ANNEX 5C FISHERIES SURVEY RESULTS

5C.1 Introduction

This *Annex* presents the results of the adult fish production survey, ichthyoplankton and fish post-larvae survey, and vessel survey conducted to better understand the fisheries resources and fishing operations within and in the vicinity of the Study Area. Field surveys at selected locations within and in the vicinity of the Study Area where potential impact could occur were conducted to update the latest fisheries baseline in these locations. The methodology for the surveys is described in detail in *Annex 5B*.

5C.1.1 Survey Schedule

In accordance with the agreed methodology, fisheries surveys were carried out at three locations (Site A, Site B and Site C) within and in the vicinity of the Study Area (*Figure 5C.1*) from February 2021 to May 2021 to cover dry and wet seasons. The survey schedule is summarized in *Table 5C.1*. All surveys were conducted during daytime at each of the survey locations. During the course of the survey, sea conditions were mild to moderate and weather conditions were fine in general.

Table 5C.1 Fisheries Baseline Surveys

Survey	Frequency	Date		
		Dry Season	Wet Season	
Adult Fish Production Survey	 Two times during dry season between February and March 2021 Two times during wet season between April and May 2021 	26 Feb & 24 Mar 2021	16 Apr & 7 May 2021	
Ichthyoplankton and Fish Post-larvae Survey	 Two times during dry season between February and March 2021 Two times during wet season between April and May 2021 	16 & 27 Mar 2021	17 Apr & 8 May 2021	
Vessel Survey	Two times during dry season between February and March 2021 at the same time as the adult fish production surveys	26 Feb & 4 Mar 2021	16 Apr & 7 May 2021	
	 Two times during wet season between April and May 2021 at the same time as the adult fish production surveys 			

5C.2 Adult Fish Production Survey

5C.2.1 Overview

A total of about 11.68 kg (263 individuals) of fisheries resources were recorded from the three survey locations from the gill-netting and hand-lining surveys during the survey period from February to May 2021. Among all, about 9.03 kg (151 individuals) of 39 fish species from 23 families and about 2.66 kg (112 individuals) of 15 other fisheries species (i.e. crustaceans and cephalopod) from 7 families were recorded from the surveys. The adult fish production survey data (including fish and other fisheries species) in terms of abundance (no. of individuals), biomass (g) and diversity indices are summarised in *Table 5C.2*. The full list of species recorded during the surveys is presented in *Annex 5D*.

