APPENDIX 3.7A

ODOUR SURVEY FOR TAI PO SEWAGE TREATMENT WORKS

 PolyU Technology & Consultancy

 Company Limited
 理 大 科 技 及 顧 問 有 限 公 司

Technical Report

for

Contract No. SPW 16/2020 – Upgrading of Tai Po Sewage Treatment Works – Investigation – Odour Survey and Analysis

For

Drainage Services Department

Prepared by

Odour Research Laboratory Department of Civil and Environmental Engineering

The Hong Kong Polytechnic University

Submitted by

PolyU Technology and Consultancy Company Limited

Signed by: Prof. Shun-cheng Le Date: 28/04/2021

Company Limited 理大科技及顧問有限公司

1 Introduction

A service to conduct odour sampling and analysis at Tai Po Sewage Treatment Works (TPSTW) and its site boundaries, Refuse Collection Point (RCP) at Dai Kwai Street, and adjacent frontier Air Sensitive Receivers (ASRs) has been invited by Ms. Christina KO at Black & Veatch Hong Kong Limited on behalf of Drainage Services Department, HKSAR on 10th August 2020.

2 Scope of Works

The scope of the works includes:

- To conduct odour source sampling at designated locations (including predetermined locations inside TPSTW and Sheun Wan leachate Pre-treatment Works) using flux chamber or wind tunnel sampler, and ambient sampling at frontier ASRs, site boundary, as well as RCP at Dai Kwai Street.
- To conduct laboratory olfactometry analysis for source samples and ambient samples.
- To submit a report of sampling and analysis results of odour emission rates at sources and odour concentrations at different locations.

Description	Period Covered/Date
Site Inspection	4 th September 2020
First Round of Ambient Sampling at ASRs and Site Boundaries	16 th September 2020 – 18 th September 2020
Second Round of Ambient Sampling at ASRs and Site Boundaries	23 rd September 2020 – 24 th September 2020
First Round of Source Sampling on-site	7 th October 2020 – 23 rd October 2020
Second Round of Source Sampling on-site	30 th October 2020 – 9 th November 2020
Draft Technical Report Submission	7 th December 2020
Final Technical Report Submission	28 th April 2021

3 Schedule

4 Working Plan

Ambient sampling at surrounding ASRs and site boundaries were conducted during the period of 16th September to 24th September 2020. The sampling locations are illustrated in the following figures.

Sampling locations for ASRs in adjacent to TPSTW and site boundaries

Sampling locations for source samples in TPSTW

Company Limited 理大科技及顧問有限公司

Following is the working plan of the ambient sampling.

ID	I a setion	Odour	1 st R	ound	2 nd R	ound
ID	Location	Sample	16 Sept	18 Sept	23 Sept	24 Sept
ASR1	Watsons Water Centre	4	2			2
ASR2	Hong Kong Yakult Co. Ltd.	4	2			2
ASR3	Maxim's Food Factory 2	4	2			2
ASR4	Government Staff Quarters	4	2		2	
ASR5	Oriental Press Centre	4	2			2
ASR6	PC3 Product Customization & Consolidation Centre	4	2			2
ASR7	Cabot Plastics Hong Kong Ltd.	4	2		2	
ASR8	Winner Food Products Ltd.	4	2		2	
ASR9	Tung Fong Hung (Medicine) Co. Ltd.	4		2		2
ASR10	Arvato Digital Services	4		2		2
ASR11	Process Automation International Ltd.	4		2		2
ASR12	Zama Corporation Ltd.	4		2		2
ASR13	Taclon Industries Ltd.	4		2		2
ASR14	Hung Hing Off-Set Printing	4		2	2	
RCP	Refuse Collection Point at Dai Kwai Street	4	2		2	
SB-E	East Site Boundary of TPSTW	4		2	2	
SB-S	South Site Boundary of TPSTW	4		2	2	
SB-W	West Site Boundary of TPSTW	4	2		2	
SB-N	North Site Boundary of TPSTW	4		2	2	

Source sampling at TPSTW site were conducted during the period of 7th October to 9th November 2020. Following is the working plan of the source sampling.

ID	Location	Odour		1 st R	ound			2 nd R	ound	
ID	Location	Sample	7 Oct	9 Oct	19 Oct	23 Oct	30 Oct	2 Nov	3 Nov	9 Nov
		West Par	t of TPS	STW						
S1	Inlet pumping station	4	2					2		
S2	Screens house	4	2					2		
S2a	Screens house grit collection tank	4				2	2			
S3	Primary sedimentation tank (outlet)	4	2							2
S3a	Primary sedimentation tank (outlet)	4	2							2
S4	Primary sedimentation tank (inlet)	4	2					2		
S4a	Primary sedimentation tank (inlet)	4	2					2		
S5	Aeration tank (inlet)	4	2							2
S5a	Aeration tank (inlet)	4	2							2
S6	Aeration tank (outlet)	4	2							2
S6a	Aeration tank (outlet)	4	2							2
S7	Final sedimentation tank (outlet)	4		2						2
S7a	Final sedimentation tank (outlet)	4		2	2*					2
S8	Final sedimentation tank (inlet)	4	2							2
S8a	Final sedimentation tank (inlet)	4		2						2
S9	Sludge digestion tank	4				2	2			2*
S10	Sludge consolidation tank	4				2	2			2*

	Company Limited 理 🗦	大科	技及	之顧	問之	有 限	公	司		
S11	Primary sludge gravity thickener	4				2	2			
S12	Sludge dewatering house (inlet tank)	4			1	2	2			
S12a	Sludge dewatering house (dry sludge)	4				2	2			
S13	SAS thickening house	4				2	2			
S14	Sludge pumping station	4				2	2			
		East Par	t of TPS	STW						
S15	Inlet pumping station	4			2			2		
S16	Screens house	4			2			2		
S16a	Screens house grit collection tank	4				2	2			
S17	Primary sedimentation tank (inlet)	4		2					2	
S17a	Primary sedimentation tank (inlet)	4		2					2	
S18	Primary sedimentation tank (outlet)	4		2					2	
S18a	Primary sedimentation tank (outlet)	4		2					2	
S19	Aeration tank (inlet)	4		2	2*				2	
S19a	Aeration tank (inlet)	4		2	2*				2	
S20	Aeration tank (outlet)	4		2					2	
S20a	Aeration tank (outlet)	4		2					2	
S21	Final sedimentation tank (outlet)	4			2			2		
S21a	Final sedimentation tank (outlet)	4			2			2		
S22	Final sedimentation tank (inlet)	4			2			2		
S22a	Final sedimentation tank (inlet)	4			2			2		
S23	Sludge digestion tank	4			2		2			
S24	Sludge consolidation tank	4			2		2			
	Sheun War	1 Leacha	te Pre-t	reatmen	t Work	S				
S25	Leachate pre-treatment tank	4		2				2		

*: retake of specific samples.

5 Methodology

5.1 Odour Sampling

Odour gaseous sample is collected by using a specialized odour sampling system (CSD30, 60L, Olfasence GmbH, Germany). During air sampling, an empty sample bag is placed in the sealed sampler, and the sampler is then evacuated at a controlled rate (by setting total sampling time for 5-minute, 10-minute, 15-minute or 30-minute) by the built-in vacuum pump, sample bag will be filled with sample gas due to negative pressure in the sampler.

CSD30 Odour Sampler

In this technique, all "wetted" parts exposed to the odourous gas are to be composed of stainless steel and Teflon tubing. The sample bags are manufactured from PTFE, Tedlar if the bags are to be reuse, or from nalophane NATM if the bags are to be discarded after use.

Dynamic sampling system, which includes an odour-free gas source from a gas cylinder or gas cleaning device, a dynamic flux chamber or wind tunnel sampler, and sample collection system, is suitable for measuring emission rates. The flux chamber or wind tunnel will be placed on the emission surface of selected locations and a stream of odour-free gas from a certified gas cylinder or a gas cleaning device will be supplied to the chamber to simulate a parallel wind blowing above the emission surface. The flow rate of the gas will be measured by a flow meter attached on the gas supply tubing. Odour emission rate is then determined by the air flow through the chamber and the odour concentration of the collected gas sample, according to the following equation:

SOER
$$(ou/m^2/s) = \frac{0 \text{dour Conc.} (ou/m^3) \times \text{Air Flow Inside Flux Chamber } (m^3/s)}{\text{Covered Surface Area } (m^2)}$$

The required flowrate of odour-less nitrogen injected into flux chamber is 5 L/min, hence the dynamic flux chamber will be used for the sampling of source emission. In general, the wind tunnel sampler is capable to obtain average emission rate from low-emission heterogeneous sources (e.g., nullah, seawater surface, etc.) by covering a larger surface area. In this specific project, the odour emission

Company Limited 理大科技及顧問有限公司

rates from wastewater and sludge surfaces are to be collected, which are with obviously higher emission rates (compared to the natural water bodies) and with more uniform emission rate for each specific sampling location. Also there is are safety considerations on utilizing the bulky wind tunnel sampling on wastewater or sludge surface sampling. Hence, the flux chamber sampler is considered capable for source sampling for this specific project. The effective covering area of the dynamic flux chamber is about 0.13 m². In consideration of the sample size, the sampling period of each sample shall be within 10 minutes. Specifically for our CSD30 sampler, the flowrate to sample bag is identical for 5-min and 10-min setting, while the 10-min setting is at intermittent sampling mode. For sample representativeness, the difference between 5-min and 10-min is not significant. Hence, 5-min sampling duration was proposed for the source sampling in this specific project. For supporting a sampling period of 5-min, the lowest flowrate of injected nitrogen gas is suggested to be adjusted to at least 12 L/min, and for the consideration of redundance, a 15 L/min flowrate of nitrogen was adopted for source sampling.

