Appendix 4.7a Calculation of Construction Ground-borne Noise Levels during Non-Restricted Hours (Unmitigated Scenario)

Ground-borne Noise (GBN) from TBM resulting from the construction of new middle third tunnel

NSR ID.: PHD NSR Name : Planned Housing Development (NKIL6579)

Lp = L_{v,rms} + C_{dist} + C_{damping} + C_{building} + C_{floor} + C_{noise} + C_{multi} + C_{cum}

Item	Description	Quantity	Reference and Assumption
L _{v,rms}	Vibration source term (Peak Particle Velocity	2.5 mm/s	Ref: Kowloon Canton Railway Corporation Kowloon Southern Link
	(PPV)) at R ₀		Environmental Impact Assessment Report (KSL) EIA Appendix 7-2-3
	(from Graph1 DB320 Kwai Tsing Tunnel by		PPV at 5.5m
	Exptrapolation)		
	rms velocity	0.625 mm/s	Lv,rms = PPV / Crest Factor, Crest Factor = 4
	L _{v, rms}	115.92 VdB	
C _{dist}	Distance Attenuation: -20*log (R/R ₀)	-26.8 dB	R = 121m; R ₀ =5.5m
C _{damping}	Soil Damping	0 dB	Assume no soil damping as the vibration would transmit through rock layer
C _{building}	Coupling Loss into Building Structures	0 dB	For conservative approach, no correction is assumed
C _{floor}	Floor to Floor Attenuation	0 dB	1 dB/ floor is assumed
C _{noise}	Conversion from Floor Vibration to Noise Levels	-27 dB	Reference from KSL EIA Report Appendix 7.1
C _{multi}	Noise Level Increase due to Multiple Sources	0 dB	Only 1 TBM will be operated
C _{cum}	Cumulative Effect due to Neighbouring Sites	0 dB	No concurrent project identified within 300m from the NSR
Vibration to Noise	Conversion to A-weighted Noise	-20 dB	From the "Transit Noise and Vibration Impact Assessment"
	Predicted TBM Ground-borne Noise Level	42 dB(A)	

Appendix 4.7a Calculation of Construction Ground-borne Noise Levels during Non-Restricted Hours (Unmitigated Scenario)

Ground-borne Noise (GBN) from PME Operation

NSR ID. :

PHD Planned Housing Development (NKIL6579) NSR Name :

Construction of New Middle Third Tunnel

PME:	Hydraulic Breaker								
Item	Description								Reference and Assumption
	Octave Band Frequency	16	31.5	63	125	250	500	Hz	
L _{v.rms}	Source Vibration Velocity	0.06	0.07	0.06	0.05	0.06	0.12	mm/s	Reference from KSL EIA Appendix 7-1
	Vibration Velocity, ref 10 [^] -6 mm/s	96	97	96	94	96	102	dB	
C _{dist}	Distance Attenuation: -20*log (R/R ₀)	-26.8	-26.8	-26.8	-26.8	-26.8	-26.8	dB	R = 121m; R ₀ =5.5m
C _{damping}	Soil Damping	0	0	0	0	0	0	dB	Assume no soil damping correction as vibration would transmit through rock layer
C _{building}	Coupling Loss into Building Structures	0	0	0	0	0	0	dB	For conservative approach, no correction is assumed
C _{floor}	Floor to Floor Attenuation	0	0	0	0	0	0	dB	1 dB/ floor is assumed
C _{noise}	Conversion from Floor Vibration to Noise Levels	-27	-27	-27	-27	-27	-27	dB	Reference from KSL EIA Report Appendix 7.1
C _{multi}	Noise Level Increase due to Multiple Sources	0	0	0	0	0	0	dB	
C _{cum}	Cumulative Effect due to Neighbouring Sites	0	0	0	0	0	0	dB	No concurrent project identified within 300m from the NSR
Vibration to Noise	Conversion to A-weighted Noise	-56.7	-39.4	-26.2	-16.1	-8.6	-3.2	dB	Standard acoustical principles
	Ground-borne Noise	-15	4	16	24	33	45	dB(A)	
	Predicted Ground-borne Noise Level for 1								
	Hydraulic Breaker						44.9	dB(A)	
PME:	Drill Rig								
	Using the calculated hydraulic breaker	noise t	o corre	ect to D	rill Rig	Noise	5.1	dB(A)	20 log(0.536/0.298)
	Predicted Ground	l-borne	e Noise	Level	for 1 D	rill Rig	50	dB(A)	

PME:	Hand-held Breaker			
	Using the calculated hydraulic breaker noise to correct to Hand-held Breaker Noise	-0.57	dB(A)	20 log(0.279/0.298)
	Predicted Ground-borne Noise Level for 1 Hand-held Breaker	44	dB(A)	

Construction Activity	PME	No. of PME	GBN Level
Construction of New Middle Third Tunnel	Hydraulic Breaker	2	48 dB(A)
	Drill Rig	5	57 dB(A)
	Hand-held Breaker	3	49 dB(A)
	TBM	1	42 dB(A)
	Overall Predicted Ground-born	e Noise Level	58 dB(A)
	Daytime Ground-borne N	loise Criteria	65 dB(A)
	Complia	nce (Yes/No)	Yes