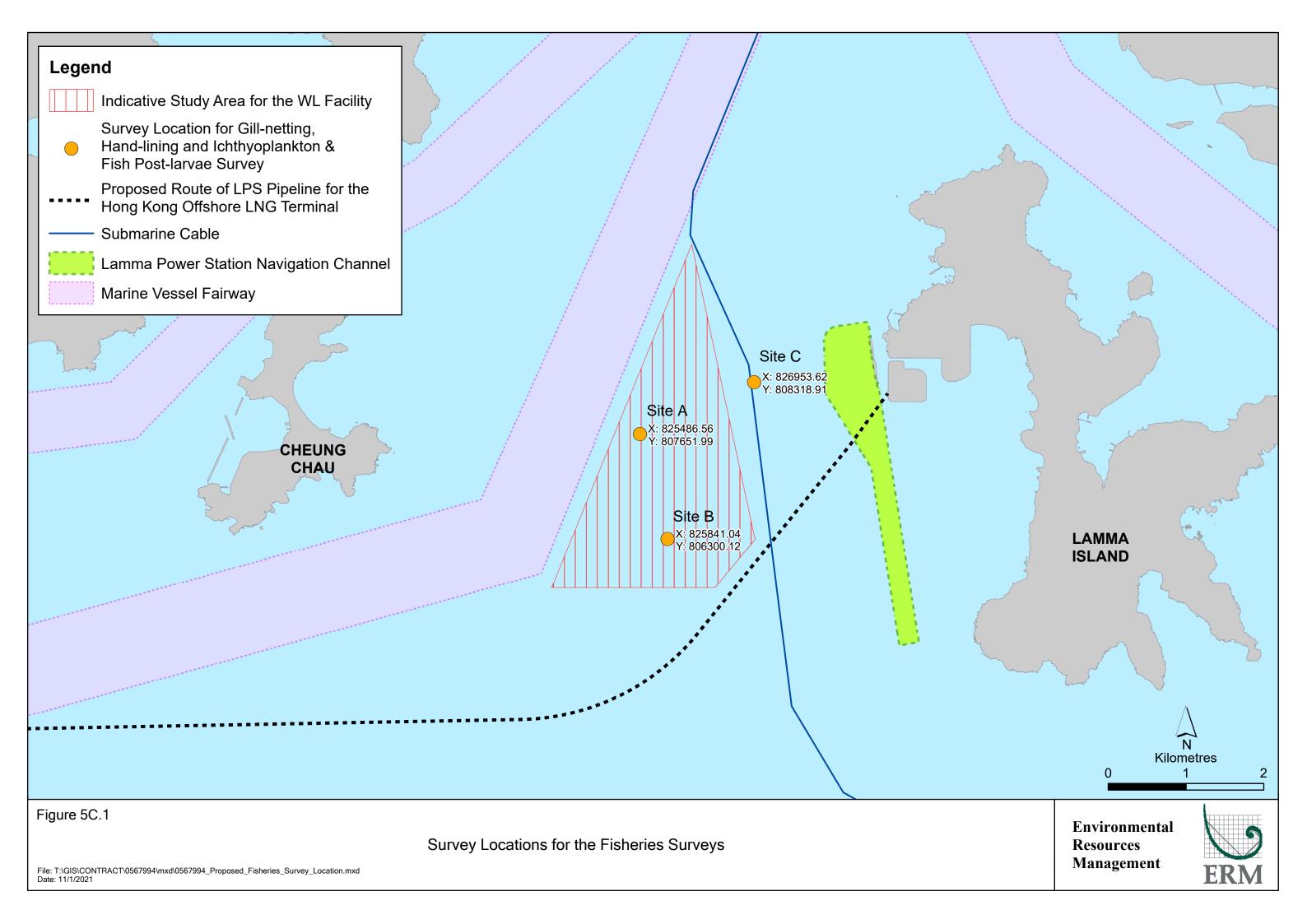


Table 5C.2 Summary of Adult Fish Production Survey (including Fish and other Fisheries Species) in the Dry and Wet Seasons. Mean values expressed as per survey

Season		Dry Seasor	1	Wet Season		
Site	Α	В	С	Α	В	С
Total Abundance (Nos. of individuals)	48	84	56	31	26	18
Mean Abundance (Nos. of individuals)	24.0	42.0	28.0	15.5	13.0	9.0
Total Biomass (g)	1614.4	3958.3	1239.9	2824.8	1007.1	1036.2
Mean Biomass (g)	807.2	1979.2	620.0	1412.4	503.6	518.1
Species Richness (Total No. of Species)	19	33	19	21	10	12
Mean Species Richness (S)	9.5	17.5	10.0	12.0	6.0	7.5
Mean Species Diversity (H')	1.35	2.30	1.74	2.34	1.72	1.96
Mean Species Evenness (J')	0.92	0.93	0.84	0.95	0.96	0.97

5C.2.2 Species Composition

The species recorded within and in the vicinity of the Study Area generally consisted of fish with low commercial value (e.g. the croaker *Johnius belangerii*) and some fish and crustaceans of medium to high commercial value (e.g. mantis shrimps, prawns and crabs). The top ten recorded in the surveys species, in terms of abundance and biomass, are summarised in *Tables 5C.3* and *5C.4* respectively.