Dynamic Flux Chamber

For the purpose of Quality Assurance & Quality Control (QA/QC), during each sampling day, a control sample with odour-less nitrogen purged into sample back will be collected for olfactometry analysis. During the date of ambient sampling, nitrogen gas was directly injected to sample bags by connecting CSD30 sampler with the gas cylinder. While during the date of source sampling, nitrogen gas was injected to the cleaned flux chamber sampler first, and QA/QC samples were collected by CSD30 sampler from the cleaned flux chamber with nitrogen gas cylinder connected. Odour concentrations of ambient samples and source samples were validated by the QA/QC sample results obtained on the same day.

5.2 Olfactometry Analysis

The odour concentration of a gaseous sample is determined by presentation to a panel of observers, with known acuity to odour, in varying dilutions. The odour concentration is then expressed in multiples of dilution. Odour concentration is determined by a forced-choice dynamic olfactometer (Odournet TO Evolution) in full accordance with the European Standard Method (EN13725). This European Standard

Company Limited 理大科技及顧問有限公司

is applicable to the measurement of odour concentration of pure substances, defined mixtures and undefined mixtures of gaseous odorants in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor. The range of measurement including pre-dilution prior to the olfactometry analysis is typically from 10¹ ou/m³ to 10⁷ ou/m³. This analysis technique provides directly comparable data for different odour types, and used for input into dispersion models to determine odour impact in terms of annoyance and abatement efficiency assessments.

Odournet TO Evolution Olfactometer

The TO Evolution Olfactometer at Odour Research Laboratory, The Hong Kong Polytechnic University has undergone regularly factory calibration. Calibration certificate could be provided upon request.

6 On-site Sampling

6.1 Photos illustrating sampling activities for ambient samples.

PolyU Technolo	gy &	Co	nsu	lta	ncy								
Company Limited	理	大	科	技	及	顧	問	有	限	公	司		
Sampling at SB-N													

6.2 Photos illustrating sampling activities for source samples.

7 Laboratory Analysis

Specific odour emission rates (SOER, OU/m²/s) can be calculated by the following equation:

SOER
$$(ou/m^2/s) = \frac{Odour Conc. (ou/m^3) \times Air Flow Inside Flux Chamber (m^3/s)}{Covered Surface Area (m^2)}$$

For the current setting of sampling, the air flowrate inside flux chamber is 15 L/min, i.e., $0.00025 \text{ m}^3/\text{s}$, for all source sampling. The covered surface area by the flux chamber is 0.132 m^2 . Odour concentration from the samples are determined by the olfactometry analysis.

理大科技及顧問有限公司

8 Analytical Results

8.1 Analytical Results for Ambient Sampling (Calibrated with Odour Concentration of QA/QC Samples Deducted)

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	Odour Concentration (ou/m ³)	Remarks
		R1-ASR1-A	16 Sept 2020	10:09 - 10:15	34	1.3	W260°	85.7	<10	/
ASD 1	Watsons Water Centre	R1-ASR1-B	16 Sept 2020	10:19 - 10:24	32.4	1.3	W263°	81.2	14	/
ASKI	waisons water Centre	R2-ASR1-A	24 Sept 2020	12:42 - 12:47	32.0	0.6	E90°	74.7	<10	/
		R2-ASR1-B	24 Sept 2020	12:51 - 12:56	31.5	1.3	E83°	77.5	<10	/
		R1-ASR2-A	16 Sept 2020	11:11 - 11:16	32.2	0.9	NE50°	82.7	22	/
1502	Hong Kong Yakult Co.	R1-ASR2-B	16 Sept 2020	11:18 - 11:24	34.5	1.3	W280°	78.2	15	/
ASK2	Ltd.	R2-ASR2-A	24 Sept 2020	12:30 - 12:35	32.1	0.5	WNW285°	75.1	25	/
		R2-ASR2-B	24 Sept 2020	12:37 - 12:42	31.2	0.6	W280°	75.7	13	/
		R1-ASR3-A	16 Sept 2020	10:44 - 10:49	32.3	1.0	NNE30°	80.3	55	Bakery & wastewater
ASD2	Maxim's Food Footomy 2	R1-ASR3-B	16 Sept 2020	10:51 - 10:57	33.6	1.2	NE40°	77.6	53	Bakery & wastewater
ASKS	Maxim s rood ractory 2	R2-ASR3-A	24 Sept 2020	12:06 - 12:12	32.7	1.1	E82°	71.5	62	Bakery & garbage
		R2-ASR3-B	24 Sept 2020	12:14 - 12:20	32.6	1.3	ENE58°	75.7	50	Bakery & garbage
		R1-ASR4-A	16 Sept 2020	11:41 - 11:47	31.5	0.9	E91°	83.9	43	Refuse smell
ASD4	Government Staff	R1-ASR4-B	16 Sept 2020	11:48 - 11:54	30.7	0.4	SE136°	87.2	92	Refuse smell
ASK4	Quarters	R2-ASR4-A	23 Sept 2020	09:49 - 09:55	32.7	1.1	ENE66°	72.8	11	/
		R2-ASR4-B	23 Sept 2020	09:56 - 10:02	33.8	0.9	ENE69°	71.1	16	/
		R1-ASR5-A	16 Sept 2020	12:18 - 12:24	33.8	0.5	S175°	77.5	40	Refuse smell
ASD5	Oriental Dross Contro	R1-ASR5-B	16 Sept 2020	12:25 - 12:31	32.4	1.6	E79°	81.9	45	Refuse smell
ASKJ	Oriental Press Centre	R2-ASR5-A	24 Sept 2020	10:29 - 10:34	30.7	1.0	N9°	74.1	17	/
		R2-ASR5-B	24 Sept 2020	10:36 - 10:41	32.0	0.9	NE50°	70.1	14	/

PolyU Technology & Consultancy

Company Limited 理大科技及

理大科技及顧問有限公司

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	Odour Concentration (ou/m ³)	Remarks
		R1-ASR6-A	16 Sept 2020	15:34 - 15:39	32.4	0.4	W273°	78.1	134	Sewage smell
ACDC	PC3 Product	R1-ASR6-B	16 Sept 2020	15:41 - 15:46	32.6	0.6	SW217°	77.8	109	Sewage smell
ASKO	Consolidation Centre	R2-ASR6-A	24 Sept 2020	11:44 - 11:50	33.6	1.0	SSW207°	66.6	<10	/
		R2-ASR6-B	24 Sept 2020	11:51 - 11:56	33.3	0.8	S180°	69.1	<10	/
		R1-ASR7-A	16 Sept 2020	15:17 - 15:23	34.2	0.4	WSW244°	74.5	84	Sewage smell
ACD7	Cabot Plastics Hong	R1-ASR7-B	16 Sept 2020	15:25 - 15:30	32.8	0.9	ESE112°	76.9	81	Sewage smell
ASK/	Kong Ltd.	R2-ASR7-A	23 Sept 2020	11:52 - 11:58	33.8	0.4	SW225°	70.8	52	Sewage smell
		R2-ASR7-B	23 Sept 2020	11:59 - 12:05	33.4	1.1	ENE60°	70.1	19	Sewage smell
		R1-ASR8-A	16 Sept 2020	14:59 - 15:05	32.4	0.6	N2°	75.4	23	Fuel smell from trucks
ACDO	Winner Food Products	R1-ASR8-B	16 Sept 2020	15:07 - 15:12	32.5	0.7	S175°	76.7	19	Fuel smell from trucks
ASKð	Ltd.	R2-ASR8-A	23 Sept 2020	11:36 - 11:42	33.9	2.0	WSW240°	68.2	15	/
		R2-ASR8-B	23 Sept 2020	11:43 - 11:49	32.9	1.0	SSW208°	71.8	14	/
		R1-ASR9-A	17 Sept 2020	10:12 - 10:18	31.2	0.8	NE52°	81.1	18	/
ACDO	Tung Fong Hung	R1-ASR9-B	17 Sept 2020	10:20 - 10:25	31.0	0.4	NE39°	83.5	<10	/
АЗКУ	(Medicine) Co. Ltd.	R2-ASR9-A	24 Sept 2020	10:47 - 10:53	30.0	0.8	WNW290°	78.1	14	/
		R2-ASR9-B	24 Sept 2020	10:54 - 10:59	30.5	1.1	WNW283°	78.6	10	/
		R1-ASR10-A	17 Sept 2020	15:19 - 15:25	30.7	2.0	ENE62°	80.3	11	Scrap metal smell
ASD 10	Amusta Digital Samuiaga	R1-ASR10-B	17 Sept 2020	15:26 - 15:32	30.1	2.5	E90°	85.5	<10	Scrap metal smell
ASKIU	Arvato Digital Services	R2-ASR10-A	24 Sept 2020	11:06 - 11:11	30.2	0.9	ENE75°	75.0	<10	Iron smell
		R2-ASR10-B	24 Sept 2020	11:12 - 11:17	31.4	1.1	ENE76°	71.4	<10	Iron smell
		R1-ASR11-A	17 Sept 2020	15:42 - 15:48	30.4	0.6	E87°	85.5	26	Plastic processing smell
ACD11	Process Automation	R1-ASR11-B	17 Sept 2020	15:49 - 15:55	30.5	1.0	ENE78°	82.9	12	Plastic processing smell
ASKII	International Ltd.	R2-ASR11-A	24 Sept 2020	11:25 - 11:31	30.8	1.1	E101°	76.3	<10	/
		R2-ASR11-B	24 Sept 2020	11:32 - 11:37	30.2	0.8	ESE102°	78.5	<10	/