Enlargement of Existing Kowloon bound Tunnel

PME:	Hydraulic Breaker								
Item	Description								Reference and Assumption
	Octave Band Frequency	16	31.5	63	125	250	500	Hz	
L _{v.rms}	Source Vibration Velocity	0.06	0.07	0.06	0.05	0.06	0.12	mm/s	Reference from KSL EIA Appendix 7-1
	Vibration Velocity, ref 10 [^] -6 mm/s	96	97	96	94	96	102	dB	
C _{dist}	Distance Attenuation: -20*log (R/R ₀)	-28.4	-28.4	-28.4	-28.4	-28.4	-28.4	dB	R = 145m; R ₀ =5.5m
C _{damping}	Soil Damping	0	0	0	0	0	0	dB	Assume no soil damping correction as vibration would transmit through rock layer
C _{building}	Coupling Loss into Building Structures	0	0	0	0	0	0	dB	For conservative approach, no correction is assumed
C _{floor}	Floor to Floor Attenuation	0	0	0	0	0	0	dB	1 dB/ floor is assumed
C _{noise}	Conversion from Floor Vibration to Noise Levels	-27	-27	-27	-27	-27	-27	dB	Reference from KSL EIA Report Appendix 7.1
C _{multi}	Noise Level Increase due to Multiple Sources	0	0	0	0	0	0	dB	
C _{cum}	Cumulative Effect due to Neighbouring Sites	0	0	0	0	0	0	dB	No concurrent project identified within 300m from the NSR
Vibration to Noise	Conversion to A-weighted Noise	-56.7	-39.4	-26.2	-16.1	-8.6	-3.2	dB	Standard acoustical principles
	Ground-borne Noise	-17	2	14	22	32	43	dB(A)	
	Predicted Ground-borne Noise Level for 1 Hydraulic Breaker						43.3	dB(A)	

Construction Activity	PME	No. of PME	GBN Level				
Enlargement of Existing Kowloon bound Tunnel	Hydraulic Breaker	4	49 dB(A)				
C	Daytime Ground-borne Noise Criteria						
	Compliance (Yes/No)						

Rehabilitation of Existing Shatin Bound Tunnel

PME:	Hydraulic Breaker								
Item	Description								Reference and Assumption
	Octave Band Frequency	16	31.5	63	125	250	500	Hz	
Lyrms	Source Vibration Velocity	0.06	0.07	0.06	0.05	0.06	0.12	mm/s	Reference from KSL EIA Appendix 7-1
	Vibration Velocity, ref 10 [^] -6 mm/s	96	97	96	94	96	102	dB	
C _{dist}	Distance Attenuation: -20*log (R/R ₀)	-25.2	-25.2	-25.2	-25.2	-25.2	-25.2	dB	R = 100m; R ₀ =5.5m
C _{damping}	Soil Damping	0	0	0	0	0	0	dB	Assume no soil damping correction as vibration would transmit through rock layer
C _{building}	Coupling Loss into Building Structures	0	0	0	0	0	0	dB	For conservative approach, no correction is assumed
C _{floor}	Floor to Floor Attenuation	0	0	0	0	0	0	dB	1 dB/ floor is assumed
C _{noise}	Conversion from Floor Vibration to Noise Levels	-27	-27	-27	-27	-27	-27	dB	Reference from KSL EIA Report Appendix 7.1
C _{multi}	Noise Level Increase due to Multiple Sources	0	0	0	0	0	0	dB	
C _{cum}	Cumulative Effect due to Neighbouring Sites	0	0	0	0	0	0	dB	No concurrent project identified within 300m from the NSR
Vibration to Noise	Conversion to A-weighted Noise	-56.7	-39.4	-26.2	-16.1	-8.6	-3.2	dB	Standard acoustical principles
	Ground-borne Noise	-13	5	17	26	35	46	dB(A)	
	Predicted Ground-borne Noise Level for 1								
	Hydraulic Breaker						46.6	dB(A)	

Using the calculated hydraulic breaker noise to correct to Drill Rig Noise 5.1 dB(A) 20 log(0.536/0.298) Predicted Ground-borne Noise Level for 1 Drill Rig 52 dB(A)	PME:	Drill Rig				
Predicted Ground-borne Noise Level for 1 Drill Rig 52 dB(A)			Using the calculated hydraulic breaker noise to correct to Drill Rig Noise	5.1	dB(A)	20 log(0.536/0.298)
			Predicted Ground-borne Noise Level for 1 Drill Rig	52	dB(A)	

Appendix 4.7a Calculation of Construction Ground-borne Noise Levels during Non-Restricted Hours (Unmitigated Scenario)

Construction Activity	PME	No. of PME	GBN Level						
Rehabilitation of Existing Shatin Bound Tunnel	Hydraulic Breaker	1	47 dB(A)						
	Drill Rig	1	52 dB(A)						
Overall Pred	Overall Predicted Ground-borne Noise Level								
Dayt	ime Ground-borne N	loise Criteria	65 dB(A)						
	Complia	nce (Yes/No)	Yes						