or fire. If the energy level of the heat is high enough, long duration and confinement pressure increases, cartridge emulsions may initiate.

The temperature of any reactive media would be clearly raised by a fire surrounding the explosive load and enable evaporation of components such as water. The rate at which evaporation occurs is dependent on the extent of fire and the heat transfer based on the

Sha Tin Ca	vern Sewage Treatment Works	EIA Report Appendix 7.01	Sha Tin Ca	vern Sewage Treatment Works
	design of the cargo container wall. The external part of the container by direct contact with the flame. Heat is eventually transferred to the			NG based explosives. According to the bullet energy level of that required to detonate an N
5.2.3.5	The transport accident statistics for Ammonium Nitrate/Fuel Oil (ANFC time to deflagration is about 30 minutes. Emulsions are considered initiated than ANFO as they have higher water content.		5.3 5.3.1.1	Accidental Initiation Associated with Stora The possible means of accidental initiation of
5.2.3.6	The consequences of an accidental explosion due to thermal stimulu explosion or detonation or sometimes a combination of the two.	s could be a thermal		Inadequately controlled maintenance wor
5.2.4	Accidental Packaged Emulsion Initiation by Means Other than Fi	re		Improper method of work;
5.2.4.1	There are commonly two distinct groups of non-fire initiation mechanic electrical energy. Both shock and friction initiation are classified as m accidental situations, they are difficult to be distinguished. It has been emulsion type explosives can initiate (in the absence of piercing) mech velocity as low as 15 m/s. It the explosives are pierced, it is likely that will be far less than 15m/s. It is because localized heat generation re rubbing between layers of explosives, and is regarded as 'stab-initiati	echanical as in most recorded some non- nanically at an impact the required velocity sulting from frictional		 Poor housekeeping; Electric fault within the store; Arson; Dropping of explosives during handling (a)
5.2.4.2	However, as demonstrated by the bullet impact test from a hig cartridged emulsions are insensitive to initiation by impact. According test, it requires at least 10 times the energy level of that required to de (NG) based explosives.	g to the bullet impact		Crushing of explosives under the whee (applicable to detonators and detonating)
5.2.4.3	There are minimum ignition energy levels for all explosives, above v occur. Minimum ignition energy levels typically range between 0.015.		5.3.1.2	The detonators are packaged within plastic s detonator will not propagate to the adjacen classified as Class 1.4B explosives, and the to of the total explosive mass in storage.
5.2.4.4	The required ignition energy level of most explosives, including cartrid exceeded by contact with mains electricity. The energy levels possi alternators fitted to motor vehicles, or that due to static build-up on less than that required to initiate most commercial explosives (e.g. 0.0) only very sensitive explosives are likely to ignite from these electrical electrical energy is not a possible mean of initiation for the types of ex- project.	ble from batteries or clothing are typically 2J or less). Therefore, energy sources and	5.4 5.4.1.1	Accidental Initiation Associated with Trans The cartridged emulsion and detonating cords compartment on a truck. The vehicle cargo stimulus, only a significant crash impact or a low speed traffic accident is unlikely to cause
5.2.4.5 5.2.5	Water loss and prolonged temperature cycling above and below 34°C of degradation of cartridged emulsion. Degradation of cartridged emuls caking or a change in ammonium nitrate crystalline state and Detonation by means other than fire is not caused by both modes of Hazard Properties of Detonating Devices	sion leads to potential increase in volume.		ACDS study [5]. As conservative approach accident is still considered possible but with a and review with explosives specialists, the explosives is one order of magnitude high probability of imitation under impact condition based on impact energy consideration [3] since
5.2.5.1	Detonating devices may detonate when exposed to heat or flame, or heat, low-level electrical current or electrostatic energy. Detonation Hazardous gases or vapours produced in fire could be lead fumes, carbon monoxide. Nevertheless, these gases depend on the type of detonators.	produces shrapnel. nitrogen oxides and	5.4.1.2	studies (assessed at 0.001). Time and possibility to full fire development of amount of heat transferred to the loads are the explosives to an accidental fire. For emul detonating cords, it may take at least another conditions based on accident statistics. For
5.2.5.2 5.2.5.3	Pentaerythritol tetranitrate (PETN) is the main explosive component in including detonating cord and detonators. A primary explosive substa- is included in detonators as it is very sensitive to initiation. PETN in detonating cord has similar sensitivities to NG based explosive more sensitive than emulsions.	nce (e.g. lead azide)	5.4.1.3	detonating cords, this time may be consider predicted from detonating cord transport accident The behaviour of explosives used in this project to the XRL Study [2]. In the XRL Study, a review with assistance from specialists in the explosi- based explosives are as follows.
5.2.5.4	PETN has the potential to deflagrate at ambient pressure following deflagration under ambient pressure or higher can be led by a local ir may occur from a deflagration. As an explosive, it has a compa-	itiation. A detonation	5.4.1.4	The radical change in explosive properties at emulsion must be taken into account. At hig

diameter for detonation. PETN has a shock sensitivity higher than emulsions but lower than

impact test, it requires at least 10 times the IG based explosive [3].

age at Magazine

of the explosives at the proposed magazine

rk;

applicable to detonators only); and

el of vehicles during loading and unloading cords only)

separating strips, and the initiation of a single nt detonator. The packaged detonators are total mass of detonators is negligible in terms

sportation from Magazine

s will be transported together within the same is designed to minimise all sources of local fire will cause a concern to the explosives. A a concern to the explosives as stated in the is adopted in this study, low speed traffic lower probability [3]. Based on the bullet tests e activation energy of PETN or emulsion er than nitroglycerine (NG). Therefore, the ns can be reduced by one order of magnitude e NG was considered as the basis in previous

on the vehicle (typically 5-10 minutes) and the e major leading causes to the response of the Ision explosives, if they are isolated from 30 minutes for the explosives to reach critical r mixed loads of cartridged emulsions and erably lowered but no precise time can be ident data [3].

ct as transported was considered to be similar ew was conducted on the explosive properties ives industry. The main findings for emulsion

higher temperatures compared to the original gh temperatures (> melting point), emulsion explosives would lose water content which may result in a refined explosive (small droplet/

Sha Tin Cav	ern Sewage Treatment Works	EIA Report Appendix 7.01	Sha Tin Cav	vern Sewage Treatment Works		
5.5	crystal size Ammonium Nitrate (AN)). This could lead to a therm or detonation and the probability of 0.1 may not therefore be app some limited accident statistics have some bearing on this accidents may include a combination of both thermal and mecha- likely have resulted in explosion or detonation. The consensus w an explosion for the case of an emulsion was less than 0.5 but upper estimate would require additional data and more detailed a Incident Review	licable to emulsion. Also, hazard scenario: these nical stimuli, which would vas that the probability of further refinement of this	5.5.3.2	Division truck on Quee and the integrity of the The international EIDA commercial explosives related to the transport the truck. There were gel carried with other to involving explosives ca incidents resulted in fa	explosives wa AS database ic s during the p t of emulsion, also some inc types of explo arrying vehicle	as not dentifi beriod the en cidents osives es in
			5 5 0 0			
5.5.1 5.5.1.1	General Historical incidents that involve explosives will be reviewed in the are retrieved mainly from the UK Health and Safety Executive	5.5.3.3	The Western Australia detonators, ammonium to articulated vehicles	n nitrate or Am	nmoni	
	Incidents Database Advisory Service (EIDAS), US Mine Safety and Health Administration (MHSA), Western Australia's Department of Consumer and Employment Protection (DOCEP) and Hong Kong SAR Government's Annual Controlling Officers Report. The overseas records will be reviewed and compared with the situation in Hong Kong.		5.5.3.4	from 1998 to 2006, and of explosives and amn	National Institute of Occupationa 8 to 2006, and found that among t sives and ammonium nitrate used injuries, 11 minor injuries and no f	
5.5.1.2	In this study, the historical records of the following incidents are r	eviewed.	5.6	Hazard Scenarios		
	 Incidents involve storage of explosives; and 		5.6.1			
	 Incidents involve transport of explosives 			Explosives Magazine		
5.5.2	Explosive Storage Incidents		5.6.1.1	A possible hazardous detonation of a full am		
5.5.2.1 5.5.2.2	A UK study identified 79 major incidents related to manufacture a during the period from 1950 to 1997 [12]. A total of 16 major inc the storage of explosives, among which 13 incidents related to th ammunition, nitroglycerine and fireworks, 1 incident related to t and the remaining 2 incidents related to the storage of blasting ex Some initiating causes of accidents were identified from the abo	cidents were attributed to ne storage of gunpowder, he storage of detonators xplosives.	5.6.1.2	The explosives loads of been considered in the <u>Table 5.2 Explosives</u>	e total explosiv <u>Storage Quanti</u> Mass of explosives per site	ve load
	Impact;			A Kung Kok Shan	(kg) ^{Note 1,2}	per :
	Friction;			Note 2: Detonating co	6 detonating con ord are made of or contains abo	PETN
	Overheating;				ged emulsion ec	
	Electrical effects (such as lightning or static discharges);		5.6.2	Explosives Transpor	t	
	• Sparks;		5.6.2.1	A possible hazardous		
	Spontaneous reactions; and			detonation of a full load from magazine site ga transport of explosives	te to the const	tructic
	Malicious action or mishandling			3.4 in Appendix 7.02 .		as a
5.5.2.3	Not all of these causes are applicable to the magazine of this F discussed in Section 6.1 .	Project. These are further	5.6.2.2	Explosion of the deton on a separated truck w HD 1.4B or HD 1.4S (vithin the same	e con
5.5.3	Explosive Transport Incidents			For detonators packag would be limited to ren	jed in such a v	way, t
5.5.3.1	In Hong Kong, there are no incident records related to road tra significant consequence. In September 2010, there was a minor i					npr

e crash impact was not significant in that accident of affected.

ified a number of incidents related to transport of ad from 1950 to 2008. One of the incidents was emulsion load was detonated due to a tyre fire on its involving mixed cargoes of emulsion or wateris. The EIDAS database identified 2 fire incidents in Australia in 1998 and 2007, and none of these

recorded 3 incidents involving blasting explosives, nium nitrate emulsion. All these 3 incidents related o fire or explosion.

al Safety and Health study [13] investigated data the study period accidents related to the transport of in mining and construction had only resulted in platality.

sociated with the storage of explosives is the stored within a store.

ed in **Table 5.2**. The detonator explosives load has ad.

No. of etonators er site ^{Note 3}	TNT equivalent per site (kg) _{Note 4}	No. of stores	TNT equivalent per store (kg)	
5,000	1,710	3	570	

60% cartridged emulsion

'N

9g PETN

s 0.96kg of TNT, and 1kg PETN equals 1.4kg of TNT

ed with the transport of explosives is the accidental an explosives carrying vehicle during the transfer tion site boundary as shown in **Figure 2.2**. Onsite a part of use of explosives and detailed in **Section**

ansport is not quantified since they are transported nvoy, and the detonator packages is classified as sent no significant hazard outside their package). the consequences potentially leading to fatalities losive truck boundaries.

5.6.3 Scenarios Considered in the Assessment

5.6.3.1 A Base Case and a Worst Case have been considered in the risk assessment, and the assessed scenarios are summarized in Table 5.3 and Table 5.4 respectively.