PolyU Technology & Consultancy

	Location	~ 1	Date		Temperature.	W-		DTT 0/	Odour	
ID	Location	Sample ID	Date	Time	°C	Speed,	W-D	RH, %	Concentration (αm^3)	Remarks
		R1-ASR12-A	17 Sept 2020	11.10 - 11.25	32.0	0.6	SE1/10	83.4	30	VOC or chemical smell
		D1 ASD12 D	17 Sept 2020	11.19 - 11.25	21.0	0.0	WSW2420	89.4 88.0	19	VOC or chemical small
ASR12	Zama Corporation Ltd.	RI-ASRI2-D	17 Sept 2020	11.34 - 11.40	31.0	0.9	WSW243	88.0	40	
		R2-ASR12-A	24 Sept 2020	15:56 - 16:01	32.3	1.4	SW227°	72.2	<10	/
		R2-ASR12-B	24 Sept 2020	16:03 - 16:09	32.4	1.3	WSW239°	/0./	<10	/
		R1-ASR13-A	17 Sept 2020	16:06 - 16:12	30.3	3.0	NE38°	81.1	11	/
ASD12	Taolon Industries I td	R1-ASR13-B	17 Sept 2020	16:13 - 16:19	30.8	2.2	E81°	81.1	<10	/
ASKIS	Tacion mausures Lta.	R2-ASR13-A	24 Sept 2020	16:25 - 16:31	31.0	0.8	E80°	74.6	<10	/
		R2-ASR13-B	24 Sept 2020	16:32 - 16:37	31.7	1.1	E81°	72.1	<10	/
		R1-ASR14-A	17 Sept 2020	10:55 - 11:01	32.5	0.7	NNW344°	80.4	16	/
ACD 14	Hung Hing Off-Set	R1-ASR14-B	17 Sept 2020	11:03 - 11:10	33.8	0.7	W275°	75.9	<10	/
ASK14	Printing	R2-ASR14-A	23 Sept 2020	11:18 - 11:24	34.5	1.1	WNW290°	66.9	14	/
		R2-ASR14-B	23 Sept 2020	11:25 - 11:31	35.1	0.7	W278°	65.0	16	/
		R1-RCP-A	16 Sept 2020	12:01 - 12:06	30.5	0.9	W274°	86.5	85	Refuse smell
DCD	Refuse Collection Point	R1-RCP-B	16 Sept 2020	12:08 - 12:14	33.5	0.7	WNW300°	84.7	61	Refuse smell
KCP	at Dai Kwai Street	R2-RCP-A	23 Sept 2020	09:31 -09:37	30.8	1.2	N6°	77.1	28	Refuse smell
		R2-RCP-B	23 Sept 2020	09:39 - 09:45	31.5	1.0	NNW346°	76.8	22	Refuse smell
		R1-SB-E-A	17 Sept 2020	12:44 - 12:49	32.3	0.6	WSW241°	84.3	26	/
CD F		R1-SB-E-B	17 Sept 2020	12:51 - 12:56	32.9	0.7	WSW255°	77.4	20	/
SB-E	Site Boundary – East	R2-SB-E-A	23 Sept 2020	10:07 - 10:12	32.5	0.9	N1°	78.0	17	/
		R2-SB-E-B	23 Sept 2020	10:13 - 10:19	32.9	0.8	N9°	75.1	14	/
		R1-SB-S-A	17 Sept 2020	12:03 - 12:08	33.6	1.3	SW220°	88.8	32	Sludge smell
CD C	Site Devendence Scouth	R1-SB-S-B	17 Sept 2020	12:10 - 12:16	31.8	1.9	WSW253°	83.0	22	Sludge smell
28-2	Site Boundary – South	R2-SB-S-A	23 Sept 2020	10:58 - 11:04	33.3	1.1	WNW299°	72.1	32	/
		R2-SB-S-B	23 Sept 2020	11:05 - 11:11	33.0	1.1	SW222°	72.8	20	/

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	Odour Concentration (ou/m ³)	Remarks
		R1-SB-W-A	16 Sept 2020	14:41 - 14:46	31.5	1.2	NE41°	72.6	17	/
CD W	Site Dougdogs West	R1-SB-W-B	16 Sept 2020	14:48 - 14:54	32.6	1.2	NE50°	72.0	15	/
3D-W	Site Boundary – West	R2-SB-W-A	23 Sept 2020	10:41 - 10:47	32.8	1.8	NNE21°	70.5	47	Sludge smell
		R2-SB-W-B	23 Sept 2020	10:47 - 10:53	33.4	0.6	NNE23°	72.5	47	Sludge smell
		R1-SB-N-A	17 Sept 2020	12:24 - 12:30	31.6	1.7	NE39°	80.4	113	/
SD N	Site Deve dom: North	R1-SB-N-B	17 Sept 2020	12:31 - 12:36	32.5	0.7	N350°	78.0	150	/
SB-N	She Boundary – North	R2-SB-N-A	23 Sept 2020	10:24 - 10:30	34.1	1.4	NNE28°	71.3	57	/
		R2-SB-N-B	23 Sept 2020	10:30 - 10:36	34.1	0.7	NNW340°	72.8	32	/

理大科技及顧問有限公司

Analytical Results for Source Sampling (Calibrated with Odour Concentration of QA/QC Samples Deducted) 8.2

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	SOER (ou/m²/s)	Remarks
		R1-S1-A	7 Oct 2020	11:08 - 11:14	28.5	0.8	SSW194°	72.0	6.31	/
S1	Inlet pumping station	R1-S1-B	7 Oct 2020	11:16 - 11:22	28.8	1.0	SW220°	71.0	5.55	/
51	(West part of TPSTW)	R2-S1-A	2 Nov 2020	10:45 - 10:51	32.2	1.1	WSW240°	58.5	8.27	/
		R2-S1-B	2 Nov 2020	10:52 - 10:58	32.2	0.8	SSW203°	53.1	7.71	/
		R1-S2-A	7 Oct 2020	10:45 - 10:51	30.5	1.2	SSW207°	83.8	10.79	House covered
52	Screens house	R1-S2-B	7 Oct 2020	10:52 - 10:58	30.5	0.4	S175°	90.0	8.64	House covered
52	(West part of TPSTW)	R2-S2-A	2 Nov 2020	11:08 - 11:14	31.8	0.7	SSW204°	57.8	20.46	House covered
		R2-S2-B	2 Nov 2020	11:15 - 11:21	32.8	1.0	S188°	71.7	14.64	House covered
		R1-S2a-A	23 Oct 2020	15:51 - 15:57	27.8	1.1	SE144°	48.5	1.03	House covered
520	Screens house grit collection tank	R1-S2a-B	23 Oct 2020	15:59 - 14:05	26.7	0.2	SSE149°	49.0	0.84	House covered
52a	(West part of TPSTW)	R2-S2a-A	30 Oct 2020	9:42 - 9:48	25.9	1.8	SE138°	88.8	4.64	House covered
		R2-S2a-B	30 Oct 2020	9:49 - 9:55	26.4	0.6	SE131°	88.0	4.00	House covered
		R1-S3-A	7 Oct 2020	11:34 - 11:40	28.5	0.5	SE145°	66.8	/	Invalid due to
62	Primary sedimentation tank (outlet)	R1-S3-B	7 Oct 2020	11:41 - 11:47	29.7	0.6	S190°	65.0	/	abnormal
55	(West part of TPSTW)	R2-S3-A	9 Nov 2020	15:10 - 15:16	29.3	0.6	ESE114°	44.9	/	values
		R2-S3-B	9 Nov 2020	15:17 - 15:23	30.0	1.3	ESE113°	45.2	/	obtained.
		R1-S3a-A	7 Oct 2020	11:56 - 12:02	28	0.5	NE40°	73.9	1.90	/
S2-	Primary sedimentation tank (outlet)	R1-S3a-B	7 Oct 2020	12:03 - 12:09	31.8	0.5	NE36°	60.2	1.82	/
53a	(West part of TPSTW)	R2-S3a-A	9 Nov 2020	14:50 - 14:56	30.0	0.9	NE52°	47.0	4.65	/
		R2-S3a-B	9 Nov 2020	14:57 - 15:03	29.1	1.3	ENE67°	48.9	2.38	/

PolyU Technology & Consultancy

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	SOER (ou/m ² /s)	Remarks
		R1-S4-A	7 Oct 2020	16:21 - 16:27	27.6	0.7	NNE21°	69.3	1.61	/
54	Primary sedimentation tank (inlet)	R1-S4-B	7 Oct 2020	16:28 - 16:34	27.4	0.7	NNE31°	69.2	1.55	/
54	(West part of TPSTW)	R2-S4-A	2 Nov 2020	15:44 - 15:50	31.6	2.4	NNW337°	54.9	1.83	/
		R2-S4-B	2 Nov 2020	15:51 - 15:57	32.1	1.9	NNW339°	52.5	1.74	/
		R1-S4a-A	7 Oct 2020	16:00 - 16:06	28.3	2.2	NNW329°	67.3	2.21	/
S4a	Primary sedimentation tank (inlet)	R1-S4a-B	7 Oct 2020	16:07 - 16:13	26.8	3.1	NNE18°	70.1	2.77	/
54a	(West part of TPSTW)	R2-S4a-A	2 Nov 2020	16:08 - 16:14	31.2	1.6	NNE33°	53.0	3.72	/
		R2-S4a-B	2 Nov 2020	16:15 - 16:21	30.5	1.8	ENE59°	54.7	3.72	/
		R1-S5-A	7 Oct 2020	14:42 - 14:48	28.7	1.6	NNE14°	65.8	2.07	/
85	Aeration tank (inlet)	R1-S5-B	7 Oct 2020	14:49 - 14:55	28.5	0.7	NNE19°	69.7	2.21	/
55	(West part of TPSTW)	R2-S5-A	9 Nov 2020	14:04 - 14:10	28.8	1.3	ENE66°	48.4	3.02	/
		R2-S5-B	9 Nov 2020	14:11 - 14:17	29.7	1.4	E96°	49.9	9.03	/
		R1-S5a-A	7 Oct 2020	15:03 - 15:09	28.6	0.4	NNE12°	68.3	2.67	/
\$50	Aeration tank (inlet)	R1-S5a-B	7 Oct 2020	15:10 - 15:16	29.3	0.8	NNW340°	65.1	2.52	/
53a	(West part of TPSTW)	R2-S5a-A	9 Nov 2020	14:29 - 14:35	30.2	1.2	ENE64°	45.7	5.78	/
		R2-S5a-B	9 Nov 2020	14:36 - 14:42	29.7	1.8	ENE70°	45.5	5.56	/
		R1-S6-A	7 Oct 2020	15:37 - 15:43	29.2	0.7	NNE18°	66.1	0.30	/
56	Aeration tank (outlet)	R1-S6-B	7 Oct 2020	15:44 - 15:50	30.0	0.6	NE34°	61.9	0.11	/
50	(West part of TPSTW)	R2-S6-A	9 Nov 2020	11:26 - 11:32	31.8	2.1	SSE147°	39.5	0.19	/
		R2-S6-B	9 Nov 2020	11:33 - 11:39	32.4	2.0	SE139°	41.0	0.15	/
		R1-S6a-A	7 Oct 2020	15:21 - 15:27	28.2	2.7	N359°	68.1	0.20	/
560	Aeration tank (outlet)	R1-S6a-B	7 Oct 2020	15:28 - 15:34	28.1	1.0	NNW333°	66.7	0.17	/
50a	(West part of TPSTW)	R2-S6a-A	9 Nov 2020	11:01 - 11:07	34.1	1.5	E97°	33.8	0.12	/
		R2-S6a-B	9 Nov 2020	11:08 - 11:14	33.4	1.8	SE144°	34.7	0.10	/