The most dominant fisheries species recorded in the survey by abundance was *Metapenaeus joyneri* (crustacean) of high commercial value, according to the Fish Marketing Organisation (FMO) ⁽¹⁾ and other published references ⁽²⁾. However this species only made up of 1.45% (0.30 kg) of the total fisheries biomass from the survey. The most dominant fish species by abundance was *Evynnis cardinalis* of medium commercial value and made up of 0.72% (0.15 kg) of the total fisheries biomass from the survey. Although some of the species of medium to high commercial value were recorded from the surveys, it should be noted that the biomass of these species were generally low when compared to the total catches of the survey. The most dominant species ranked by abundance / biomass contributed to 9-12% of the total abundance / biomass, indicating the fisheries resources of the survey areas were not dominated by any single species.

Table 5C.3 Top Ten Dominant Species Ranked by Total Abundance from the Adult Fish Production Survey

Group	Family	Species	Species Abundance (nos. of individual)	% of Total Abundance	Commercial Value (see Note below)
Crustacean	Penaeidae	Metapenaeus joyneri	32	12.17%	Н
Crustacean	Squillidae	Anchisquilla fasciata	21	7.98%	Н
Fish	Sparidae	Evynnis cardinalis	16	6.08%	M
Crustacean	Squillidae	Harpiosquilla harpax	14	5.32%	Н
Fish	Paralichthyidae	Pseudorhombus cinnamoneus	14	5.32%	М
Fish	Sciaenidae	Johnius belangerii	13	4.94%	L
Fish	Engraulidae	Thryssa dussumieri	12	4.56%	L

⁽¹⁾ Fish Marketing Organization (FMO). Available at https://www.fmo.org.hk

⁽²⁾ ERM (2018). Hong Kong Offshore LNG Terminal Environmental Impact Assessment (EIA) Report.

Group	Family	Species	Species Abundance (nos. of individual)	% of Total Abundance	Commercial Value (see Note below)
Crustacean	Portunidae	Charybdis hellerii	10	3.80%	-
Crustacean	Dorippdae	Dorippoides facchino	10	3.80%	-
Fish	Leiognathidae	Leiognathus brevirostris	8	3.04%	M

Notes:

For fish species: H = High (> 90 HK/kg); M = Medium (66 - 90 HK/kg); L = Low (< 66 HK/kg).

For crustacean and cephalopod species, commercial value made reference to approved EIA reports.

Table 5C.4 Top Ten Dominant Species Ranked by Total Biomass from the Adult Fish Production Survey

Group	Family	Species	Species Biomass (g)	% of Total Biomass	Commercial Value (see Note below)
Fish	Muraenidae	Strophidon sathete	1077.50	9.22%	L
Fish	Tetraodontidae	Lagocephalus wheeleri	933.30	7.99%	-
Fish	Sciaenidae	Johnius belangerii	910.60	7.80%	L
Fish	Nemipteridae	Nemipterus japonicus	681.30	5.83%	L
Fish	Sparidae	Sparus aurata	527.50	4.52%	L
Fish	Sciaenidae	Pennahia argentata	407.60	3.49%	M
Crustacean	Squillidae	Anchisquilla fasciata	406.60	3.48%	Н
Crustacean	Squillidae	Harpiosquilla harpax	399.30	3.42%	Н
Fish	Cynoglossidae	Cynoglossus arel	337.20	2.89%	Н
Fish	Sillaginidae	Sillago sihama	333.40	2.85%	М

Notes:

For fish species: H = High (> 90 HK/kg); M = Medium (66 - 90 HK/kg); L = Low (< 66 HK/kg).

For crustacean and cephalopod species, commercial value made reference to approved EIA reports.