 Table 5.3
 Scenarios Considered in the Base Case Assessment

Тад	Scenario	Explosives load (TNT eqv. Kg)	No. of trips per year	Remarks			
Storage of Explosives							
01	Detonation of full load of explosives in one store in A Kung Kok Shan site	570	-	Total of 3 stores			
Transport of Explosives							
02	Detonation of full load of explosives in one contractor truck on public roads	227	900				

Table 5.4 Scenarios Considered in the Worst Case Assessment

Тад	Scenario	Explosives load (TNT eqv. Kg)	No. of trips per year	Remarks		
Storage	of Explosives					
01	Detonation of full load of explosives in one store in A Kung Kok Shan site	570	-	Total of 3 stores		
Transport of Explosives						
02	Detonation of full load of explosives in one contractor truck on public roads	227	1,080			

Sha Tin Cavern Sewage Treatment Works

	5				
6	FREQUENCY ANALYSIS				
6.1	Storage of Explosives				
6.1.1.1	Explosives stored in the magazine could b				
	Generic causes				
	Manual transfer from store to contract				

- Lightning strike
- Aircraft Crash •
- Earthquake
- Hill / vegetation fire ٠
- Escalation •

6.1.2 Generic causes

- 6.1.2.1 per magazine site is adopted [1][2][3].
- 6.1.2.2 magazine.
- 6.1.2.3 could further lower the probability of initiation due to external fire.
- 6.1.2.4 sections.

6.1.3 Manual transfer from store to contractor's explosives carrying vehicle

- 6.1.3.1 above and will not be assessed separately.
- Lightning strike 6.1.4
- 6.1.4.1 separately.

be initiated by the following causes:

ctor's explosives carrying vehicle

The generic causes of all explosions in UK magazines (other than military stores and ordnance factories) were unstable explosive material caused by product degradation, corrosion, and contamination; escalation of an external incident such as fire; or malicious acts such as vandalism or attempted theft. A generic failure frequency of 1 x 10⁻⁴ per year

The explosive types to be used in this project are stable and less likely to undergo initiation due to degradation or impact. However, the explosives to be used in this project are detonator sensitive, thus the detonators have to be stored in a dedicated chamber in the

The explosives stored in the magazine are protected from external fire since they are housed inside a concrete or brick wall building, and the provision of fire-fighting measures

As mentioned in Section 2.4.1, the magazine will be provided with a comprehensive security system to reduce the possibility of vandalism or robbery. With provision of the above measures, the failure rate of 1×10^{-4} per year per magazine site is considered conservative and retained to represent all generic causes of explosion that are comment to nearly all magazines. Other site specified causes are addressed separated in following

Explosives are transferred from the store to the explosives carrying vehicle or vice versa manually without the use of any tools which are susceptible to initiate the explosives. Failure due to manual transfer is already covered in the generic failure frequency mentioned

The explosive magazine is a ground facility provided with lightning protection for each store. No additional risk due to lightning strike compared to the UK magazines. Failure due to lightning strike is already covered in the generic failure frequency and will not be assessed

6.1.5 Aircraft Crash

6.1.5.1 Aircrafts crashing into the magazine are taken into account in this study by using the methodology given in HSE (1997) [6] for calculation of aircraft crash frequency. This model has been used in previous assessments of aircraft accidents [2][3]. Calculation of aircraft crash frequency is provided in Annex 1. Since the calculated failure rates are much smaller than order of 10⁻⁹, failure caused by aircraft crash is not further considered in the assessment.

6.1.6 Earthquake

6.1.6.1 Hong Kong is a region of low seismicity [14][15], and an earthquake is an unlikely event. The generic failure frequency adopted is based on historical incidents with earthquakes already included in their cause of failure; it is considered that it is not necessary to address the failure due to earthquake separately.

6.1.7 Hill / vegetation fire

6.1.7.1 Hill / vegetation fires are quite common in Hong Kong, and the proposed magazine could be potentially affected. According to the statistics data in the Annual Report published by the Agriculture, Fisheries and Conservation Department, there are 16 - 67 hill fire per year between years 2004 and 2012, and the average vegetation area affected by fire was around 1% each year (Table 6.1), frequency of hill / vegetation affecting a specific site is estimated to be 1×10⁻² per year.

Year	Number of Hill Fire	Area Affected (Ha)	% of Total Country Park Affected
2004	67	371	0.89
2005	44	144	0.35
2006	41	872	2.10
2007	42	189	0.45
2008	49	501	1.14
2009	34	275	0.62
2010	45	897	2.03
2011	16	27	0.06
2012	18	79	0.18

Table 6.1 Hill Fire Data for Hong Kong

6.1.7.2 The explosive magazine is to be constructed of fire resistance materials such as bricks, cement rendering and steel doors, and the ground surface is to be constructed of concrete or stone to prevent fire ingress to the explosive store. Moreover, the land within the magazine site will be cleared of vegetation to remove any combustible materials, and firefighting measures will be in place. With consideration of the above, the chance of explosives being initiated due to hill / vegetation fire is considered to be negligible. Failure due to hill fire is already covered in the generic failure frequency mentioned above and will not be assessed separately.

6.1.8 Escalation

6.1.8.1 An Ardeer Double Cartridge (ADC) test for cartridged emulsion showed that the consequence of a detonation is not able to propagate once the separation distance is beyond 2 cartridge diameters. Previous study [4] considered that it is impossible for an explosion within one magazine store to directly initiate an explosion within an adjacent store, hence the direct propagation by blast pressure wave and thermal radiation effects of an explosion within one store initiating an explosion with an adjacent store is not considered.

EIA Report

Appendix 7.01

However, ground shock induced from an explosion may cause damage within the adjacent stores if the vibration level exceeds the vibration threshold of the store structure, and leading to subsequent explosion.

6.1.8.2 Ground vibrations can be assessed by the following equation [7],

- Where A = predicted particle velocity in mm/s K = a 'rock constant'
 - Q = maximum charge weight per delay interval in kilograms

 - d = charge exponent, assumed to be 0.5 [17]
 - b = attenuation exponent, assumed to be 1.22 [3]
- 6.1.8.3 there is no coupling with the ground.
- 6.1.8.4 negligible.

6.2 Transport of Explosives

- 6.2.1.1 site could be initiated by the following causes:
 - Non-crash fire
 - Crash fire
 - Crash impact
 - Spontaneous explosion of 'unsafe explosives'
- 6.2.1.2 thermal stimulus that was not resulted from a vehicle collision. 6.2.1.3 6.2.1.4 load is engulfed by a fire for a period of time. 6.2.1.5 affect the stability of the explosives load and initiate the explosion.
- 6.2.1.6 and / or explosives which do not meet the specifications.
- 6.2.1.7

AECOM

 $A = K(R/Q^d)^{-b}$

R = distance in meters between the blast and the measuring point

The WIL Study [4] stated that a building can withstand a vibration level lower than 229 mm/s without significant structural damage. From the International Society of Explosives Engineers (ISEE) handbook [16], a range of rock constant K = 173 to K = 4320 is identified for construction activities, depending on the degree of confinement. The rock constant K for aboveground storage of explosives is hence conservatively considered as 200 since

The maximum ground vibration generated from detonating of 500kg explosives is calculated at 216 mm/s for a separation of 21m. This vibration level is lower than 229 mm/s and hence the possibility of explosives within adjacent stores being initiated is considered

The HA adopts the causes of potential accidental explosion during transport already being identified in the WIL Study [4]. Explosives during transport from magazine to construction

For non-crash fire, it includes explosion instance where the explosives loads are subject to

For crash fire, it is similar to non-crash fire but the fire was resulted from a vehicle collision.

In both non-crash fire and crash fire scenarios, the explosives load will be initiated once the

For crash impact, a significant mechanical impact during vehicle collision is required to

For spontaneous explosion, it is mainly due to badly packaged or manufactured explosives,

The ACDS study [5] assessed risks related to the transport of explosives in ports. The DNV study [8] then adjusted the basic frequencies presented in ACDS to address the risk associated with transport of commercial explosives by Mines Division trucks. Previous

similar studies such as the SIL (East) Study [1], XRL Study [2], SCL Study [3] and WIL Study [4], all adopted the frequencies derived in DNV study for the transport of explosives in trucks operated by contractors from explosives magazine to construction sites, and finetuned the failure frequencies based on the latest knowledge on the explosives' properties, vehicle impact frequencies and specific design features of the explosives carrying vehicles. Derivations of each frequency component are presented in the XRL Study [2]. The explosives initiation fault tree inputs in XRL Study is presented in Table 6.3 and the fault tree models for the road transport explosion are shown in Figure 6.1.

6.2.1.8 The XRL Study [2] reviewed the fire incidents applicable to explosives trucks in Hong Kong from 2004 to 2008, and an average goods vehicle rate of 2.19x 10⁻⁸ / km, excluding 99% of arson and smokers material event provided strict controls are applied, was derived. With the consideration of the crew intervention with fire screen and extinguishers, FSD intervention, fire severity and time for fire escalation to the explosives load, the overall explosion event frequency of 1.30×10^{-9} / km was derived for non-crash fire in which explosives are subject to thermal stimulus. The development of a non-crash fire scenario is presented in Figure 6.1.

Fire Calls (/yr)		Crew Intervention fails given Fire Screen and Extinguishers		FSD arrive within target intervention time		FSD intervention fails		Fire Escalate to Explosives Load	Event	Event Frequency (/yr)
							Yes	0.6	Explosives subjec to thermal stimulus	1.18E-1
					Yes	0.9	_			
			Yes	0.1			No	0.4	Explosives not subject to thermal stimulus	7.88E-1
	Yes	0.1					_			
					No	0.1			Explosives not subject to thermal stimulus	2.19E-1
							Yes	0.6	Explosives subjec to thermal stimulus	1.18E-0
2.19E-08			No	0.9						
							No	0.4	Explosives not subject to thermal stimulus	7.88E-1
	No	0.9	_						Explosives not subject to thermal stimulus	1.97E-(
	INO	0.9							to thermal stimulus	1.97E-0
									Explosives subjec to thermal stimulus	1.30E-0
									Explosives not subject to thermal stimulus	2.06E-0

Figure 6.1 Event Tree for Non-Crash Fire Scenario

6.2.1.9 The explosives initiation fault tree inputs in XRL Study is presented in Table 6.2 and the fault tree models for the road transport explosion are shown in Figure 6.1. The explosives initiation frequencies derived in the XRL Study [2] for the transport of explosives are adopted in this study. Figure 6.2 only presents the explosives initiation fault tree model for road transport events for non-expressway since there is no expressway along the transport route.

Table 6.2	Explosives Initiation Fault	Tree Inputs from the	e XRL Study [2]

Event	Event Type	Value
Vehicle crash (on non-expressway)	Frequency	4.68 × 10 ⁻⁷ / km
Crash fire (on non-expressway)	Frequency	1.99 × 10 ⁻¹⁰ / km
Non-crash fire	Frequency	1.30 × 10 ⁻⁹ / km
Explosives initiation in fire	Probability	0.5
Explosives initiation in impact	Probability	0.0001

Non-expressway -					
LGV					
Road Transport					
Explosion per					
truck per km					
7.69E-10					
OR					
Initiation due to		Initiation due to		Initiation due to	Unsafe Explosives
crash fire		non-crash fire		crash impact	
9.97E-11		6.50E-10		1.14E-11	7.61E-12
AND		AND			
Crash fire-	Initiation in fire	Non-crash fire -	Initiation in fire	Initiation due to	
explosives	given explosives	explosives	given explosives	crash impact	
subject to	are involved in	subject to	are involved in		
thermal insult	fire	thermal insult	fire		
1.99E-10	0.5	1.30E-09	0.5	1.14E-11	
AND					
UK crash fire	Vehicle				
frequency	involvement rate -				
(explosives	HK to UK factor				
involved in fire)					
2.64E-10	0.76				

Figure 6.2 from XRL Study [2]

6.3 Domino Effects of High Pressure (HP) Underground Town Gas Transmission Pipelines

- 6.3.1.1 explosives carrying vehicles are passing close to the pipeline when it fails.
- 6.3.1.2 year) and thus is not further considered in this assessment.