PolyU Technology & Consultancy

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	SOER (ou/m²/s)	Remarks
		R1-S7-A	9 Oct 2020	16:05 - 16:11	30.1	0.9	ENE57°	60.4	0.26	/
87	Final sedimentation tank (outlet)	R1-S7-B	9 Oct 2020	16:12 - 16:18	30.7	0.9	ENE76°	57.6	0.24	/
57	(West part of TPSTW)	R2-S7-A	9 Nov 2020	9:33 - 9:39	25.9	1.0	SSE168°	48.1	0.34	/
		R2-S7-B	9 Nov 2020	9:41 - 9:47	26.0	2.2	E101°	47.6	0.24	/
		R1-S7a-A	19 Oct 2020	10:02 - 10:08	28.8	1.4	WSW245°	61.8	0.14	Retake
\$70	Final sedimentation tank (outlet)	R1-S7a-B	19 Oct 2020	10:14 - 10:20	29.5	1.6	WSW253°	59.3	0.12	Retake
5/a	(West part of TPSTW)	R2-S7a-A	9 Nov 2020	10:34 - 10:40	26.8	2.2	ENE69°	49.4	0.19	/
		R2-S7a-B	9 Nov 2020	10:41 - 10:47	26.2	2.7	ESE113°	49.5	0.17	/
		R1-S8-A	7 Oct 2020	16:46 - 16:52	27.7	1.1	NE50°	68.8	0.41	/
60	Final sedimentation tank (inlet)	R1-S8-B	7 Oct 2020	17:07 - 17:13	27.0	0.7	NNE26°	71.7	0.28	/
50	(West part of TPSTW)	R2-S8-A	9 Nov 2020	9:54 - 10:00	28.6	1.5	E82°	42.9	0.15	/
		R2-S8-B	9 Nov 2020	10:01 - 10:07	27.7	0.4	ENE67°	46.7	0.15	/
		R1-S8a-A	9 Oct 2020	15:24 - 15:30	31.9	1.4	E90°	51.9	0.32	/
590	Final sedimentation tank (inlet)	R1-S8a-B	9 Oct 2020	15:31 - 15:37	32.6	0.4	ESE113°	53.9	0.32	/
50a	(West part of TPSTW)	R2-S8a-A	9 Nov 2020	10:14 - 10:20	25.9	1.6	E89°	47.6	0.27	/
		R2-S8a-B	9 Nov 2020	10:21 - 10:27	26.9	2.0	NE51°	47.6	0.34	/
		R1-S9-A	23 Oct 2020	10:09 - 10:15	28.0	2.8	NNW343°	66.5	/	Invalid due to
50	Sludge digestion tank	R1-S9-B	23 Oct 2020	10:16 - 10:22	28.2	1.6	N11°	69.8	/	abnormal
59	(West part of TPSTW)	R2-S9-A	9 Nov 2020	16:13 - 16:19	26.0	2.7	ENE69°	57.9	/	values
		R2-S9-B	9 Nov 2020	16:20 - 16:26	26.1	1.6	E91°	64.1	/	obtained.
		R1-S10-A	23 Oct 2020	9:47 - 9:53	26.2	1.3	NNE30°	51.2	5.46	/
\$10	Sludge consolidation tank	R1-S10-B	23 Oct 2020	9:55 - 10:01	26.3	1.4	NNW340°	50.9	2.20	/
510	(West part of TPSTW)	R2-S10-A	9 Nov 2020	15:42 - 15:48	27.3	3.1	ENE73°	54.5	14.35	Retake
		R2-S10-B	9 Nov 2020	15:50 - 15:56	28.0	3.1	E89°	55.3	13.70	Retake

PolyU Technology & Consultancy

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	SOER (ou/m ² /s)	Remarks
		R1-S11-A	23 Oct 2020	10:43 - 10:49	27.6	0.4	N355°	70.9	1.00	/
011	Primary sludge gravity thickener	R1-S11-B	23 Oct 2020	10:50 - 10:56	28.8	1.7	WNW301°	70.6	1.64	/
511	(West part of TPSTW)	R2-S11-A	30 Oct 2020	15:28 - 15:34	30.6	1.5	SE137°	70.2	0.79	/
		R2-S11-B	30 Oct 2020	15:35 - 15:41	30.2	2.3	S184°	71.7	0.78	/
		R1-S12-A	23 Oct 2020	14:21 - 14:27	25.9	1.6	ENE59°	53.9	0.20	/
\$12	Sludge dewatering house (inlet tank)	R1-S12-B	23 Oct 2020	14:28 - 14:34	26.8	0.6	ENE69°	53.1	0.14	/
512	(West part of TPSTW)	R2-S12-A	30 Oct 2020	10:55 - 11:01	27.9	0.8	SSE167°	70.2	0.63	/
		R2-S12-B	30 Oct 2020	11:02 - 11:08	27.4	0.6	W268°	70.9	0.81	/
		R1-S12a-A	23 Oct 2020	11:33 - 11:39	26.4	2.0	WNW303°	48.6	1.25	/
\$120	Sludge dewatering house (dry sludge)	R1-S12a-B	23 Oct 2020	11:40 - 11:46	25,0	1.5	NW306°	54.1	0.92	/
512a	(West part of TPSTW)	R2-S12a-A	30 Oct 2020	10:34 - 10:40	26.9	1.7	SSW192°	74.8	0.98	/
		R2-S12a-B	30 Oct 2020	10:41 - 10:47	27.6	1.7	S190°	71.9	0.85	/
		R1-S13-A	23 Oct 2020	14:52 - 14:58	25.3	1.8	NNW332°	55.5	0.22	/
S12	SAS thickening house	R1-S13-B	23 Oct 2020	14:59 - 15:05	26.1	0.9	N6°	50.9	0.15	/
515	(West part of TPSTW)	R2-S13-A	30 Oct 2020	11:54 - 12:00	28.5	0.6	SSE148°	68.9	0.59	/
		R2-S13-B	30 Oct 2020	12:01 - 12:07	28.4	0.3	SSE155°	73.4	0.44	/
		R1-S14-A	23 Oct 2020	11:08 - 11:14	27.1	1.7	NNE25°	63.3	0.92	/
S14	Sludge pumping station	R1-S14-B	23 Oct 2020	11:15 - 11:21	27.0	1.4	WSW245°	63.2	0.73	/
514	(West part of TPSTW)	R2-S14-A	30 Oct 2020	11:20 - 11:26	28.3	1.6	W278°	76.5	1.24	/
		R2-S14-B	30 Oct 2020	11:27 - 11:33	29.0	0.6	NNW333°	73.5	1.96	/
		R1-S15-A	19 Oct 2020	11:34 - 11:40	30.3	1.3	SSE163°	67.0	1.81	/
\$15	Inlet pumping station	R1-S15-B	19 Oct 2020	11:41 - 11:47	29.9	1.1	SSE153°	61.6	1.81	/
515	(East part of TPSTW)	R2-S15-A	2 Nov 2020	10:15 - 10:21	27.6	0.5	NE51°	62.7	3.66	/
		R2-S15-B	2 Nov 2020	10:22 - 10:28	27.9	1.8	ENE65°	64.2	5.02	/