5C.2.3 Commercial Value

According to the Annual Report 2018/2019 of Fish Marketing Organization (FMO), the average wholesale prices of fresh marine fish ranged from 66.95 – 90.12 HK\$/kg with an average price of 74.80 HK\$/kg. The commercial value of adult fish resources recorded in the surveys was estimated based on FMO's wholesale price of fresh marine fish and classified to three classes: High value (>90 HK\$/kg); Medium value (66-90 HK\$/kg); and Low value (<66 HK\$/kg). Species of which prices are not provided by the FMO, the commercial value were estimated with reference to previous EIA reports, submissions under EIAO and price of similar species. It should be noted that there are no published wholesale prices of crustaceans available for assessment of commercial value. Most edible species of mantis shrimps (e.g. *Harpiosquilla harpax*), prawns (e.g. *Penaeidae* spp.) and crabs (e.g. *Portunus* spp.) are generally regarded as having high commercial value (3).

^{&#}x27;-' indicates not commercially important species or no commercial value is evaluated by the FMO.

^{&#}x27;-' indicates not commercially important species or no commercial value is evaluated by the FMO.

⁽³⁾ ERM (2018). Op. cit.

Out of the 39 fish species recorded in the survey, 37 of them are classified as commercial fish species and more than half of them (23 out of 37 species) were of low commercial value (*Annex 5F*). For other fisheries species (crustaceans and cephalopod), 9 of the 15 species recorded in the survey are considered as commercial species, though the commercial species recorded are generally considered as of high value. Overall, although the dominant species consisted of fish and crustaceans with various commercial values (*Tables 5C.3* and *5C.4*), the catches were generally comprised of low to moderate commercial value fisheries species which accounted for about 75% of total biomass and 65% of total abundance.

5C.2.4 Spatial and Seasonal Variation

The mean species richness (S), diversity (H') and evenness (J') of fisheries resources in the wet and dry seasons are presented in *Table 5C.2*. The abundance, biomass and species diversity varied amongst the three survey locations in the dry and wet seasons and they were higher at Site B and Site A in the dry and wet seasons, respectively. The mean biomass and abundance of fisheries resources was higher in the dry season than in the wet season. Belanger's croaker *Johnius belangerii* (12 individuals) was the most dominant fish species recorded in the dry season, while Cardinal seabream *Evynnis cardinalis* (11 individuals) was the most dominant fish species recorded in the wet season. The mean species diversity (H') within and in the vicinity of the Study Area are considered to be low and they were higher in wet season, while species evenness (J') in the wet and dry seasons were similar, indicating there was no dominating species recorded within and in the vicinity of the Study Area over the survey period.

5C.3 Ichthyoplankton and Fish Post-Larvae Survey

5C.3.1 Overview

There were 113 ichthyoplankton (i.e. eggs and larvae in planktonic phase and drift with the water currents) species from 34 families, 42 fish post-larvae (i.e. post-settlement stages when fish have attained a larger size, are no longer planktonic and are capable of swimming against currents) species from 20 families recorded from the three ichthyoplankton and fish post-larvae survey locations during the survey period. The species richness and density of ichthyoplankton and fish post-larvae are summarised in *Table 5C.5*. The full list of recorded species during surveys is presented in *Annex 5E*.

The mean densities of ichthyoplankton and fish post-larvae species are about 36.6 and 0.1 number/m³, respectively, which are comparable to other previous studies conducted in the Assessment Area (see **Section 5A2.4 of Annex 5A** for details). The level of ichthyoplankton and fish post-larvae resources of the Study Area varied over time (7.3-108.8 number/m³ for ichthyoplankton; 0.02-0.23 number/m³ for fish post-larvae) and was considered low in general.