EIA Report

Explosives Initiation Fault Tree for Non-Expressway – Road Transport Events

The transport route of explosives is in close proximity of a section of the HP underground town gas transmission pipelines between the Sha Tin Hospital and Mui Tsz Lam Road. Separation distance between the transport route of explosives and the pipelines is around 50m. Thermal outcomes from town gas releases may trigger failure of the explosives if the

With reference to Appendix 7.03 the event outcome frequency of fireball / jet fire is 4.58×10⁻⁸ per km per year. Thermal outcomes from town gas releases may only trigger failure of the explosives if the explosives carrying vehicles are passing close to the pipeline when it fails. Assuming that the explosives carrying vehicle is traveling at 50km/hr and it takes less than 3 minutes to travel pass this 1.9km interfacing section. Time fraction of an explosives carrying vehicle present on the 1.9km interfacing section is only around 5.7×10⁻ ⁶ per year. Therefore, the domino effect of HP underground town gas transmission pipeline is estimated to be around 2.6×10⁻¹³ per km per year, this value is rather low compared to the frequency of potential accidental explosion during transport (i.e. 7.69×10⁻¹⁰ per km per

Sha Tin Ca	vern Sewage Treatment Works EIA Report Appendix 7.01	Sha Tin Ca	vern Sewage T	reatment Works
7	CONSEQUENCE ANALYSIS			D=3.
7.1	General			$t_d = 0.$
7.1.1.1	Possible outcomes from hazardous events associated with the storage, transport and use of explosives include:		where	D is the fireball diameter in me M is the mass of explosive cha t_d is the duration of the fireball
	Blast and pressure wave;	7000		
	Flying fragments or missiles;	7.2.3.2		argest explosive mass of 570kg (i calculated to be 14.5m and durati
	Thermal radiation; and	7.2.3.3	The surfa	ace emissive power (Ef) is calcula
	Ground shock			$E_f = \frac{f}{4\pi}$
7.2	Physical Effect Modeling		where	ΔH is the heat released from
7.2.1	Blast and Pressure Wave		WHOIC	cartridged emulsion; M is the mass of explosive cha f _s is the fraction of heat that is
7.2.1.1	The <i>Explosives Storage and Transport Committee (ESTC)</i> model developed by the UK Health and Safety Committee (HSC) [9] will be utilized to determine the probability of fatality due to blast and pressure waves. The ESTC model analyses the blast effects for people indoors and outdoors separately.	7.2.3.4		argest explosive mass of 570kg (ir power of the fireball is calculated
	People Indoors	7.2.3.5	the expo	dose is defined as $L = tI^{4/3}$, where sure duration. The UK HSE Sa
	$log_{10}P = 1.827 - 3.433 log_{10}S - 0.853 (log_{10}S)^2 + 0.356 (log_{10}S)^3$ for 3 < S < 55		suggests 1,000, 1,800 and 3,200 TDU fireball with duration of 2.5s, the incide levels are 89kW/m ² , 139kW/m ² and 21	
	where $S = R/Q^{1/3};$	7.2.3.6		ng these values with the fireball su
	P is the probability of death; R is the range in meters; and Q is the explosive charge mass in kg (TNT equivalent mass).	1.2.0.0	of therma	al flux will only be existed in very c yout of the magazine, no off-site re not further considered in this as
	People Outdoors	7.2.4	Ground	Shock
	$P = \frac{e^{(-5.785S+19.047)}}{100} $ for 2.5 < S < 5.3	7.2.4.1		e some slopes situated close to the
7.2.1.2	Population in vehicles, buildings are assumed to be indoors and the indoor consequence model will be applied; pedestrians and cyclers are considered as outdoor populations and the outdoor consequence model is applied.		boulder f	le that an accidental detonation fall. This is identified as a sec ation System and Boulder Fall Co adopted to evaluate the possible of
7.2.1.3	The distance to 1%, 3%, 10%, 50% and 90% fatality contours is used in the modeling.	7.2.4.2		roject, explosives transport and s as usage will be carried out under
7.2.1.4	The consequences of accidental explosion during transferring explosives from delivery points into the cavern are also assessed by the above ESTC model.		lower pressure wave as the explosite to be of less concern compared to generated by the explosion. Grour	
7.2.2	Flying Fragments or Missiles		generate	
7.2.2.1	The ESTC model already considered fatality due to flying fragments or missiles due to explosion; therefore, debris will not be considered in a separate model.			
7.2.3	Thermal Radiation			
7.2.3.1	The initiation of an explosion would result in thermal radiation from a fireball as the explosives initiate. Models that are available describing the fireball duration and diameter are based on TNT or similar explosives, or a pitragly explosive processing PETN at the diameter and			

are based on TNT or similar explosives, e.g. nitroglycerine, PETN, etc. The diameter and duration of a fireball from high explosives are calculated using equations shown in [10].

3.5M^{0.333}

 $0.3M^{0.333}$

neters; harge mass in kg (TNT equivalent mass); all in seconds.

(initiation of an entire store contents), the fireball ation is 2.5 seconds.

lated from the following equation:

$$\frac{f_s M \Delta H_r}{\pi r_{fireball}^2 t_d}$$

m the explosives in kJ/kg, around 4.01 MJ/kg for

harge mass in kg (TNT equivalent mass); is radiated, assumed to be 0.4.

(initiation of an entire store contents), the surface ed to be 138kW/m².

ere I is the thermal radiation flux in kW/m² and t is Safety Report Assessment Guides (HSE HFLs) evels for 1%, 50% and 90% fatality levels. For a nt radiation fluxes to cause the respective fatality kW/m^2 .

surface emissive power of 138kW/m², these levels close proximity to the fireball. With consideration the hazard is anticipated. Therefore, hazards from assessment.

the road along the transport route of explosives. It n of the explosives may trigger a landslide or a econdary hazard. The *Landslide Consequence Consequence Analysis* published in GEO Report e outcomes.

d storage will be carried out aboveground while lerground. Aboveground explosion will result in a are less confined. The consequence is considered zards posed by the overpressure wave and debris ck can be calculated by the following equation:

$$A = K(R/Q^d)^{-b}$$

- When A = predicted particle velocity in mm/s
 - K = a 'rock constant', assumed to be 200
 - Q = maximum charge weight per delay interval in kilograms
 - R = distance in meters between the blast and the measuring point
 - d = charge exponent, assumed to be 0.5 [17]
 - b = attenuation exponent, assumed to be 1.22 [3]
- 7.2.4.3 A comparison of 1% fatality impact distance calculated by ground vibration model and ESTC model are provided in Table 7.1, and the results shows that the effect of ground vibration are less significant than that of air shockwave and debris for indoor population. The effect of ground vibration is more significant to the outdoor population who is close by a structure, however, there is no identified structure within this effect zone and any potential structure within the area will be cleared for construction site works. As such, the effect of ground vibration is not further assessed.

Table 7.1 Blast Effect Distance for 1% Fatality Probability from Detonation of 570kg TNT Equivalent of Explosives

Consequence	Receiver's Location	Effect Radius (m)
Shockwave and debris – ESTC	Indoor	78
model	Outdoor	27
Ground shock – Object falling threshold (PPV = 100mm/s)	Indoor / Outdoor close by a structure	39.5

- 7.2.4.4 Excess ground vibration may lead to slope failure and creates a secondary hazard. Based on the effect thresholds defined in previous similar projects [2][3], the weakest slope with factor of safety (FOS) of 1.1 can be damaged in 0.01% chance with a peak particle velocity (PPV) of 66mm/s.
- 7.2.4.5 The effect radius of 66 mm/s is calculated as 55m for detonation of 500kg of explosives, which is corresponding to the maximum quantity of explosives to be stored in each magazine store. From Table 4.7, all slopes are too far away to be affected and thus hazards from ground shock due to accidental initiation of explosives in the Magazine are not further considered in this assessment.

7.3 **Results of Consequence Analysis**

- 7.3.1.1 Consequence results for each transport and storage scenario are summarised in Table 7.2. The consequence results in both Base Case and Worst Case are the same since the same amounts of explosives are transported each time in both cases.
- 7.3.1.2 The proposed explosives magazine is located 200m away from the nearest public footpaths and 240m away from the nearest building structure. These design separation distances substantially exceed the 1% fatality distance and hence no significant risk of fatality due to explosives storage is expected.

7	able 7.2	Summary of	⁻ Consequence I	Results

No.	Scenario	TNT eqv.	Fatality	Impact Distance (m)	
		kg Prob.		Indoor	Outdoor
Storage of	Storage of Explosives				
01	Detonation of full	570	90%	26	21
	load of explosives in		50%	30	22

No.	Scenario	TNT eqv.	Fatality	Impact Distance (m)	
		kg	Prob.	Indoor	Outdoor
	one store in A Kung Kok Shan site		10%	45	24
			3%	60	26
		1%	78	27	
Transport o	of Explosives				
02 Detonation of full	227	90%	19	15	
	load of explosives in one contractor truck		50%	22	16
on public roads		10%	33	18	
		3%	44	19	
			1%	58	20

- 7.4 Secondary Hazards
- 7.4.1 Impact on buildings
- 7.4.1.1 Location of the nearest building is shown in **Figure 7.1**.

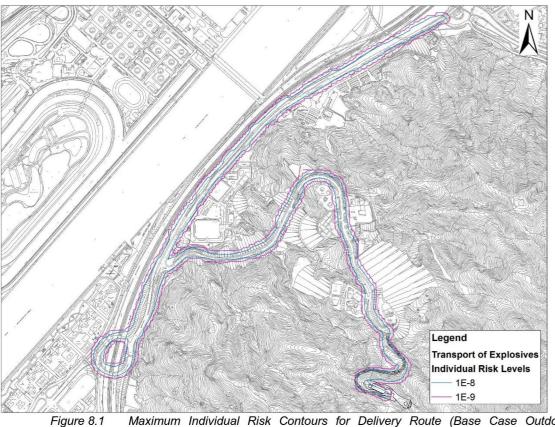
7.4.2 Impact on Slope and Boulders 7.4.2.1

The nearest building is approximately 240m away from the magazine. This separation distance is substantially exceeds the 1% fatality distance. Moreover, the magazine is not within Consultation Zone of any PHIs and is not close to any other vulnerable risk receptors.