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	SOER (ou/m²/s)	Remarks
		R1-S16-A	19 Oct 2020	13:40 - 13:46	28.4	-	-	63.3	1.71	Indoor
S16	Screens house	R1-S16-B	19 Oct 2020	13:47 - 13:53	28.3	-	-	64.8	1.09	Indoor
510	(East part of TPSTW)	R2-S16-A	2 Nov 2020	9:49 - 9:55	26.2	-	-	73.0	5.11	Indoor
		R2-S16-B	2 Nov 2020	9:56 - 10:02	26.0	-	-	71.7	3.87	Indoor
		R1-S16a-A	23 Oct 2020	15:26 - 15:32	26.4	1.4	N358°	49.3	0.87	/
S16a	Screens house grit collection tank	R1-S16a-B	23 Oct 2020	15:33 - 15:39	26.9	0.4	N349°	48.7	0.55	/
510a	(East part of TPSTW)	R2-S16a-A	30 Oct 2020	10:06 - 10:12	27.7	1.1	SSW199°	71.4	1.19	/
		R2-S16a-B	30 Oct 2020	10:13 - 10:19	27.3	0.9	S185°	76.5	0.77	/
		R1-S17-A	9 Oct 2020	10:10 - 10:16	30.1	2.3	N354°	65.6	/	
C17	Primary sedimentation tank (inlet)	R1-S17-B	9 Oct 2020	10:17 - 10:23	32.3	0.6	NNW328°	58.2	/	
517	(East part of TPSTW)	R2-S17-A	3 Nov 2020	16:18 - 16:24	27.0	0.7	NNE30°	64.6	/	
		R2-S17-B	3 Nov 2020	16:25 - 16:31	26.8	0.7	ENE66°	64.0	/	
	Primary sedimentation tank (inlet)	R1-S17a-A	9 Oct 2020	10:28 - 10:34	31.4	0.6	E91°	60.4	/	
S17-		R1-S17a-B	9 Oct 2020	10:36 - 10:42	30.9	2.3	E79°	59.5	/	
51/a	(East part of TPSTW)	R2-S17a-A	3 Nov 2020	15:59 - 16:05	27.8	1.2	N8°	65.8	/	Invalid due to
		R2-S17a-B	3 Nov 2020	16:07 - 16:12	27.0	0.5	NW314°	68.0	/	abnormal
		R1-S18-A	9 Oct 2020	10:47 - 10:53	31.6	1.4	WNW283°	63.6	/	values
C10	Primary sedimentation tank (outlet)	R1-S18-B	9 Oct 2020	10:53 - 11:00	31.5	1.7	WNW295°	64.8	/	obtained.
518	(East part of TPSTW)	R2-S18-A	3 Nov 2020	15:20 - 15:26	28.5	28.5 0.8 SSE	SSE156°	61.2	/	
		R2-S18-B	3 Nov 2020	15:27 - 15:33	28.0	1.0	E90°	64.1	/	
		R1-S18a-A	9 Oct 2020	11:09 - 11:15	32.9	0.7	W280°	55.8	/	
C10-	Primary sedimentation tank (outlet)	R1-S18a-B	9 Oct 2020	11:16 - 11:22	33.0	0.8	NW311°	52.3	/	
5188	(East part of TPSTW)	R2-S18a-A	3 Nov 2020	15:38 - 15:44	27.6	0.4	E83°	62.5	/]
		R2-S18a-B	3 Nov 2020	15:45 - 15:51	26.8	0.6	E97°	68.8	/	

PolyU Technology & Consultancy

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	SOER (ou/m²/s)	Remarks
		R1-S19-A	19 Oct 2020	15.25 - 15.31	29.9	1.1	NNW339°	57.3	/	
S10	Aeration tank (inlet)	R1-S19-B	19 Oct 2020	15:32 - 15:38	31.2	0.4	NE40°	59.9	/	
519	(East part of TPSTW)	R2-S19-A	3 Nov 2020	14:13 - 14:19	27.2	0.7	E91°	66.8	/	Invalid due to
		R2-S19-B	3 Nov 2020	14:20 - 14:26	27.6	1.0	E81°	62.8	/	abnormal
		R1-S19a-A	19 Oct 2020	15:03 - 15:09	31.0	0.7	ESE120°	66.8	/	values
S10a	Aeration tank (inlet)	R1-S19a-B	19 Oct 2020	15:10 - 15:16	29.5	1.7	ENE61°	65.0	/	obtained.
519a	(East part of TPSTW)	R2-S19a-A	3 Nov 2020	15:00 - 15:05	29.3	0.0	-	62.0	/	
		R2-S19a-B	3 Nov 2020	15:07 - 15:13	28.3	0.8	SSW206°	61.0	/	
		R1-S20-A	9 Oct 2020	14:29 - 14:35	31.1	1.3	ENE74°	55.2	1.05	/
520	Aeration tank (outlet)	R1-S20-B	9 Oct 2020	14:36 - 14:42	30.5	2.1	NE40°	60.0	0.83	/
520	(East part of TPSTW)	R2-S20-A	3 Nov 2020	13:53 - 13:58	25.8	1.0	S190°	68.7	0.42	/
		R2-S20-B	3 Nov 2020	14:00 - 14:06	26.7	1.2	SW217°	64.2	0.62	/
		R1-S20a-A	9 Oct 2020	11:50 - 11:56	33.5	1.4	SW225°	55.4	1.25	/
S20-	Aeration tank (outlet)	R1-S20a-B	9 Oct 2020	12:02 - 12:08	33.1	0.9 SSW1	SSW196°	55.4	0.88	/
520a	(East part of TPSTW)	R2-S20a-A	3 Nov 2020	14:37 - 14:43	29.8	0.5	NNE25°	59.4	1.08	/
		R2-S20a-B	3 Nov 2020	14:44 - 14:51	29.2	0.6	E85°	58.9	0.71	/
		R1-S21-A	19 Oct 2020	10:42 - 10:48	29.7	1.2	E94°	66.1	0.02	/
621	Final sedimentation tank (outlet)	R1-S21-B	19 Oct 2020	10:50 - 10:56	29.3	1.6	E95°	60.8	0.01	/
521	(East part of TPSTW)	R2-S21-A	2 Nov 2020	14:01 - 14:07	32.2	2.2	NW317°	51.6	0.29	/
		R2-S21-B	2 Nov 2020	14:08 - 14:14	33.5	2.2	WNW295°	49.0	0.35	/
		R1-S21a-A	19 Oct 2020	11:07 - 11:13	28.1	1.5	SW224°	70.3	0.05	/
G21-	Final sedimentation tank (outlet)	R1-S21a-B	19 Oct 2020	11:15 - 11:21	28.9	0.9	SSW201°	65.2	0.03	/
5218	(East part of TPSTW)	R2-S21a-A	2 Nov 2020	14:25 - 14:31	33.2	2.3	N352°	50.7	0.58	/
		R2-S21a-B	2 Nov 2020	14:32 - 14:38	32.4	1.9	N355°	55.3	0.35	/

PolyU Technology & Consultancy

ID	Location	Sample ID	Date	Time	Temperature, °C	W- Speed, m/s	W-D	RH, %	SOER (ou/m ² /s)	Remarks
		R1-S22-A	19 Oct 2020	14:32 - 14:38	29.1	0.4	SSW202°	65.7	0.30	/
522	Final sedimentation tank (inlet)	R1-S22-B	19 Oct 2020	14:39 - 14:45	28.0	1.3	S182°	65.9	0.27	/
322	(East part of TPSTW)	R2-S22-A	2 Nov 2020	15:13 - 15:19	33.5	1.2	NW308°	48.0	0.40	/
		R2-S22-B	2 Nov 2020	15:20 - 15:26	34.2	1.8	NNW327°	46.3	0.46	/
		R1-S22a-A	19 Oct 2020	14:09 - 14:15	29.7	1.0	NNW341°	64.1	0.21	/
5220	Final sedimentation tank (inlet)	R1-S22a-B	19 Oct 2020	14:16 - 14:22	33.0	0.5	NNW340°	57.0	0.32	/
522a	(East part of TPSTW)	R2-S22a-A	2 Nov 2020	14:48 - 14:54	35.9	2.5	W227°	48.2	0.38	/
		R2-S22a-B	2 Nov 2020	14:55 - 15:01	37.1	2.8	NW316°	25.0	0.41	/
		R1-S23-A	19 Oct 2020	16:15 - 16:21	30.2	-	-	62.9	1.03	Indoor
522	Sludge digestion tank	R1-S23-B	19 Oct 2020	16:22 - 16:28	29.3	-	_	68.9	0.60	Indoor
525	(East part of TPSTW)	R2-S23-A	30 Oct 2020	14:55 - 15:01	30.1	-	-	66.9	8.37	Indoor
		R2-S23-B	30 Oct 2020	15:02 - 15:08	30.2	-	-	66.2	7.30	Indoor
		R1-S24-A	19 Oct 2020	16:44 - 16:50	27.8	0.9	S177°	61.6	1.45	/
524	Sludge consolidation tank	R1-S24-B	19 Oct 2020	16:51 - 16:57	28.6	1.1	SSW196°	64.0	0.84	/
524	(East part of TPSTW)	R2-S24-A	30 Oct 2020	14:30 - 14:36	28.2	0.5	SSW199°	66.2	1.26	/
		R2-S24-B	30 Oct 2020	14:37 - 14:43	30.7	0.4	SSW207°	65.2	1.03	/
		R1-S25-A	9 Oct 2020	16:31 - 16:37	30.2	3.0	ENE72°	59.1	0.23	/
825	Leachate pre-treatment tank	R1-S25-B	9 Oct 2020	16:38 - 16:44	30.6	0.6	ENE66°	57.4	0.21	/
525	(Sheun wan leachate pre-treatment works)	R2-S25-A	2 Nov 2020	11:40 - 11:46	35.7	1.6	SE129°	45.4	0.63	/
		R2-S25-B	2 Nov 2020	11:47 - 11:53	36.6	0.6	ESE115°	43.7	0.49	/

Company Limited 理大科技及顧問有限公司

9 Conclusion

A total of 76 ambient samples (two rounds) at ASRs surrounding the TPSTW were collected during the period of 16^{th} September -24^{th} September 2020, and a total of 160 source samples (two rounds, retake samples exclusive) from the surface of sewage/sludge/refuse within TPSTW site were collected during the period of 7^{th} October -9^{th} November 2020. QA/QC samples were obtained for each sampling day. Sampling strategies and actual situations during QA/QC sampling are illustrated in the Appendix. The QA/QC sample concentrations were used for data calibration.