Table 5C.5 Summary of Fish Eggs, Fish Larvae and Fish Post-larvae over the Survey Period. Mean values expressed as per replicate

Survey Date		16 Mar 202	1		27 Mar 2021			17 Apr 2021			8 May 2021	
Site	Α	В	С	Α	В	С	Α	В	С	Α	В	С
Fish Eggs												•
Family Richness (Total No. of Family)	16	10	13	14	14	12	15	15	14	10	12	12
Species Richness (Total No. of Species)	23	13	17	22	25	17	23	30	21	15	19	14
Mean Density (number / 1000 m ³)	14883.90	6884.04	10967.86	14540.25	85640.78	18504.89	40806.48	77569.43	48218.35	17457.86	23957.80	13729.43
Fish Larvae												
Family Richness (Total No. of Family)	4	7	5	12	14	11	11	17	8	10	8	7
Species Richness (Total No. of Species)	4	9	5	14	23	13	19	38	11	11	15	10
Mean Density (number / 1000 m ³)	396.29	372.38	215.96	992.97	1843.40	1320.43	5376.46	31261.81	2158.71	6062.35	8087.57	7392.83
Fish Post-larvae												
Total No. of Family	2	7	5	5	10	13	4	6	5	10	6	9
Total No. of Species	2	7	6	5	13	16	5	9	8	17	9	12
Mean Density (number / 1000 m³)	20.96	59.21	20.30	108.86	52.85	133.61	107.81	226.18	91.53	141.62	74.16	133.57

5C.3.2 Species Composition

The top ten dominant fish eggs, fish larvae and fish post-larvae species from surveys are summarized in *Tables 5C.6* to *5C.8*, respectively. The dominant fish eggs consisted of species with various commercial values, including *Nuchequula nuchalis*, *Sillago sihama*, *Nibea albiflora*, *Diagramma pictum* and *Alepes kleinii*. The dominant fish larvae consisted of species with low to medium commercial values, including *Ambassis gymnocephalus*, *Sillago sihama*, *Nuchequula nuchalis*, *Alepes kleinii* and *Apogonichthyoides cathetogramma*. The dominant fish post-larvae species consisted of species with low to medium commercial values, including *Ambassis gymnocephalus*, *Sardinella sp.*, *Sardinella melanura*, *Inegocia japonica*, *Sillago sihama* and *Alepes kleinii*.

Table 5C.6 Top Ten Dominant Fish Egg Species in all Survey Locations

Family	Species	Commercial Value (see Note below)	Mean Density (No./ 1000 m ³)	% of Total Density
Leiognathidae	Nuchequula nuchalis	М	3937.15	12.7%
Sillaginidae	Sillago sihama	М	3755.50	12.1%
Sciaenidae	Nibea albiflora	Н	3414.95	11.0%
Haemulidae	Diagramma pictum	Н	2848.76	9.2%
Leiognathidae	Photopectoralis bindus	L	1934.44	6.2%
Sparidae	Acanthopagrus pacificus	Н	1711.75	5.5%
Carangidae	Alepes kleinii	L	1563.51	5.0%
Gerreidae	Gerres oyena	L	1299.29	4.2%
Clupeidae	Nematalosa japonica	L	941.84	3.0%
Leiognathidae	Leiognathus ruconius	L	873.96	2.8%

Notes:

For fish species: H= High (> 90 HK\$/kg); M= Medium (66 - 90 HK\$/kg); L= Low (< 66 HK\$/kg).

For crustacean and cephalopod species, commercial value made reference to approved EIA reports.

Table 5C.7 Top Ten Dominant Fish Larvae Species in all Survey Locations

Family	Species	Commercial Value (see Note below)	Mean Density (No./ 1000 m ³)	% of Total Density
Ambassidae	Ambassis gymnocephalus	L	1228.8	22.52%
Clupeidae	Sardinella melanura	L	978.0	17.92%
Blenniidae	Omobranchus punctatus	-	313.1	5.74%
Sparidae	Acanthopagrus pacificus	Н	248.6	4.56%
Sillaginidae	Sillago sihama	М	235.1	4.31%
Pomacentridae	Neopomacentrus cyanomos	L	233.6	4.28%
Leiognathidae	Nuchequula nuchalis	M	204.6	3.75%
Gobiidae	Gobiidae sp.	-	172.3	3.16%
Carangidae	Alepes kleinii	L	133.4	2.45%

^{&#}x27;-' indicates not commercially important species or no commercial value is evaluated by the FMO.