Figure 7.1 Location of A Kung Kok Shan Magazine in Relation to Nearest Building

There are some slopes close to the road along the transport route of explosives, in particular along the A Kung Kok Shan Road. There is a possibility that an explosion on an

Sha Tin Ca	vern Sewage Treatment Works	EIA Report Appendix 7.01	Sha Tin Ca	vern Sewage Treatment Works
	explosives carrying vehicle may trigger a landslide or a boulder fall. consequences of this hazard were evaluated using the approach adopted in		8	RISK EVALUATION
	[4] and it was found that any landslide or boulder fall event would only imp area along the road that was already affected by the primary explosion conse	act the same equences. No	8.1	Introduction
	significant additional fatality would occur and thus this secondary hazard considered.		8.1.1.1	Consequences and their corresponding freque This integrates the risks associated with the from the transport of explosives from the mage
7.4.2.2	Similarly, the explosives magazine is a surface magazine and there are			
	terrains close to the magazine site. There is a possibility that an explosion on store may trigger a landslide or a boulder fall. It was found that any landslide event would only impact the same area in vicinity to the magazine site that	or boulder fall	8.1.1.2	The Base Case considered a realistic con considered scenario considered is associated programme due to construction uncertainties.
	affected by the primary explosion consequences. No significant additional			programme due to construction differtainties.
	occur and thus this secondary hazard is not further considered.		8.1.1.3	Individual risk is a measure of the risk to a c such, this is evaluated by summing the con
7.4.3	Impact on High Pressure Underground Town Gas Transmission Pipelin	25		incidents which could occur at a particular loca
7.4.3.1	As mentioned in Section 3.2 of this Appendix, there is a HP undergrout transmission pipeline running along Tate's Cairn Highway and Ma On Shan F the downstream Sai O pigging station, and the transport route of explosive proximity of a section of the HP underground town gas transmission pipelines Sha Tin Hospital and Mui Tsz Lam Road. Separation distance between the tr of explosives and the pipelines is around 50m.	Road towards es is in close s between the	8.1.1.4	Societal risk is a measure of the overall in community. As such, the likelihoods and conse for that particular activity are combined to cre the possible consequences and their frequence and the acceptability of the results can be juc the risk guidelines.
7.4.3.2	A higher than expected ground vibration from an accidental explosion or durin	a the blasting		
	process can potentially cause leakage or rupture of a gas pipeline. The typi allowable PPV for town gas pipelines is 25mm/s PPV, it is considered a tole	cal maximum	8.2	Individual Risk
	which no significant damage is expected. This represents the threshold PF onset of damage at which there may be some cosmetic damage but is extremely be some co		8.2.1	Transport of Explosives
	to result in gas leakage [3].		8.2.1.1	The individual risk (IR) contours for the tra Figure 8.2 for Base Case Outdoor and Indoor
7.4.3.3	As the pipeline is located below ground, and 50m away from the transpor			Figure 8.4 for Worst Case Outdoor and Ind
	explosives, there is no hazard from thermal or air blast pressure effect			individual risk is less than 1×10 ⁻⁷ per year. The
	detonation would occur above ground, and therefore there would be no tra			contours is not significant as shown in Figure
	shockwave into the ground. The gas transmission pipeline would be able to sa			Figure 8.4. It is because the event occur free
	a ground vibration of 25mm/s, so in the event that some minimal amount of could be transmitted from the air into the ground there would still be no haza			increase. On this basis, it would appear that transport of explosives should be acceptable s


frequencies are summed up using PhastRisk 6.7. h the temporary Explosives Magazine with those magazine to the work site.

c construction scenario; while the Worst Case ciated with potential changes in the construction nties.

to a chosen individual at a particular location. As a contributions to that risk across a spectrum of ar location.

rall impact of an activity upon the surrounding consequences of the range of incidents postulated to create a cumulative picture of the spectrum of quencies. This is usually presented as an fN curve be judged against the societal risk criterion under

The individual risk (IR) contours for the transport route is shown in **Figure 8.1** and **Figure 8.2** for Base Case Outdoor and Indoor Population respectively and **Figure 8.3** and **Figure 8.4** for Worst Case Outdoor and Indoor Population respectively. The maximum individual risk is less than 1×10^{-7} per year. The difference between the two maximum IR contours is not significant as shown in **Figure 8.1** and **Figure 8.3** and in **Figure 8.2** and **Figure 8.4**. It is because the event occur frequency between two cases only has a 20% increase. On this basis, it would appear that the level of individual risk associated with transport of explosives should be acceptable since it meets the Hong Kong Risk Guidelines.

Maximum Individual Risk Contours for Delivery Route (Base Case Outdoor Population)

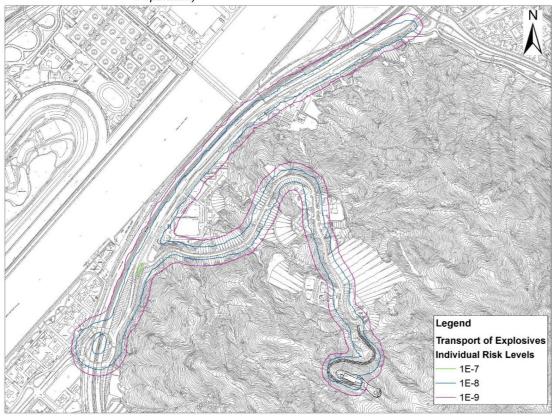
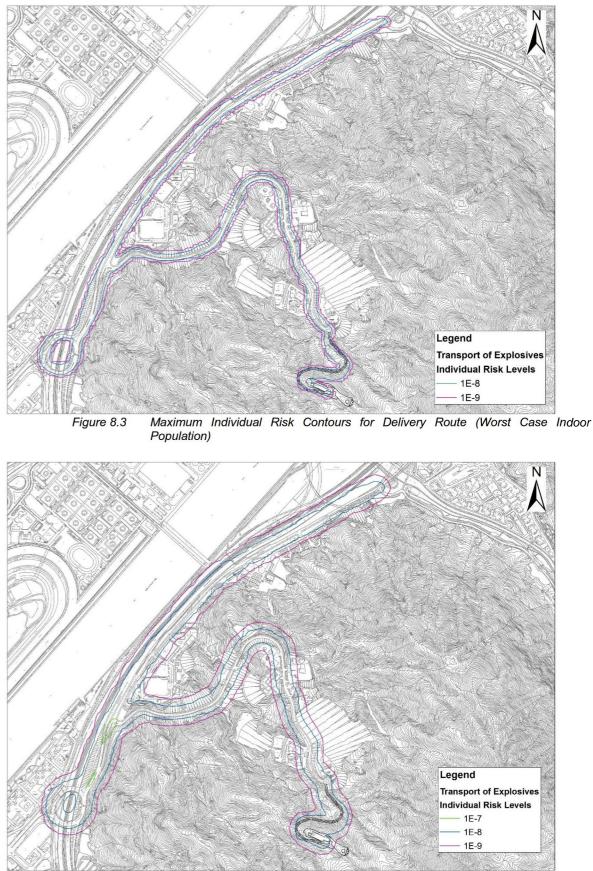
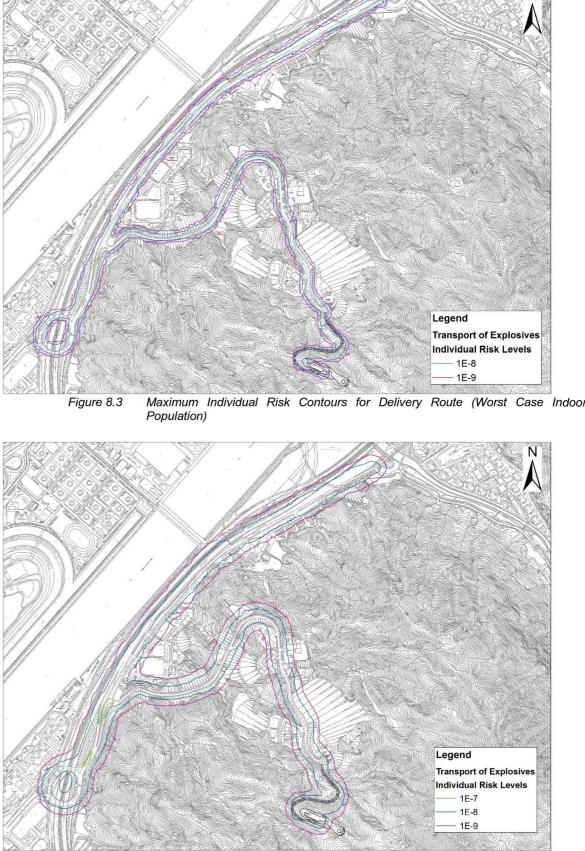
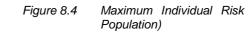





Figure 8.2 Maximum Individual Risk Contours for Delivery Route (Base Case Indoor Population)

AECOM

Maximum Individual Risk Contours for Delivery Route (Worst Case Indoor

8.2.2 Storage of Explosives

8.2.2.1 Individual risk contours associated with storage of explosives are plotted in **Figure 8.5** and **Figure 8.6** for outdoor population and indoor population respectively. The individual risk of 1×10⁻⁵ per year extends offsite in both cases. Population indoors will experience higher risks due to breaking windows and risk of building collapse. The temporary explosives magazine is located in a remote area and with a gate at the entrance of the magazine access road. There will be no non-construction population entering the magazine access road. Therefore, no public is exposed to an individual risk of 1×10⁻⁵ per year, and thus the level of individual risk associated with storage of explosives should be acceptable.

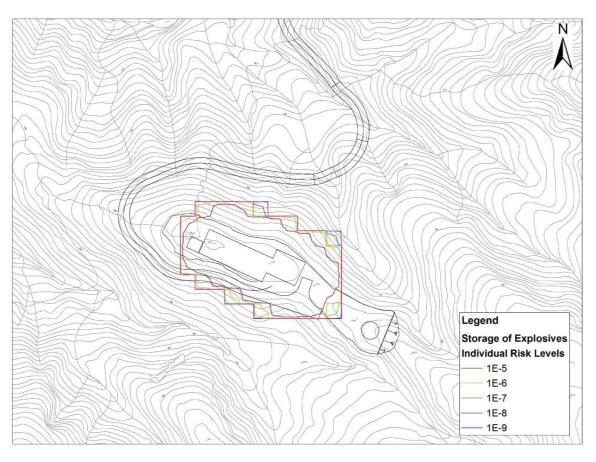


Figure 8.5 Individual Risk Contours for Magazine (Outdoor Population)

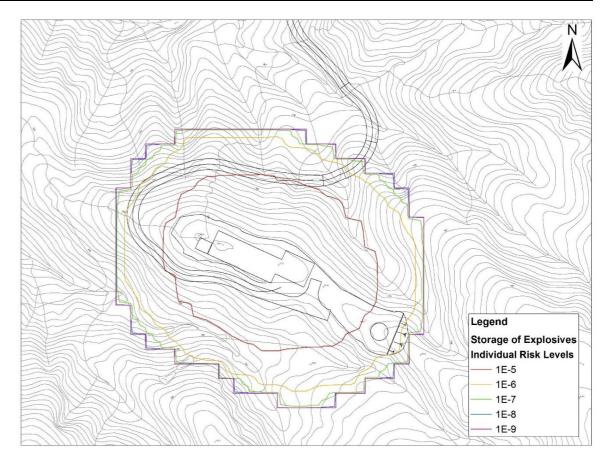


Figure 8.6 Individ

Individual Risk Contours for Magazine (Indoor Population)

8.3 Societal Risk

Potential Loss of Life 8.3.1

- 8.3.1.1 The potential loss of life (PLL) for storage and transport of explosives is 2.76×10⁻⁵ per year. PLL of 3.31×10⁻⁵ per year is calculated for the Worst Case, which is higher than PLL for the Base Case.
- 8.3.1.2 The temporary explosives magazine has negligible contribution to the overall risks since it is located in a remote area with a gate at the magazine access road. There will be no permanent population or pedestrians nearby.

F-N Curves 8.3.2

The overall fN curves for the storage and transport of explosives are shown in Figure 8.7. 8.3.2.1 The Base Case represents the risks associated with the expected blasting programme, while the Worst Case has considered a 20% increase in the number of deliveries to account for any construction uncertainties. It can be seen that the risks lie in lower ALARP region for both cases. Mitigation measures are thus required to be considered to reduce the risks.