For sampling activities in the same round, two consecutive samples were collected at one sampling location for the evaluation of repeatability of the results. The repeatability of odour sampling and analysis could be affected by the sampling conditions (especially for sampling at water surface with relatively high flowrate/turbulence), as well as the conditions olfactometry analysis (e.g., performance of odour assessors). Due to the nature of olfactometry analysis, especially for high-concentration samples, the difference could be obvious between two consecutive steps (dilution factors). By the end of a single round of sampling activities, the analysis results were reviewed and some abnormal results (large discrepancies between the duplicate samples) were spotted, and resampling was arranged for these samples. Retake of samples at S7a (1st round), S9 (2nd round), S10 (2nd round), S19 (1st round), and S19a (1st round) were conducted. Results of the retake samples were with acceptable differences between duplicated samples, hence, the results of retake samples were adopted as the formal results.

Some high concentrations were identified for both ambient and source samples. Most of the original results of ambient samples were higher than the lower detection limit (LoD, 10 ou/m³) for our olfactometer, and some of them reached over 100 ou/m³. It should be noted that the olfactometer has been updated and is different from some previous studies, which is with higher sensitivity for samples with concentrations higher than the LoD. Pre-cleaned zero air was used for dilution of the samples, it is possible for the panels to distinguish nitrogen-only QA/QC samples from the pre-cleaned zero air, hence, the normal concentration range of QA/QC samples is 10~20 ou/m³. Moreover, it should be noted that other compounds also contribute to the odour of the samples, e.g., vehicle emissions, biogenic emissions, etc. The high odour concentrations therefore were not necessarily attributed to the emissions from TPSTW. Remarks were made during the ambient sampling recording the perception of odour by the sampling team. For those samples with high concentrations over 100 ou/m³, it should be noted that the repeatability of two consecutive samples is acceptable, indicating the procedures of sampling and analysis should be proper. TPSTW is located in a valley-like region, the dispersion conditions for TPSTW may not be comparable with other STWs located near river or sea. And the meteorological conditions were constantly changed, the recorded data only represent a relatively short period, hence it

is possible that the recorded wind direction indicated air flows were toward TPSTW but the odour concentrations were still at high levels.

During review of the data obtained, abnormal values were identified at different locations, including S3, S9, S17, S17a, S18, S18a, S19, and S19a, respectively. These data were discarded in this version of report. Additional sampling and analysis at these locations will be arranged tentatively in May to June 2021 subject to the actual weather conditions.

Company Limited 理大科技及顧問有限公司

Appendix

- A. Concentration of QA/QC Samples
- a) QA/QC Samples for Ambient Sampling

Sample ID	Sampling Date	Odour Concentration (ou/m ³)
QA/QC-R1-D1	16 Sept 2020	15
QA/QC-R1-D2	17 Sept 2020	20
QA/QC-R2-D1	23 Sept 2020	13
QA/QC-R2-D2	24 Sept 2020	15

With the characteristics of ambient sampling considered, the QA/QC samples collected on the days of ambient sampling were collected by directly inject nitrogen into the sample bag.

b) QA/QC Samples for Source Sampling

Sample ID	Sampling Date	Odour Concentration (ou/m ³)
QA/QC-R1-D3	07 Oct 2020	193*
QA/QC-R1-D4	09 Oct 2020	2542*
QA/QC-R1-D5	19 Oct 2020	13
QA/QC-R1-D6	23 Oct 2020	15
QA/QC-R2-D3	30 Oct 2020	19
QA/QC-R2-D4	02 Nov 2020	10
QA/QC-R2-D5	03 Nov 2020	19
QA/QC-R2-D6	09 Nov 2020	15

With the characteristics of source sampling considered, the QA/QC samples collected on the days of source sampling were obtained by injecting nitrogen into the cleaned flux chamber sampler and then collected by CSD30 odour sampler. QA/QC samples collected on 7th and 9th October (highlighted with *) were with abnormally high results, which may due to the residual odourous compounds on the ground or facility surfaces on-site. The sampling strategy of QA/QC sampling for source sampling days was changed to laboratory-based collection immediately after these results were obtained. The abnormal results were excluded for data validation. Average of QA/QC samples for source sampling on other sampling dates were used for data validation for samples collected on 7th and 9th October.

B. Certificates of Qualified Odour Assessors

mpany Limited 理大科技及顧問有限公司

Certificate for Qualified Odour Panel Member

This is to certify that

Mr CHAN Ka Ming

had demonstrated that his nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, his individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, he is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 15 Sep 2020

And Polytechilt Advances Description Desc

Ref.: 20200915QP01

Hung Hom Kowloon Hong Kong 香港 九循 紅海 Tel 電話 (852) 2766 5111 Fax 傷異 (852) 2784 3374 Email 電話 polyu@polyu.edu.hk Website 錫壯 www.polyu.edu.hk

WHERE INNOVATION MEETS APPLICATION 凝聚智慧 讓你實踐創意

This is to certify that

Mr HUI Yin Fung

had demonstrated that his nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, his individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, he is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 20 Oct 2020

Contracting Contra

Ref.: 20201020QP02

Hung Hom Kowloon Hong Kong 香港 八番 紅海 Tel 電話 (852) 2766 5111 Fax 傷異 (852) 2784 3374 Email 電話 polyu@polyu.edu.hk Website 錫壯 www.polyu.edu.hk

理大科技及顧問有限公司

Certificate for Qualified Odour Panel Member

This is to certify that

Mr HUNG Hok To

had demonstrated that his nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, his individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, he is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 11 Sep 2020

Ref.: 20200911QP02

Hung Hom Kowloon Hong Kong 香港 八番 紅海 Tel 電話 (852) 2766 5111 Fax 傷異 (852) 2784 3374 Email 電話 polyu@polyu.edu.hk Website 錫壯 www.polyu.edu.hk

mpany Limited 理大科技及顧問有限公司

Certificate for Qualified Odour Panel Member

This is to certify that

Mr LAU Cheuk Fung

had demonstrated that his nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, his individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, he is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 11 Sep 2020

And Polytechilt Advances Advances Depresentation Advances Depresentation Advances Depresentation Advances A

Ref.: 20200911QP03

Hung Hom Kowloon Hong Kong 香港 八番 紅海 Tel 電話 (852) 2766 5111 Fax 傷異 (852) 2784 3374 Email 電話 polyu@polyu.edu.hk Website 錫壯 www.polyu.edu.hk

This is to certify that

Miss LI Xinwei

had demonstrated that her nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, her individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, she is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 20 Oct 2020

Ref.: 20201020QP01

Hung Hom Kowloon Hong Kong 香港 八番 紅海 Tel 電話 (852) 2766 5111 Fax 傷異 (852) 2784 3374 Email 電話 polyu@polyu.edu.hk Website 錫壯 www.polyu.edu.hk

This is to certify that

Mr LIU Ching Hung

had demonstrated that his nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, his individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, he is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 11 Sep 2020

Ref.: 20200911QP04

Hung Hom Kowloon Hong Kong 香港 八番 紅海 Tel 電話 (852) 2766 5111 Fax 傷異 (852) 2784 3374 Email 電話 polyu@polyu.edu.hk Website 錫壯 www.polyu.edu.hk

This is to certify that

Mr LO Wing Yat

had demonstrated that his nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, his individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, he is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 11 Sep 2020

Ref.: 20200911QP01

Hung Hom Kowloon Hong Kong 香港 九循 紅海 Tel 電話 (852) 2766 5111 Fax 傷異 (852) 2784 3374 Email 電話 polyu@polyu.edu.hk Website 錫壯 www.polyu.edu.hk

APPENDIX 3.7B

ODOUR SURVEY FOR TAI PO SEWAGE TREATMENT WORKS

Technical Report

for

Contract No. SPW 05/2021 – Upgrading of Tai Po Sewage Treatment Works - Investigation - Odour Survey and Analysis

For

Drainage Services Department

Prepared by

Odour Research Laboratory

Department of Civil and Environmental Engineering

The Hong Kong Polytechnic University

Submitted by

PolyU Technology and Consultancy Company Limited

Signed by:

[Prof. Shun-cheng Lee]

Date: _____ 26/01/2022

Company Limited 理大科技及顧問有限公司

1 Introduction

A service to conduct odour sampling and analysis at Tai Po Sewage Treatment Works (TPSTW) including inlet areas, primary sedimentation tanks, aeration tanks and sludge digestion tant has been invited by Ms. Christina KO at Binnies Hong Kong Limited on behalf of Drainage Services Department, HKSAR on 28th June 2021.

2 Scope of Works

The scope of the works includes:

- To conduct odour source sampling at designated locations (including primary sedimentation tanks, aeration tanks and sludge digestion tank) using flux chamber or wind tunnel sampler.
- To conduct provisional odour source sampling at designated locations (including inlet pumping stations and screens houses) using flux chamber or wind tunnel sampler.
- To conduct laboratory olfactometry analysis for source samples.
- To submit a report of sampling and analysis results of odour emission rates at sources at different locations.

Description	Period Covered/Date
First Round of Source Sampling (provisional items included) on-site	27 th July 2021 – 28 th July 2021
First Round of laboratory olfactometry analysis	28th July 2021 – 29th July 2021
Second Round of Source Sampling (provisional items included) on-site	10 th August 2021 – 11 th August 2021
Second Round of laboratory olfactometry analysis	11 th August 2021 – 12 th August 2021
Draft Technical Report Submission	30 th August 2021
Final Technical Report Submission	TBC

3 Schedule

4 Working Plan

On-site Source sampling work were conducted during the period of 27th July to 11th August 2021. The sampling locations (provisional items included) are illustrated in the following figure 4.1 and figure 4.2.