Family	Species	Commercial Value (see Note below)	Mean Density (No./ 1000 m ³)	% of Total Density
Apogonidae	Apogonichthyoides cathetogramma	L	116.3	2.13%

Notes:

For fish species: H = High (> 90 HK/kg); M = Medium (66 - 90 HK/kg); L = Low (< 66 HK/kg).

For crustacean and cephalopod species, commercial value made reference to approved EIA reports.

Table 5C.8 Top Ten Dominant Fish Post-Larvae Species in all Survey Locations

Family	Species	Commercial Value (see Note below)	Mean Density (No./ 1000 m ³)	% of Total Density
Ambassidae	Ambassis gymnocephalus	L	16.85	17.3%
Clupeidae	Sardinella sp.	L	15.74	16.1%
Clupeidae	Sardinella melanura	L	14.89	15.3%
Platycephalidae	Inegocia japonica	L	12.59	12.9%
Callionymidae	Callionymus curvicornis	-	4.68	4.8%
Mugilidae	Osteomugil cunnesius	L	4.07	4.2%
Monacanthidae	Monacanthus chinensis	-	3.07	3.1%
Sillaginidae	Sillago sihama	М	2.83	2.9%
Carangidae	Alepes kleinii	L	2.33	2.4%
Carangidae	Decapterus maruadsi	L	2.12	2.2%

Notes:

For fish species: H = High (> 90 HK/kg); M = Medium (66 - 90 HK/kg); L = Low (< 66 HK/kg).

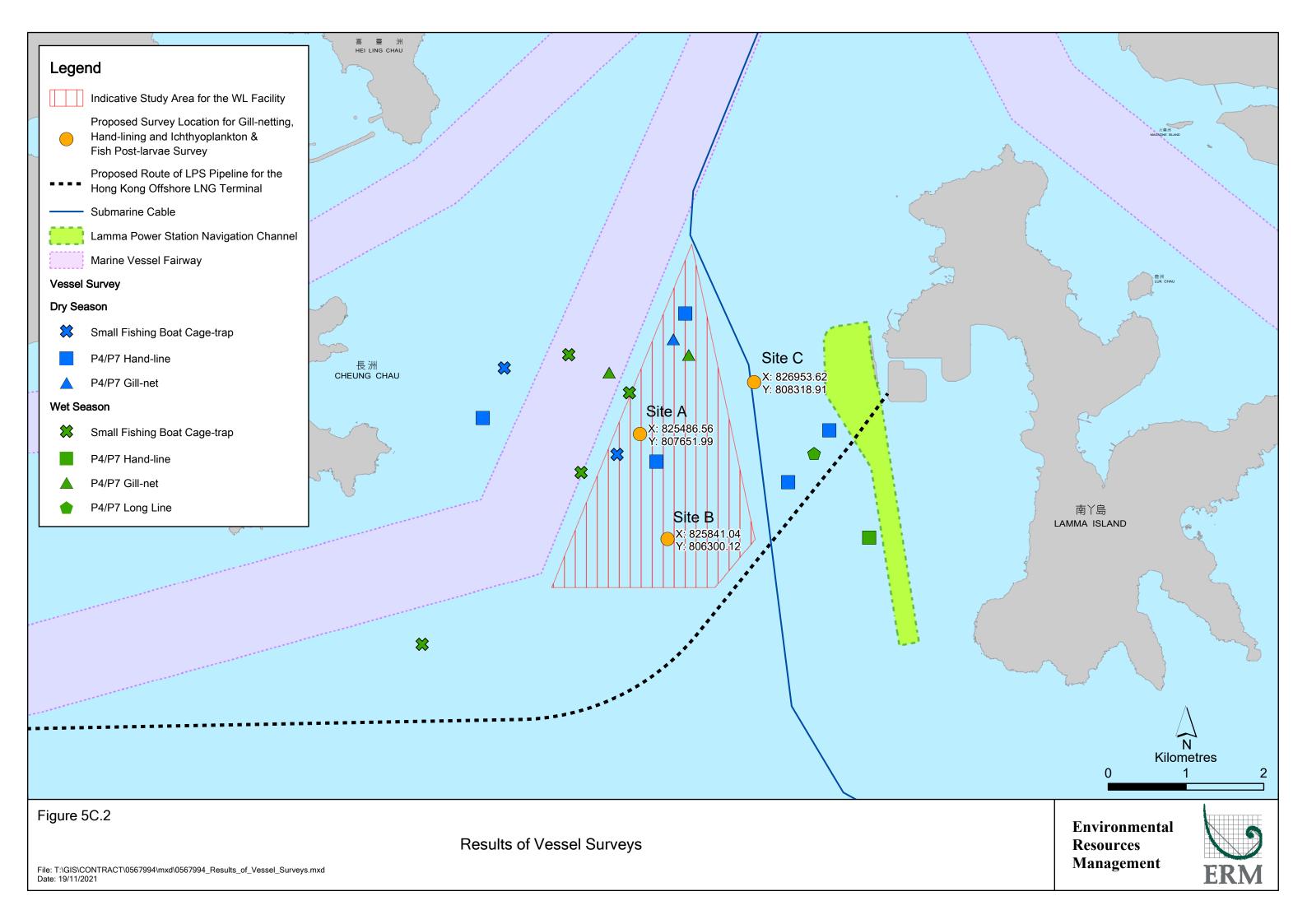
For crustacean and cephalopod species, commercial value made reference to approved EIA reports.