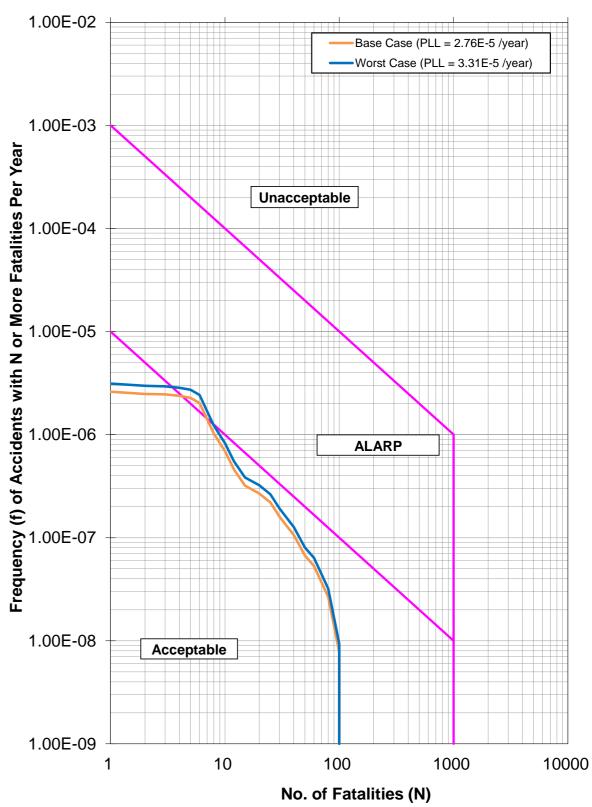


Figure 8.7 F-N Curves for Storage and Transport of Explosives

Sha Tin Cav	vern Sewage Treatment Works	EIA Report Appendix 7.01	Sha Tin Cav	ern Sewage Treatment Works
8.4 8.4.1.1	Uncertainty Analysis This study is performed based on several assumptions as highlight A discussion on the uncertainties of the results is given below.	ed in previous sections.		brigade would be limited to fight the fire from a s given for FSD intervention (probability of arriving probability ~0.1) as even if FSD arrives within carrying vehicle would likely be fully developed
8.4.2	Storage of Explosives		8.4.3.6	All crash fires are considered to be severe enou and thus no credit was given for such cases.
8.4.2.1	Frequency of Explosion The frequency of explosion adopted in this study is 1×10 ⁻⁴ per year data from the UK HSE. The generic causes of all explosions in UK military stores and ordnance factories) were unstable explosive man degradation, corrosion, and contamination; escalation of an extern or malicious acts such as vandalism or attempted theft.	C magazines (other than terial caused by product	8.4.3.7	Regarding the evacuation of the scene, it m occupants and people on the pavement surrou be difficult to evacuate the people in buildings. intervention of the fire brigade for evacuation of <i>Escape and Evacuation</i>
8.4.2.2	The explosive types to be used in this project are stable and less lik due to degradation or impact. However, the explosives to be u detonator sensitive, thus the detonators have to be stored in a de magazine.	used in this project are	8.4.3.8	It may be possible for people to escape from the an explosion event in certain circumstance, for explosives cargo is not initially involved but i escalation. However, modeling such escape consequence and the impact on risk would be
8.4.2.3	The explosives stored in the magazine are protected from externation housed inside a concrete or brick wall building, and the provision could further lower the probability of initiation due to external fire.			Explosives Initiation under Thermal Stimulus
8.4.2.4	The magazine will be provided with a comprehensive security possibility of vandalism or robbery. With provision of the above me of 1×10^{-4} per year per magazine site is considered conservative.		8.4.3.9	There are some uncertainties associated with the load composed of a mix of cartridged emulsion transportation. The probability used in this re- applicable to ANFO, which is more sensitive the
8.4.3	Transport of Explosives			manner. The assumption made in this study m data.
	Explosion Consequence Model			Actual Consumption of Explosives
8.4.3.1	The ESTC models being adopted tend to over-predict the nur compared to the actual fatalities involved in past incidents related no recorded incident involving road transport has resulted in more in urban location, while the maximum fatalities due to road trans about 100 in this study. There is some conservatism in the acknowledge that given the dense urban environment in Hor estimated during transport of explosives may not be too conservation	to explosives. There is than 12 fatalities even sport is estimated to be models although it is ng Kong, the fatalities	8.4.3.10	There is a possibility that the actual construction construction programme due to construction working. In such case, more delivery trips and re in the number of deliveries compared to the bas worst case scenario.
8.4.3.2	Several recent research studies performed by HSE indicated that under-predict the fatalities caused by flying glass in highly built-up a ESTC models are still considered to be the best available models.			
	Intervention of the Explosives truck crew			
8.4.3.3	The crew may be able to control a fire developing on the vehicle safety devices in certain circumstances. Credit has been given to combination with the fire screen protection. A failure probability	the fire extinguishers in		

8.4.3.4 Between, it may be possible for the crew to secure the explosives load before the fire fully develops. However, since a fire could fully develop and critical explosive temperature could be reached within a couple of minutes, to be conservative, no credit was given for the intervention of the crew.

Intervention of the Fire Services Department

account for these safety features.

8.4.3.5 For non-crash fire incident involving an explosives carrying vehicle, it is most likely that a fire would already fully developed before the fire brigade arrive. The intervention of the fire safe distance. As such, little credit has been g on time: ~0.1 and successful intervention specified time, the fire on the explosives and explosives subject to thermal stimulus.

ugh to cause damage to the explosives load

may be possible to evacuate the vehicle inding the accident zone, however, it would As such, no credit has been given for the f the scene as a conservative approach.

he scene of accident by themselves before example in case of fire on truck in which the is only affected after a period of gradual scenario would only slightly reduce the minimum. As such, no credit was given for

he probability of explosion for an explosives ion and detonating cords in a fire during report is based on the accident statistics nan emulsion and transported in a different nay be conservative in the absence of test

programme may differ from the envisaged uncertainties or contractors' method of eturn trips may be resulted. A 20% increase se case scenario has been assumed as the

9 **RISK MITIGATION MEASURES**

9.1 **Risk Results**

- 9.1.1.1 The hazard to life assessment of the Project has assessed the risks arising from storage of explosives at the proposed magazine as well as the risks associated with the road transport of explosives to the construction site. From Section 8, the risks posed by the Project lie within the lower "ALARP" region specified in EIAO-TM Annex 4 for both Base Case and Worst Case.
- 9.1.1.2 The results shown in Section 8 imply that the risks arising from transport of explosives are much more significant than that from storage of explosives. Hence, the assessment in this Section focuses on the transportation aspect of the explosives.

9.2 Approach

- 9.2.1.1 Practicability of risk mitigation measures is usually evaluated by cost-benefit analysis, which is a trade-off between the risk mitigation, i.e. the safety benefits, and the cost of the risk mitigation measure.
- 9.2.1.2 The safety benefits are calculated by the following equation:

- 9.2.1.3 The Value of Preventing a Fatality (VPF) represents the monetary value that the society is willing to invest to prevent a fatality, i.e. the tolerability of risk by the society. The VPF value will be taken as HK\$33M per person in this project. The VPF value will be adjusted according to different level of risks to reflect people's aversion to high risks with probability of multiple fatalities. The application of the aversion factor of this study follows the EPD's Technical Note on Cost Benefit Analysis developed in 1996. The aversion factor is calculated on a sliding scale from 1 (risks at the lower boundary of the ALARP region of the Risk Guidelines) up to a maximum of 20 (risks at the upper boundary of the ALARP region of the Risk Guidelines). The adjusted VPF using the aversion factor of 20 is HK\$660M. This is the value to measure how much the society is willing to invest to prevent a fatality, where there is potential for an event to cause multiple fatalities.
- The cost of implementing potential justifiable mitigation measures will be checked against 9.2.1.4 the Maximum Justifiable Expenditure first. The value of Maximum Justifiable Expenditure will be calculated by assuming that risk is reduced to zero. Justifiable mitigation measures will be further analysed considering the actual reduction in PLL in the calculation of safety benefit. The equation of Maximum Justifiable Expenditure is as follows:

Maximum Justifiable Expenditure = Value of Preventing a Fatality x Aversion Factor x Maximum PLL value x Design Life of mitigation measure

- 9.2.1.5 For a justifiable mitigation measure, its cost should not be greater than the value of Maximum Justifiable Expenditure. If the cost of implementation of the mitigation measure is less than the calculated safety benefits, the mitigation measure will be considered.
- 9.2.1.6 The cost of implementation of mitigation measures should only include capital and operational costs but not any costs related to design or change of design.
- It is noted that in some cases, it may not be able to quantify the cost-benefits of a particular 9.2.1.7 measure. A qualitative approach will be used in those cases.

9.3 Maximum Justifiable Expenditure 9.3.1.1 Scenario with a conservative aversion factor of 20. Maximum Justifiable Expenditure 9.3.1.2 which storage and transport of explosives will be involved.

9.3.1.3 Maximum Justifiable Expenditure.

EIA Report

Appendix 7.01

The maximum justifiable expenditure for this project is calculated based on the Worst Case

= Value of Preventing a Fatality x Aversion Factor x Maximum PLL value x Design Life of mitigation measure

= HK\$33M x 20 x 3.31x10⁻⁵ x 4

= HK\$0.09M

The design life is assumed as 4 years based on the construction phase of this project during

For a mitigation measure to be potentially justifiable, its cost should be less than the

Safety benefits = Value of Preventing a Fatality x Aversion Factor x Reduction in PLL value x Design Life of mitigation measure

	Appendix 7.01		veni Sewage Treatment Works
9.4 9.4.1	Potential Mitigation Measures Options		620,000 cast booster will be required in this p be at least HK\$4.6M higher than the cost of us emulsion.
9.4.1.1	The potential mitigation measures are listed in the following:	9.4.4.4	The additional cost of utilizing cast boosters Justifiable Expenditure and therefore not justifi
	Options eliminating the need for a Magazine;	9.4.4.5	In addition, there are limitations in availability material is limited in the market.
	Options considering alternative delivery route;	0.4.5	
	 Options reducing the quantities of explosives to be used; 	9.4.5	Lower Frequency of Explosives Transport
	 Options reducing the number of trips to be carried out by contractor's explosives trucks; Options reducing the quantities of explosives to be transported at each trip by 	9.4.5.1	The frequency of explosives transport has been No further options have been identified. The explosives transport has not been further evaluation
	contractor's explosives truck;	9.4.6	Reduction of Explosives Quantities to be T
	 Options considering improved explosives carrying vehicle design; and 		
	 Options considering better risk management systems and procedures 	9.4.6.1	It is possible to reduce the quantities of explos the hazard zones due to accidental initiation vehicles. However, the frequency of explosi
9.4.2	Need for the Magazine		construction programme.
9.4.2.1	The proposed CSTW will be located underneath Nui Po Shan within a granitic pluton, which	9.4.7	Safer Design of the Explosives carrying vel
	comprises some of the freshest and hardest crystalline rocks in Hong Kong. Approximately 2.2 million m ³ of rock will need to be excavated based on the proposed cavern layout. To ensure the timely completion of the Project, the only feasible, practical and economical method of excavation for such a large volume of rock is by drill and blast method with multi blast faces. Other construction methods, such as drill and break, and the use of tunnel boring machine (TBM), are considered not suitable for cavern construction, taking into	9.4.7.1	The use of fire screen between cabin and the to the load. This measure is recommended for measure. Besides, several simple measures so explosives carrying vehicle by using fire retard the fuel tank capacity are also possible to be in
	account the various cavern geometries, cost, programme and practicability. Opting for an alternative construction method will cost significantly more than the Maximum Justifiable Expenditure.	9.4.7.2	The safety benefits of such measures are diffic been included in the recommendation section.
9.4.2.2	The provision of a magazine site would provide a more reliable explosive supply, allowing	9.4.8	Reduction of Accident Involvement Freque
	flexible blasting time and multiple faces under different excavation sequence, giving maximum tunnel production rates. In view of the large quantity of rock to be excavated, an explosives magazine is therefore required.	9.4.8.1	It is possible to reduce the accident involved vehicle through implementation of several ac training programme to the driver, regular "to
9.4.3	Alternative Delivery Route		defensive driving attitude, selecting driver with medical checks for the driver. Implementation recommendation section.
9.4.3.1	There is only one road from the magazine to A Kung Kok Street, the delivery route is then directly east to the site. The only alternative would be to head westwards, which is away from the site and can only increase the extent of area exposed to hazard. Hence the route	9.4.9	Reduction of Fire Involvement Frequency
	studied has met the ALARP principle.	9.4.9.1	The fire involvement frequency could be
9.4.4	Use of Smaller Quantities of Explosives		extinguishers and with bigger capacity onk Emergency plans and trainings could also be further detailed in the recommendation section
9.4.4.1	This project has already considered the minimum amount of explosives for transportation. Only initiating explosives will be transported, and the bulk emulsion explosives will be manufactured on site. There is an option for using cast boosters to replace cartridged	9.4.10	Summary
	emulsion as primers for bulk emulsion blasting. Use of cast boosters can reduce the amount of explosives carried per delivery trip.	9.4.10.1	In summary, the practicable options to be as reduction of explosives quantities to be transpo
9.4.4.2	The main explosives component of cast booster is PETN, which has a higher TNT equivalency. And the use of cast booster will not eliminate the need for detonating cord.		quantities of explosives.
9.4.4.3	The unit cost of cast booster is around HK\$7.5 higher than the unit cost of cartridged emulsion based on information provided by the supplier. With the consideration that over		