PolyU Technology & Consultancy

Limited 理 大 科 技 及 顧 問 有 限 公 司

Figure 4.1 Round-1 sampling locations for source odour samples in TPSTW

PolyU Technology & Consultancy

Company Limited 理大科技及顧問有限公司

Figure 4.2 Round-2 sampling locations for source odour samples in TPSTW

Company Limited 理大科技及顧問有限公司

4.1 Sampling Location

There are 8 primary sedimentation tanks in the west part of TPSTW, 5 primary sedimentation tanks and 7 aeration tanks in the east part of TPSTW in total. During our on-site sampling period, only those tanks under normal operation would be considered to be selected to take odour samples in order to reflect the reasonable odour emission status. Therefore, slight adjustments on the selection of primary sedimentation tanks and aeration tanks were necessary between our two rounds of on-site sampling works. In addition, technical advice on the maintenance and operation status from the engineers and operators of TPSTW would also be helpful and guided for our decision. The final sampling location of each facility was also approved by the engineers of Binnies.

4.2 Daily Detailed Working Plan

Following is the working plan of the source odour sampling.

Б	Location	Odour	1 st R	ound	2 nd Round		
	Location	Sample Quantity	27 Jul	28 Jul	10 Aug	11 Aug	
	West P	art of TPSTW	V				
S1 [#]	Inlet pumping station	4		2		2	
S2 [#]	Screens house	4		2		2	
S3	S3 Primary sedimentation tank (outlet)			2		2	
S3a	S3a Primary sedimentation tank (outlet)			2	2		
S4	S4 Primary sedimentation tank (inlet)			2		2	
S4a	S4a Primary sedimentation tank (inlet)			2	2		
S9 Sludge digestion tank		4		2		2	
East Part of TPSTW							
S15 [#] Inlet pumping station		4	2			2	
S16 [#]	Screens house	4	2			2	

	Company Limited 理大科	技及	顧問有	了限 公	ا	
S17	Primary sedimentation tank (inlet)	4	2		2	
S17a	Primary sedimentation tank (inlet)	4	2		2	
S18	Primary sedimentation tank (outlet)	4	2		2	
S18a	Primary sedimentation tank (outlet)	4	2		2	
S19	Aeration tank (inlet)	4	2		2	
S19a	Aeration tank (inlet)	4	2		2	
S20	Aeration tank (outlet)	4	2		2	
S20a	Aeration tank (outlet)	4	2		2	

#: Conducted Provisional Item

5 Methodology

5.1 Odour Sampling

Odour gaseous sample is collected by using a specialized odour sampling system (CSD30, 60L, Olfasence GmbH, Germany). During air sampling, an empty sample bag is placed in the sealed sampler, and the sampler is then evacuated at a controlled rate (by setting total sampling time for 5-minute, 10-minute, 15-minute or 30-minute) by the built-in vacuum pump, sample bag will be filled with sample gas due to negative pressure in the sampler.

CSD30 Odour Sampler

In this technique, all "wetted" parts exposed to the odourous gas are to be composed of stainless steel and Teflon tubing. The sample bags are manufactured from PTFE, Tedlar if the bags are to be reuse, or from nalophane NATM if the bags are to be discarded after use.

Dynamic sampling system, which includes an odour-free gas source from a gas cylinder or gas cleaning device, a dynamic flux chamber or wind tunnel sampler, and sample collection system, is suitable for measuring emission rates. The flux chamber or wind tunnel will be placed on the emission surface of selected locations and a stream of odour-free gas from a certified gas cylinder or a gas cleaning device will be supplied to the chamber to simulate a parallel wind blowing above the emission surface. The flow rate of the gas will be measured by a flow meter attached on the gas supply tubing. Odour emission rate is then determined by the air flow through the chamber and the odour concentration of the collected gas sample, according to the following equation:

SOER
$$(ou/m^2/s) = \frac{0 \text{dour Conc.} (ou/m^3) \times \text{Air Flow Inside Flux Chamber } (m^3/s)}{\text{Covered Surface Area } (m^2)}$$

The required flowrate of odour-less nitrogen injected into flux chamber is 5 L/min, hence the dynamic flux chamber will be used for the sampling of source emission. In general, the wind tunnel sampler is capable to obtain average emission rate from low-emission heterogeneous sources (e.g., nullah, seawater surface, etc.) by covering a larger surface area. In this specific project, the odour emission

Company Limited 理大科技及顧問有限公司

rates from wastewater and sludge surfaces are to be collected, which are with obviously higher emission rates (compared to the natural water bodies) and with more uniform emission rate for each specific sampling location. Also there is are safety considerations on utilizing the bulky wind tunnel sampling on wastewater or sludge surface sampling. Hence, the flux chamber sampler is considered capable for source sampling for this specific project. The effective covering area of the dynamic flux chamber is about 0.13 m². In consideration of the sample size, the sampling period of each sample shall be within 10 minutes. Specifically for our CSD30 sampler, the flowrate to sample bag is identical for 5-min and 10-min setting, while the 10-min setting is at intermittent sampling mode. For sample representativeness, the difference between 5-min and 10-min is not significant. Hence, 5-min sampling duration was proposed for the source sampling in this specific project. For supporting a sampling period of 5-min, the lowest flowrate of injected nitrogen gas is suggested to be adjusted to at least 12 L/min, and for the consideration of redundance, a 15 L/min flowrate of nitrogen was adopted for source sampling.

Dynamic Flux Chamber

For the purpose of Quality Assurance & Quality Control (QA/QC), during each sampling day, a control sample with odour-less nitrogen purged into sample back will be collected for olfactometry analysis. During the date of ambient sampling, nitrogen gas was directly injected to sample bags by connecting CSD30 sampler with the gas cylinder. While during the date of source sampling, nitrogen gas was injected to the cleaned flux chamber sampler first, and QA/QC samples were collected by CSD30 sampler from the cleaned flux chamber with nitrogen gas cylinder connected. Odour concentrations of ambient samples and source samples were validated by the QA/QC sample results obtained on the same day.

5.2 Olfactometry Analysis

The odour concentration of a gaseous sample is determined by presentation to a panel of observers, with known acuity to odour, in varying dilutions. The odour concentration is then expressed in multiples of dilution. Odour concentration is determined by a forced-choice dynamic olfactometer (Odournet TO Evolution) in full accordance with the European Standard Method (EN13725). This European Standard

Company Limited 理大科技及顧問有限公司

is applicable to the measurement of odour concentration of pure substances, defined mixtures and undefined mixtures of gaseous odorants in air or nitrogen, using dynamic olfactometry with a panel of human assessors being the sensor. The range of measurement including pre-dilution prior to the olfactometry analysis is typically from 10¹ ou/m³ to 10⁷ ou/m³. This analysis technique provides directly comparable data for different odour types, and used for input into dispersion models to determine odour impact in terms of annoyance and abatement efficiency assessments.

Odournet TO Evolution Olfactometer

The TO Evolution Olfactometer at Odour Research Laboratory, The Hong Kong Polytechnic University has undergone regularly factory calibration. Calibration certificate could be provided upon request.

6 On-site Sampling

Photos illustrating sampling activities for source samples.

7 Laboratory Analysis

Specific odour emission rates (SOER, $OU/m^2/s$) can be calculated by the following equation:

SOER
$$(ou/m^2/s) = \frac{0 \text{dour Conc.} (ou/m^3) \times \text{Air Flow Inside Flux Chamber } (m^3/s)}{\text{Covered Surface Area } (m^2)}$$

For the current setting of sampling, the air flowrate inside flux chamber is 15 L/min, i.e., $0.00025 \text{ m}^3/\text{s}$, for all source sampling. The covered surface area by the flux chamber is 0.132 m^2 . Odour concentration from the samples are determined by the olfactometry analysis.

8 Analytical Results

Analytical Results for Source Sampling (Calibrated with Odour Concentration of QA/QC Samples Deducted)

ID	Location	Sample ID	Date	Time	Temperature, °C	W-Speed, m/s	W-D	RH, %	SOER (ou/m ² /s)	Remarks
		R1-S1-A	28 Jul 2021	09:42 - 09:48	30.5	0.9	NW321°	79.5	115.66	Covered
C1#	Inlet pumping station	R1-S1-B	28 Jul 2021	09:50 - 09:56	31.1	2.2	N356°	84.2	105.88	Covered
51	(West part of TPSTW)	R2-S1-A	11 Aug 2021	10:52 - 10:58	33.4	1.7	WNW297°	78.2	120.95	Covered
		R2-S1-B	11 Aug 2021	11:00 - 11:06	34.5	0.8	WNW292°	77.6	120.95	Covered
		R1-S2-A	28 Jul 2021	10:18 - 10:24	35.7	1.1	SW227°	67.4	96.89	House covered
S2#	Screens house	R1-S2-B	28 Jul 2021	10:25 - 10:31	36	0.7	WSW239°	69.9	71.05	House covered
52"	(West part of TPSTW)	R2-S2-A	11 Aug 2021	10:26 - 10:32	32.2	0.1	NNW348°	83.2	88.70	House covered
		R2-S2-B	11 Aug 2021	10:33 - 10:39	33.7	0.1	NNW338°	82	71.09	House covered
	Primary sedimentation tank (outlet) (West part of TPSTW)	R1-S3-A	28 Jul 2021	15:31 - 15:37	32	0.7	ESE111°	77.5	12.06	/
62		R1-S3-B	28 Jul 2021	15:40 - 15:46	32.4	1	E99°	81.2	9.48	/
55		R2-S3-A	11 Aug 2021	11:16 - 11:22	34.3	0.7	NW307°	79.9	12.10	/
		R2-S3-B	11 Aug 2021	11:25 - 11:31	34.7	0.8	NW313°	82.9	11.51	/
		R1-S3a-A	28 Jul 2021	14:15 - 14:21	32.7	0.9	ENE75°	76.1	126.38	/
G2-	Primary sedimentation tank (outlet)	R1-S3a-B	28 Jul 2021	14:23 - 14:29	33.3	1.8	E86°	79	120.91	/
558	(West part of TPSTW)	R2-S3a-A	10 Aug 2021	10:57 - 11:03	29.9	0.4	SW224°	88.9	3.30	/
		R2-S3a-B	10 Aug 2021	11:05 - 11:11	29.8	0.5	S191°	93.8	2.39	/
		R1-S4-A	28 Jul 2021	15:06 - 15:12	31.2	1.1	E087°	77.3	110.67	/
S1	Primary sedimentation tank (inlet)	R1-S4-B	28 Jul 2021	15:16 - 15:22	30.6	2	NE53°	81.9	120.91	/
54	(West part of TPSTW)	R2-S4-A	11 Aug 2021	11:38 - 11:44	35.5	0.5	WNW285°	75.5	120.95	/
		R2-S4-B	11 Aug 2021	11:46 - 11:52	36	0.4	WNW284°	74.3	115.71	/