5C.3.3 Spatial and Seasonal Variation

Higher richness of ichthyoplankton species were recorded in the wet season than in the dry season (85 nos. of species in wet season and 69 species in dry season). Among the three survey locations, higher mean densities of ichthyoplankton (~47 nos. / m³ in the dry season and ~70 nos. / m³ in the wet season) were consistently recorded in Site B, dominated by *Sillago sihama* and *Nuchequula nuchalis* in the dry and wet seasons, respectively. The mean densities of ichthyoplankton were ~26 and ~47 no./m³ in the dry and wet seasons, respectively.

For fish post-larvae resources, there was no substantial difference between the mean densities recorded from all survey locations in the dry and wet seasons. A total of 22 and 31 species were recorded in the dry and wet seasons, respectively. Higher mean densities of fish post-larvae were recorded in Site C (0.077 no./m³) during the dry season and in Site B (0.150 no./m³) during the wet season, respectively. The mean densities of fish post-larvae resources were 0.066 and 0.129 no./m³ in the dry and wet seasons, respectively.

^{&#}x27;-' indicates not commercially important species or no commercial value is evaluated by the FMO.


^{&#}x27;-' indicates not commercially important species or no commercial value is evaluated by the FMO.

AGREEMENT NO. CE 72/2019 (EP)
CONTAMINATED SEDIMENT DISPOSAL FACILITY AT WEST OF
LAMMA ISLAND - INVESTIGATION
Fisheries Survey Results

5C.4 Vessel Survey

A total of 16 vessels with fishing activities were recorded during the adult fish production surveys between February 2021 and May 2021. The locations of fishing vessels sighted during the surveys are presented in *Figure 5C.2* ⁽⁴⁾. The level of fishing activities recorded during the survey was considered to be low, with an average of 4 vessels encountered per day. Similar levels of fishing activities were recorded between the dry and wet seasons (a total of 8 vessels were recorded in each of the dry and wet seasons). Fishing by hand-lining, gill-netting, long-lining and cage trapping were observed, with a majority of fishing undertaken by hand-lining using P4/7 vessels (also referred to as sampan) and cage-trapping using small fishing vessels.

⁽⁴⁾ The license number of most vessels observed was not clearly marked, and the vessels were usually distant from the observation point, thus the license number of the observed vessels was not recorded.