Sha Tin Cavern Sewage Treatment Works

emulsion based on information provided by the supplier. With the consideration that over

project, the cost of this option is estimated to using the cartridged emulsion for initiating bulk

rs would be much higher than the Maximum tifiable on a cost basis.

ility of cast boosters since the supply of this

rt

been minimised with the use of bulk emulsion. The possibility of reducing the frequency of aluated.

Transported at Each Trip

osives to be transported at each trip to reduce ion of explosives on the explosives carrying osives transport will be increased to fit the

vehicle

ne load could reduce the risk of fire escalating for the Contractor's trucks as an improvement such as reducing the combustible load on the rdant materials wherever possible and limiting e implemented.

fficult to evaluate quantitatively, and they have on.

uency

vement frequency of the explosives carrying administrative measures, such as providing "tool box" briefing session, implementing a vith good safety record, and providing regular ation of this option is further detailed in the

reduced by carrying better types of fire onboard of the explosives carrying vehicle. be provided. Implementation of this option is on.

assessed in the cost-benefit analysis are the ported for each delivery trip and use of smaller

9.5 **Cost-Benefit Analysis**

9.5.1 Sensitivity Case 1 – Reduction of Explosives Quantities to be Transported for each Delivery Trip

Frequency Analysis

9.5.1.1 Frequency of explosion due to accidental initiation of explosives during transport is increased due to more frequent of explosives delivery. The relevant explosion frequency is listed in Table 9.1.

> Table 9.1 Frequency of Explosion during Transport

Scenario	Base frequency (per km per trip per year)	Distance travelled (km)	No. of trips	Total frequency (per year)
Base Case	7.69×10 ⁻¹⁰	4	900	2.77×10 ⁻⁶
Sensitivity Case	7.69×10 ⁻¹⁰	4	1,800	5.54×10⁻ ⁶

Consequence Analysis

9.5.1.2 Impact distances from the accidental initiation of explosives during transport are reduced due to less explosives mass to be travelled at each trip. The relevant impact distance is listed in Table 9.2.

Table 9.2	Consequence of Explosion during Storage and Transport
10010 012	concequence of Expression during eterage and manopert

No.	No. Scenario TNT eqv. kg Fatality Prob.				
			Prop.	Indoor	Outdoor
Transport of Explosives					
02 Detonation of full load of explosives in one contractor truck on public roads	114	90%	15	12	
		50%	18	13	
		10%	26	14	
			3%	35	15
			1%	46	16

Assessment Results for Sensitivity Case 1

- The total amount of explosives to be transported per trip is reduced from 200kg (227 TNT 9.5.1.3 equivalent kg) to 100kg (114 TNT equivalent kg) in the Sensitivity Case. The societal risk associated with the implementation of the proposed option is presented in both fN curve and total PLL.
- 9.5.1.4 The fN curve for implementing the option is presented in Figure 9.1. The curve for base case is also presented for comparison.
- The PLL obtained from implementing the option is estimated to be 3.33×10⁻⁵ per year. This 9.5.1.5 is higher than the PLL of 2.73×10⁻⁵ per year for Base Case.
- 9.5.1.6 The maximum number of fatalities is reduced in the Sensitivity Case, but the frequency of 1 to 5 fatalities is higher than those in the Base Case. It is due to the increased frequency of explosives transport fitting the construction programme. The PLL for Sensitivity Case is higher than that for Base Case, and the option for reducing the quantities of explosives to be transported at each trip is considered not justifiable.

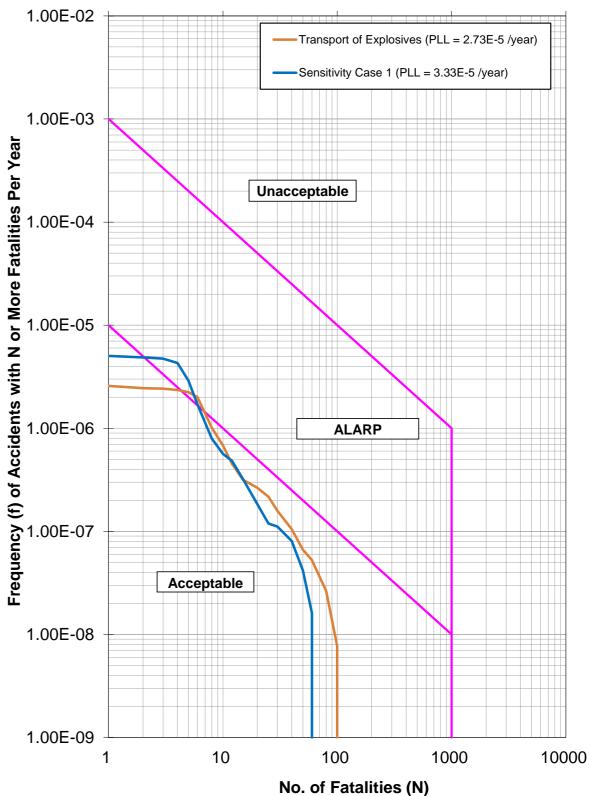


Figure 9.1 F-N Curves for Sensitivity Case 1

EIA Report

Appendix 7.01

Sha Tin Cavern Sewage Treatment Works	EIA Report Appendix 7.01

9.5.2 Sensitivity Case 2 - Use of Cast Boosters to Reduce the Amount of Explosives Carrying per Delivery Trip

- 9.5.2.1 The main explosives component of cast booster is PETN, which has a higher TNT equivalency, and the use of cast booster will not eliminate the need for detonating cord.
- The unit cost of cast booster is around HK\$7.5 higher than the unit cost of cartridged 9.5.2.2 emulsion based on the information provided by the supplier. With the consideration that over 620,000 cast booster will be required in this project, the cost of this option is estimated to be at least HK\$4.6M higher than the cost of using the cartridged emulsion for initiating bulk emulsion.
- 9.5.2.3 The additional cost of utilizing cast boosters would be much higher than the Maximum Justifiable Expenditure (HK\$0.09M) and therefore not justifiable on a cost basis.
- In addition, there are limitations in availability of cast boosters since the supply of this 9.5.2.4 material is limited in the market.

Sha Tin Cavern Sewage Treatment Works

10	CONCLUSIONS AND RECOMMEND			
10.1	Conclusions			
10.1.1.1	A Hazard to Life Assessment of the ri explosives has been conducted for the con			
10.1.1.2	The individual risk complies with the criteri expressed in the form of FN curves lies in the criteria stipulated in the EIAO-TM. An AL various mitigation measures, and the resu provided that the following recommendation			
10.2	Recommendations			
10.2.1 Re	commendations for Meeting the ALARP			
10.2.1.1	The following recommendations are justi requirements:			
	• The truck should be designed to minin fuel carried in the fuel tank should also			
	• The accident involvement frequency minimized through implementation or providing training programme to th implementing a defensive driving attitute providing regular medical checks for the formation of the second seco			
	 Avoidance of returning unused explosions of explosives for a particular blast sho 			
	 Maintain a minimum headway of 10 n whenever practicable; 			
	 The fire involvement frequency shoul extinguishers and with bigger capacity 			

10.2.2 Recommendations for Explosives Storage in Magazine

extinguishers are used adequately.

- 10.2.2.1 recommendations should be implemented:
 - arson or deliberate initiation of explosives;
 - ٠ and drill of the emergency plan should be regularly carried out;
 - during operation of the magazine are properly controlled;
 - accumulated;

ATIONS

isks associated with storage and transport of instruction stage of the Project.

rion of Annex 4 of the EIAO-TM. The societal risk the lower "ALARP" region when compared to the LARP analysis has been conducted considering ults shows compliance with the ALARP principles ons are followed.

Requirements

ified to be implemented to meet the EIAO-TM

mise the amount of combustible in the cabin. The o be minimized to reduce the duration of any fire;

of the explosives carrying vehicle should be of several administrative measures, such as ne driver, regular "tool box" briefing session, ude, selecting driver with good safety record, and the driver:

sives to the magazine, only the required quantity ould be transported;

minutes between two consecutive truck convoys

Id be minimised by carrying better types of fire stinguishers and with bigger capacity onboard of the explosives carrying vehicle. Emergency plans and trainings could also be provided to make sure that the fire

The magazine should be designed, built, operated and maintained in accordance with Mines Division guidelines and appropriate industry best practice. In addition, the following

The security plan should address different alert security level to reduce opportunity for

Emergency plan should be developed to address uncontrolled fire in magazine area,

Suitable work control system should be set-up to ensure that work activities undertaken

Good house-keeping within the magazine to ensure no combustible materials are

Sha Tin Cav	vern Sewage Treatment Works	EIA Report Appendix 7.01	Sha Tin Cavern Sew	rage Treatment Works
	 Good house-keeping outside the magazine stores to ensure not accommutated, and 	o combustible materials	11 REFEREN	ICES
	 are accumulated; and Regular checking of the magazine store to ensure no water se walls or floor. 	epage through the roof,	[1]	ERM, 2010. South Island Line (East Storage and Transport.
10.2.3 R	ecommendations for Explosives Transport		[2]	ERM, 2009. Hong Kong Section of G Rail Link: Hazard to Life Assessmen
10.2.3.1	The following recommendations should be implemented:		[3]	ERM, 2011. Shatin to Central Link – Assessment for the Storage, Transpo
	 Emergency plan should be developed to address uncontrolle Case of fire near an explosive carrying vehicle in jammed traff the plan. Activation of fuel and battery isolation switches on v out aboutd plan be included in the emergency plan to reduce 	fic should be included in vehicle when fire breaks	[4]	ERM, 2008. West Island Line: Haz Storage and Use of Explosives.
	out should also be included in the emergency plan to reduce fire leading to explosion;	inkelihood of prolonged	[5]	ACDS, 1995. Risk from Handling Exp Dangerous Substances, HMSO, UK.
	 Working guideline should be developed to define procedure during adverse weather such as thunderstorm; 	for explosives transport	[6]	Health and Safety Executives,1997. UK. J P Byrne
	 Detonators should be transported separately from other Class of vehicles should also be maintained through the trip; 	1 explosives. Separation	[7]	GEO, 1992. Guide to Cavern Engine Office, Government of the Hong Kon
	 Develop procedure to ensure the availability of parking space of carrying vehicle. Delivery should not be commenced if parking secured; 		[8]	DNV, 1997. The Risk Assessment of QRA Report, Environmental Protection
	 Hot work or other activities should be banned in the vicinity of t or charging activities; 	he explosives offloading	[9]	HSC, 2000. Selection and Use of Ex Explosives, Advisory Committee on I
	• Fire screen should be used between cabin and the load on the	e vehicle;	[10]	F P Lee, 1996. Loss Prevention in Pr
	Lining should be provided within the transportation box on the	vehicle;	[11]	Legislative Council Panel on Transpo Railways – Capacity and Loading of
	Ensure packaging of detonators remains intact until handed or	ver at blasting site;	[12]	R Merrified, P A Moreton, 1998. An e
	Ensure that cartridged emulsion packages are not damaged b	efore every trip; and		explosives manufacturing and storag A63, pp 107-118.
	Use experienced driver with good safety record.		[13]	Richard J Mainiero, James H Rowlar Involving Explosives Transport, NIOS
			[14]	GEO, 2002. Seismic Hazard Analysis

- [15] Government.
- [16] Handbook. 18th Edition, Second Printing.
- [17] Quarrying the Rim.

st): Hazard to Life Assessment for Explosives

Guangzhou – Shenzhen – Hong Kong Express nt for the Storage and Transport of Explosives.

Tai Wai to Hung Hom Section: Hazard to Life ort and Use of Explosives.

azard to Life Assessment for the Transport,

plosives in Ports, HSC Advisory Committee on

The Calculation of Aircraft Crash Risk in the

eering, Geoguide 4, Geotechnical Engineering ng SAR.

of the Transport of Explosives in Hong Kong ion Department Hong Kong Government.

xplosion Effects and Consequence Models for Dangerous Substances.

rocess Industries, 2nd Edition.

ort Subcommittee on Matters Relating to MTR Trains CB(1)980/13-14(03).

examination of the major-accident record for ge in the UK. Journal of Hazardous Materials

nd III, 2008. A Review of Recent Accidents SH.

is of the Hong Kong Region. GEO Report No. 65, Geotechnical Engineering Office, Government of the Hong Kong SAR.

GCO, 1991. Review of Earthquake Data for the Hong Kong Region. GCO Publication No. 1/91, Civil Engineering Services Department, Hong Kong

International Society of Explosives Engineers (ISEE), 2015. The Blasters'

Li, U.K. and Ng, S.Y., 1992. Prediction of Blast Vibration and Current Practice of Measurement in Hong Kong, Proceedings of the Conference Asia-Pacific -

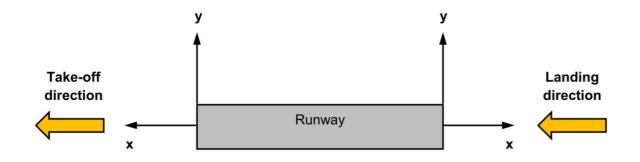
Annex 1 Calculation of Aircraft Crash Frequency

The model considers specific factors such as target area of the proposed magazine site and its longitudinal (x) and perpendicular (y) distances from the runway threshold for landing and take-off movement. The aircraft crash frequency per unit ground area (per km²) is calculated as:

$$g(x,y) = NRF(x,y) \tag{1}$$

Where N is the number of runway movements per year; R is the probability of an accident per movement (landing or takeoff). F(x,y) gives the spatial distribution of crashes and is given by:

For aircraft landing, for x > -3.275km,


$$F_L(x,y) = \frac{(x+3.275)}{3.24} e^{\frac{-(x+3.275)}{1.8}} \left[\frac{56.25}{\sqrt{2\pi}} e^{-0.5(125y)^2} + 0.625 e^{-\frac{|y|}{0.4}} + 0.005 e^{-\frac{|y|}{5}} \right]$$
(2)

For aircraft takeoff, for x > -0.6km,

$$F_T(x,y) = \frac{(x+0.6)}{1.44} e^{\frac{-(x+0.65)}{1.2}} \left[\frac{46.25}{\sqrt{2\pi}} e^{-0.5(125y)^2} + 0.9635 e^{-4.1|y|} + 0.08 e^{-|y|} \right]$$
(3)

Equations (2) and (3) are valid only for the specified range of x values. If x lies outside this range, the impact probability is zero. This case applies for 07L and 07R runways for arrival flight path and 25L and 25R runways for departure flight path.

Distances between the proposed magazine and the runways are measured and transformed into longitudinal (x) and perpendicular (y) distances in the Aircraft Crash Coordinate System according to the following figure.

The probability of an accident per movement R is interpreted from NTSB data for fatal accidents in the U.S. involving scheduled airline flights during the period 1986-2005. The 10-year moving average suggested a downward trend with recent years showing a rate of about 2×10⁻⁷ per flight. There are only 13.5% of accidents associated with the approach to landing, 15.8% associated with take-off and 4.2% are related to the climb phase of the flight [6]. Thus it is assumed that the accident frequency for the approach to landings is taken as 2.7×10⁻⁸ per flight and for take-off is 4.0×10⁻⁸ per flight.

The number of runway movements of aircraft N is provided by yearly statistics of the Hong Kong International Airport in 2005-2014. Number of movements at year 2022 is estimated by linear regression respectively for landing and take-off cases. The movement number of both landing and take-off adopted in the calculation has been divided by 4 to take into account that only a quarter of landing or take-off use a specific runway. For aircraft landing on the Hong Kong International Airport, only those arriving from north-east using either 25R or 25L arrival flight path would have potential impact to the proposed magazine site; for those arriving from south-west using either 07R or 07L arrival flight path, the longitudinal distance from the runway is around -31km, which is much smaller than -3.275km and thus the potential impact is considered to be zero. For aircraft departing from the Hong Kong International Airport, only those departing towards north-east using either 07R or 07L departure flight path would have potential impact to the proposed magazine site; for those departing towards south-west using either 25R or 25L departure flight path, the longitudinal distance from the runway is around -31km, which is much smaller than -0.6km and thus the potential impact is considered to be zero.

The aircraft crash frequency is finally obtained by multiplying g(x,y) to target area which is estimated to be 1.2×10⁻³ km² for the magazine.

The calculations are presented in Table 1 and the total crash frequency per year is summarised in Table 2.

Table 1	Calculation for	Aircraft	Crash Free	quency					
Year	Runway	x (km)	y (km)	F(x,y)	N (per year)	R (per flight)	Crash frequency (per unit area)	Target area (km²)	Crash Frequency (per year)
2022	25R Landing	31.4	9.1	3.7E-11	69422	2.7E-08	7.0E-14	1.20E-03	8.4E-17
2022	25L Landing	31.0	10.7	3.3E-11	69422	2.7E-08	6.3E-14	1.20E-03	7.5E-17
2022	07R Landing	-31.0	10.7	0	69422	2.7E-08	0.0E+00	1.20E-03	0.0E+00
2022	07 L Landing	-31.4	9.1	0	69422	2.7E-08	0.0E+00	1.20E-03	0.0E+00
2022	07L Take-off	31.4	9.1	5.0E-16	69407	4.0E-08	1.4E-18	1.20E-03	1.7E-21
2022	07R Take-off	31.0	10.7	1.4E-16	69407	4.0E-08	3.9E-19	1.20E-03	4.6E-22
2022	25L Take-off	-31.0	10.7	0	69407	4.0E-08	0.0E+00	1.20E-03	0.0E+00
2022	25R Take-off	-31.4	9.1	0	69407	4.0E-08	0.0E+00	1.20E-03	0.0E+00
Table 2	Total Aircraft C	Crash Free	quency						
Year 2022	Total Crash Fre	equency (per year)						
Landing	1.6E-16								
Take-off	2.1E-21								
Total	1.6E-16								

Annex 2 – Population Data

Study Buffer Zone

A study buffer zone of 100m is adopted to identify the potential affected populations in vicinity to the magazine site and transport route. Building population and road population are considered as indoor population while pedestrian population is considered as outdoor population in our model.

Building Populations

Description	Population		1	Maximum % Occupancies								
Description	(2022)	Night	AM Peak	PM Peak	Weekday Daytime	Saturday Daytime	Sunday Daytime					
The Neighbourhood Advice-Action Council Manor Harmony	716	80%	80%	80%	100%	90%	80%					
Shing Mun Springs	231	80%	80%	80%	100%	90%	80%					
Hang Fook Camp	40	80%	80%	80%	100%	90%	80%					
Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village)	0	100%	100%	100%	100%	100%	100%					
Open Car Park (near Breakthrough Youth Village)	5	10%	100%	100%	70%	70%	70%					
Breakthrough Youth Village	790	100%	50%	50%	20%	50%	80%					
Richard Butler Chalets	60	80%	80%	80%	100%	90%	80%					
Cheshire Home Shatin	375	80%	80%	80%	100%	90%	80%					
A Kung Kok Fresh Water Service Reservoir	0	100%	100%	100%	100%	100%	100%					
Open Car Park (near Bradbury Hospice)	10	10%	100%	100%	70%	70%	70%					
Bradbury Hospice	52	80%	80%	80%	100%	90%	80%					
Pump House (on A Kung Kok Shan Road)	0	100%	100%	100%	100%	100%	100%					
Jockey Club Home for Hospice	90	80%	80%	80%	100%	90%	80%					
Pictorial Garden (Stage 1)	1924											
Abbey Court	605	100%	50%	50%	20%	50%	80%					
Belleve Court	605	100%	50%	50%	20%	50%	80%					
Capilano Court	605	100%	50%	50%	20%	50%	80%					
Car park under podium	40	10%	100%	100%	70%	70%	70%					
Podium	69	10%	100%	100%	70%	70%	70%					
Pictorial Garden (Stage 2)	1796											
Delite Court	281	100%	50%	50%	20%	50%	80%					
Elegant Court	281	100%	50%	50%	20%	50%	80%					
Forum Court	562	100%	50%	50%	20%	50%	80%					
Galaxy Court	562	100%	50%	50%	20%	50%	80%					
Car park under podium	40	10%	100%	100%	70%	70%	70%					
	Shing Mun SpringsHang Fook CampSubstation (on A Kung Kok Shan Road, near Breakthrough Youth Village)Open Car Park (near Breakthrough Youth Village)Breakthrough Youth Village)Breakthrough Youth VillageBreakthrough Youth VillageBreakthrough Youth VillageBreakthrough Youth VillageBreakthrough Youth VillageBreakthrough Youth VillageBreakthrough Youth VillageBreakthrough Youth VillageBreakthrough Youth VillageOpen Car Park (near Bradbury Hospice)Bradbury HospicePump House (on A Kung Kok Shan Road)Jockey Club Home for HospicePictorial Garden (Stage 1)Abbey CourtBelleve CourtCar park under podium PodiumPictorial Garden (Stage 2)Delite CourtElegant CourtElegant CourtGalaxy Court	Shing Mun Springs231Hang Fook Camp40Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village)0Open Car Park (near Breakthrough Youth Village)5Breakthrough Youth Village)790Breakthrough Youth Village790Richard Butler Chalets60Cheshire Home Shatin375A Kung Kok Fresh Water Service Reservoir0Open Car Park (near Bradbury Hospice)10Bradbury Hospice)52Pump House (on A Kung Kok Shan Road)0Jockey Club Home for Hospice90Pictorial Garden (Stage 1)1924Abbey Court605Car park under podium40Podium69Pictorial Garden (Stage 2)1796Delite Court281Elegant Court562Galaxy Court562	Shing Mun Springs23180%Hang Fook Camp4080%Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village)0100%Open Car Park (near Breakthrough Youth Village)510%Breakthrough Youth Village790100%Breakthrough Youth Village790100%Richard Butler Chalets6080%Cheshire Home Shatin37580%A Kung Kok Fresh Water Service Reservoir0100%Open Car Park (near Bradbury Hospice)1010%Bradbury Hospice5280%Pump House (on A Kung Kok Shan Road)0100%Jockey Club Home for Hospice9080%Pictorial Garden (Stage 1)1924100%Capilano Court605100%Capilano Court605100%Podium6910%Pictorial Garden (Stage 2)1796Delite Court281100%Elegant Court562100%Galaxy Court562100%	Shing Mun Springs23180%80%Hang Fook Camp4080%80%Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village)0100%100%Open Car Park (near Breakthrough Youth Village)510%100%Breakthrough Youth Village790100%50%Breakthrough Youth Village790100%50%Richard Butler Chalets6080%80%A Kung Kok Fresh Water Service Reservoir0100%100%Den Car Park (near Bradbury Hospice)10100%100%Bradbury Hospice5280%80%Pump House (on A Kung Kok Shan Road)0100%100%Jockey Club Home for Hospice9080%80%Pictorial Garden (Stage 1)1924100%50%Abbey Court605100%50%50%Car park under podium4010%100%Pictorial Garden (Stage 2)1796100%50%Pictorial Garden (Stage 2)1796100%50%Delite Court281100%50%Elegant Court281100%50%Galaxy Court562100%50%	Shing Mun Springs 231 80% 80% 80% Hang Fook Camp 40 80% 80% 80% Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village) 100% 100% 100% 100% Open Car Park (near Breakthrough Youth Village) 5 10% 100% 50% 50% Breakthrough Youth Village 790 100% 50% 50% 80% Richard Butler Chalets 60 80% 80% 80% 80% A Kung Kok Fresh Water Service Reservoir 0 100% 100% 100% 100% Dopen Car Park (near Bradbury Hospice) 52 80% 80% 80% 80% Bradbury Hospice 52 80% 80% 80% 80% 80% Jockey Club Home for Hospice 90 80% 80% 80% 80% Pictorial Garden (Stage 1) 1924 Abbey Court 605 100% 50% 50% </td <td>Shing Mun Springs 231 80% 80% 80% 100% Hang Fook Camp 40 80% 80% 80% 100% Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village) 0 100% 100% 100% 100% Open Car Park (near Breakthrough Youth Village 5 10% 100% 50% 20% Breakthrough Youth Village 790 100% 50% 50% 20% Richard Butler Chalets 60 80% 80% 80% 100% Cheshire Home Shatin 375 80% 80% 80% 100% Open Car Park (near Beradbury Hospice 52 80% 80% 100% 100% Open Car Park (near Bradbury Hospice 52 80% 80% 100% 100% Pump House (on A Kung Kok Shan Road) 0 100% 100% 100% 100% Jockey Club Home for Hospice 90 80% 80% 80% 20% Belleve Court 605 100% 50% 50%</td> <td>Shing Mun Springs 231 80% 80% 80% 100% 90% Hang Fook Camp 40 80% 80% 80% 100% 90% Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village) 0 100% <</td>	Shing Mun Springs 231 80% 80% 80% 100% Hang Fook Camp 40 80% 80% 80% 100% Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village) 0 100% 100% 100% 100% Open Car Park (near Breakthrough Youth Village 5 10% 100% 50% 20% Breakthrough Youth Village 790 100% 50% 50% 20% Richard Butler Chalets 60 80% 80% 80% 100% Cheshire Home Shatin 375 80% 80% 80% 100% Open Car Park (near Beradbury Hospice 52 80% 80% 100% 100% Open Car Park (near Bradbury Hospice 52 80% 80% 100% 100% Pump House (on A Kung Kok Shan Road) 0 100% 100% 100% 100% Jockey Club Home for Hospice 90 80% 80% 80% 20% Belleve Court 605 100% 50% 50%	Shing Mun Springs 231 80% 80% 80% 100% 90% Hang Fook Camp 40 80% 80% 80% 100% 90% Substation (on A Kung Kok Shan Road, near Breakthrough Youth Village) 0 100% <					

Sha Tin Cavern Sewage Treatment Works

		Maximum	% Occupancies							
ID	Description	Population (2022)	Night	AM Peak	PM Peak	Weekday Daytime	Saturday Daytime	Sunday Daytime		
16f	Podium	70	10%	100%	100%	70%	70%	70%		
17	Pictorial Garden (Stage 3)	1180								
17a	Hillview Court	373	100%	50%	50%	20%	50%	80%		
17b	Iris Court	373	100%	50%	50%	20%	50%	80%		
17c	Juniper Court	373	100%	50%	50%	20%	50%	80%		
17d	Car park under podium	30	10%	100%	100%	70%	70%	70%		
17e	Podium	31	10%	100%	100%	70%	70%	70%		
18	On King Street Park	100	0%	10%	10%	70%	85%	100%		
19	Open Car Park (near Jockey Club Shek Mun Rowing Centre)	10	10%	100%	100%	70%	70%	70%		
20	Jockey Club Shek Mun Rowing Centre	50	0%	10%	10%	70%	85%	100%		
21	Hong Kong China Dragon Boat Association Shatin Shek Mun Training Centre	50	0%	10%	10%	70%	85%	100%		
22	Hong Kong Canoe Union Shatin Training Centre	50	0%	10%	10%	70%	85%	100%		
23	Site Offices (DSD / LandsD)	60	10%	10%	10%	100%	55%	10%		
24	Petrol Station	10	100%	100%	100%	100%	100%	100%		
25	Shek Mun Fresh Water Booster Pumping Station	0	100%	100%	100%	100%	100%	100%		
28	Open Car Park (near Pumping House on On Ping Street)	20	0%	100%	100%	70%	45%	20%		
29	Shatin Hospital	1296								
29a	Shatin Hospital	975	80%	80%	80%	100%	90%	80%		
29b	Open Car Park	10	10%	100%	100%	70%	70%	70%		
29c	Transport Terminus	30	10%	100%	100%	70%	60%	50%		
29d	Football Field	22	0%	10%	10%	70%	85%	100%		
29e	Basketball Court	16	0%	10%	10%	70%	85%	100%		
29f	Jockey Club Centre for Positive Ageing	25	80%	80%	80%	100%	90%	80%		
29g	A Kung Kok Government Quarters Block B	104	100%	50%	50%	20%	50%	80%		
29h	A Kung Kok Government Quarters Block C	104	100%	50%	50%	20%	50%	80%		
29i	Tennis Court	10	0%	10%	10%	70%	85%	100%		
30	A Kung Kok Sewage Pumping Station	10	10%	10%	10%	100%	55%	10%		
31	Ah Kung Kok Fishermen's Village	1061								
31a	Ah Kung Kok Fishermen's Village (a)	374	100%	50%	50%	20%	50%	80%		

AECOM

App7.01-A2-2

EIA Report Appendix 7.01

EIA Report Appendix 7.01

EIA Report Appendix 7.01

		Maximum			% 0	Occupancies		
ID	Description	Population (2022)	Night	AM Peak	PM Peak	Weekday Daytime	Saturday Daytime	Sunday Daytime
31b	Ah Kung Kok Fishermen's Village (b)	639	100%	50%	50%	20%	50%	80%
31c	Basketball Court	16	0%	10%	10%	70%	85%	100%
31d	Football Field	22	0%	10%	10%	70%	85%	100%
31e	A Kung Kok Sitting-out Area	10	0%	10%	10%	70%	85%	100%
32	Hong Kong Mountaineering Union	0	0%	10%	10%	70%	85%	100%
33	Evangelical Lutheran Church of Hong Kong Shatin Youth Centre Recreational Camp and Training Centre	0	0%	10%	10%	70%	85%	100%
34	Custom and Excise Department Shatin Vehicle Detention Centre (will be relocated)	0	10%	10%	10%	100%	100%	100%
35	A Kung Kok Street Garden	10	0%	10%	10%	70%	85%	100%
36	Ma On Shan Tsung Tsin Secondary School	1406	0%	10%	10%	100%	55%	10%
37	Kowloon City Baptist Church Hay Nien Primary School	1124	0%	10%	10%	100%	55%	10%
38	Chevalier Garden	1136						
38a	Chevalier Garden Block 6	568	100%	50%	50%	20%	50%	80%
38b	Chevalier Garden Block 5	568	100%	50%	50%	20%	50%	80%
41	Shing Mun River Promenade	36	0%	10%	10%	70%	85%	100%
P1	Proposed Project Site	500	100%	100%	100%	100%	100%	100%
P2	Proposed Project Site Office and works area	500	100%	100%	100%	100%	100%	100%

Sha Tin Cavern Sewage Treatment Works

Pedestrian Populations

Pedestrian populations of the pavements along A Kung Kok Shan Road, A Kung Kok Street and Mui Tsz Lam Road are in the form of population density. Site survey was conducted on 12-18 July 2015 to estimate the pedestrian population. As the pavements along A Kung Kok Shan Road, A Kung Kok Street and Mui Tsz Lam Road are linked, it is assumed that their pedestrian densities are the same.

	Pedestrian Population Density (persons / m ²)									
Street Name	Night	AM Peak	PM Peak	Weekday Daytime	Saturday Daytime	Sunday Daytime				
A Kung Kok Shan Road Pavement	0.000428	0.000428	0.000428	0.000428	0.000428	0.000428				
A Kung Kok Street Pavement	0.000428	0.000428	0.000428	0.000428	0.000428	0.000428				
Mui Tsz Lam Road Pavement	0.000428	0.000428	0.000428	0.000428	0.000428	0.000428				

Road Populations

Annual Traffic Census 2014 is adopted in our calculation of road population densities.

	Road Population Density (persons / m ²)										
Street Name	Night	AM Peak	PM Peak	Weekday Daytime	Saturday Daytime	Sunday Daytime					
Tai Chung Kiu Road	0.0105	0.0362	0.0362	0.0108	0.0108	0.0108					
On King Street	0.0056	0.0193	0.0193	0.0057	0.0057	0.0057					
On Ping Street	0.0070	0.0240	0.0240	0.0072	0.0072	0.0072					
On Sum Street	0.0076	0.0262	0.0262	0.0078	0.0078	0.0078					
Tate's Cairn Highway	0.0047	0.0298	0.0298	0.0051	0.0051	0.0051					
A Kung Kok Shan Road	0.0165	0.0347	0.0347	0.0165	0.0165	0.0165					
A Kung Kok Street	0.0083	0.0270	0.0270	0.0085	0.0085	0.0085					
Mui Tsz Lam Road	0.0125	0.0501	0.0501	0.0130	0.0130	0.0130					
Shek Mun Interchange	0.0071	0.0376	0.0376	0.0076	0.0076	0.0076					
Shek Mun Interchange	0.0071	0.0376	0.0376	0.0076	0.0076	0.0076					
Ma On Shan Line	0.0003	0.0700	0.0700	0.0022	0.0022	0.0022					