#: Conducted Provisional Item

Odour Research Laboratory at PolyU

Company Limited 理大科技及顧問有限公司

ID	Location	Sample ID	Date	Time	Temperature, °C	W-Speed, m/s	W-D	RH, %	SOER (ou/m²/s)	Remarks
		R1-S4a-A	28 Jul 2021	14:41 - 14:47	31.7	1.9	ESE109°	80.8	56.82	/
\$40	Primary sedimentation tank (inlet)	R1-S4a-B	28 Jul 2021	14:50 - 14:56	30.9	3.6	ENE063°	85.8	47.60	/
54a	(West part of TPSTW)	R2-S4a-A	10 Aug 2021	10:01 - 10:07	31.4	0.9	SSW199°	90.1	15.95	/
		R2-S4a-B	10 Aug 2021	10:10 - 10:16	31.7	1.3	WSW247°	86.6	17.58	/
		R1-S9-A	28 Jul 2021	10:55 - 11:01	33.9	0.6	WNW290°	71.8	110.66	Covered
50	Sludge digestion tank	R1-S9-B	28 Jul 2021	11:02 - 11:08	34.3	1.1	WSW250°	70.5	96.88	Covered
39	(West part of TPSTW)	R2-S9-A	11 Aug 2021	12:10 - 12:16	35.1	0.5	NNW339°	72	19.26	Covered
		R2-S9-B	11 Aug 2021	12:18 - 12:24	35.4	0.7	NNW343°	68	10.53	Covered
		R1-S15-A	27 Jul 2021	10:03 - 10:09	33.1	1.9	W275°	74.9	3.27	/
C15#	Inlet pumping station (East part of TPSTW)	R1-S15-B	27 Jul 2021	10:09 - 10:15	34.2	2.9	W266°	73.8	3.00	/
515		R2-S15-A	11 Aug 2021	09:55 - 10:01	32.1	0.4	NNW333°	86.9	3.26	/
		R2-S15-B	11 Aug 2021	10:03 - 10:09	33	0.1	NW325°	88	3.13	/
	Screens house (East part of TPSTW)	R1-S16-A	27 Jul 2021	10:22 - 10:28	33.6	/	/	73.5	3.82	Indoor
S16#		R1-S16-B	27 Jul 2021	10:28 - 10:34	33	/	/	76.1	3.43	Indoor
510		R2-S16-A	11 Aug 2021	09:26 - 09:32	30	/	/	96.7	3.95	Indoor
		R2-S16-B	11 Aug 2021	09:34 - 09:40	29.9	/	/	94.8	5.40	Indoor
		R1-S17-A	27 Jul 2021	11:16 - 11:22	35.3	1.9	W277°	63.6	105.91	/
S17	Primary sedimentation tank (inlet)	R1-S17-B	27 Jul 2021	11:25 - 11:31	36.4	0.9	WNW294°	69.1	101.34	/
517	(East part of TPSTW)	R2-S17-A	10 Aug 2021	13:45 - 13:51	30.1	0.9	S185°	89.4	88.75	/
		R2-S17-B	10 Aug 2021	13:53 - 13:59	30.3	0.7	SE145°	90.3	74.32	/
		R1-S17a-A	27 Jul 2021	10:57 - 11:03	35.7	1.1	W264°	71	101.33	/
\$170	Primary sedimentation tank (inlet)	R1-S17a-B	27 Jul 2021	11:03 - 11:09	36	2.8	WNW282°	66	81.21	/
51/d	(East part of TPSTW)	R2-S17a-A	10 Aug 2021	13:22 - 13:28	30	0.8	S169°	95.2	56.63	/
		R2-S17a-B	10 Aug 2021	13:31 - 13:37	29.9	0.8	E96°	94.2	64.85	/

Odour Research Laboratory at PolyU

Company Limited 理大科技及顧問有限公司

ID	Location	Sample ID	Date	Time	Temperature, °C	W-Speed, m/s	W-D	RH, %	SOER (ou/m²/s)	Remarks
		R1-S18-A	27 Jul 2021	14:30 - 14:36	36.2	1.4	WSW251°	59.7	74.32	/
C10	Primary sedimentation tank (outlet)	R1-S18-B	27 Jul 2021	14:40 - 14:46	36.4	1.7	W269°	59.6	59.52	/
510	(East part of TPSTW)	R2-S18-A	10 Aug 2021	14:26 - 14:32	31	0.4	WSW253°	87.6	62.14	/
		R2-S18-B	10 Aug 2021	14:35 - 14:41	30.8	0.5	WSW254°	89.4	71.14	/
		R1-S18a-A	27 Jul 2021	14:15 - 14:21	36.3	1.8	WSW258°	69.6	52.14	/
\$189	Primary sedimentation tank (outlet)	R1-S18a-B	27 Jul 2021	14:21 - 14:27	36.5	1.3	WSW256°	60.3	67.98	/
5104	(East part of TPSTW)	R2-S18a-A	10 Aug 2021	14:06 - 14:12	31	1.2	NE48°	87.9	67.93	/
		R2-S18a-B	10 Aug 2021	14:14 - 14:20	30.4	1	W270°	90.7	54.49	/
		R1-S19-A	27 Jul 2021	15:53 - 15:59	30.8	0.8	N3°	85.5	5.80	/
C10	Aeration tank (inlet) (East part of TPSTW)	R1-S19-B	27 Jul 2021	16:01 - 16:07	30.4	0.4	NNE33°	82.9	8.72	/
519		R2-S19-A	10 Aug 2021	15:20 - 15:26	32.1	0.3	WNW294°	86.3	1.97	/
		R2-S19-B	10 Aug 2021	15:28 - 15:34	31.5	0.6	WNW291°	89.3	2.48	/
	Aeration tank (inlet) (East part of TPSTW)	R1-S19a-A	27 Jul 2021	14:54 - 15:00	35.3	1.9	NNE13°	65.2	8.34	/
S10-		R1-S19a-B	27 Jul 2021	15:01 - 15:07	33.3	4	NW312°	69.9	6.33	/
519a		R2-S19a-A	10 Aug 2021	14:55 - 15:01	31	0.9	NW325°	85.3	6.06	/
		R2-S19a-B	10 Aug 2021	15:03 - 15:09	30.7	0.7	NNW337°	87.8	10.50	/
		R1-S20-A	27 Jul 2021	16:12 - 16:18	30.4	0.5	NNE20°	88.8	0.35	/
\$20	Aeration tank (outlet)	R1-S20-B	27 Jul 2021	16:20 - 16:26	29.6	0.6	NNE27°	91	0.45	/
520	(East part of TPSTW)	R2-S20-A	10 Aug 2021	15:41 - 15:47	32	0.6	N353°	83.4	0.62	/
		R2-S20-B	10 Aug 2021	15:50 - 15:56	31.6	0.4	WNW297°	86	0.47	/
		R1-S20a-A	27 Jul 2021	15:13 - 15:19	33.7	1.1	NNW337°	67.8	2.45	/
S20-	Aeration tank (outlet)	R1-S20a-B	27 Jul 2021	15:28 - 15:34	33	0.9	NW306°	72.5	1.62	/
5208	(East part of TPSTW)	R2-S20a-A	10 Aug 2021	16:02 - 16:08	32.8	0.5	WNW295°	82.1	0.86	/
		R2-S20a-B	10 Aug 2021	16:10 - 16:16	32.1	0.7	WNW286°	83.4	0.86	/

Odour Research Laboratory at PolyU

Company Limited 理大科技及顧問有限公司

9 Conclusions and Observations

A total of 68 source samples (two rounds, provisional items included) from the surface of sewage/sludge within TPSTW site were collected during the period of 27^{th} July – 11^{th} August 2021. QA/QC samples were obtained for each sampling day. Sampling strategies and actual situations during QA/QC sampling are illustrated in the Appendix. The QA/QC sample concentrations were used for data calibration.

For sampling activities in the same round, two consecutive samples were collected at one sampling location for the evaluation of repeatability of the results. The repeatability of odour sampling and analysis could be affected by the sampling conditions (especially for sampling at water surface with relatively high flowrate/turbulence), as well as the conditions olfactometry analysis (e.g., performance of odour assessors). Due to the nature of olfactometry analysis, especially for high-concentration samples, the difference could be obvious between two consecutive steps (dilution factors). By reviewing the emission rates, all these analytical results for the obtained samples kept consistence for the two consecutive steps for each location in the same round.

Some high concentrations were identified for the source samples. All the original results of ambient samples were higher than the lower detection limit (LoD, 10 ou/m³) for our olfactometer. It should be noted that the olfactometer has been updated and is different from some previous studies, which is with higher sensitivity for samples with concentrations higher than the LoD. Pre-cleaned zero air was used for dilution of the samples, it is possible for the panels to distinguish nitrogen-only QA/QC samples from the pre-cleaned zero air, hence, the normal concentration range of QA/QC samples is 10~20 ou/m³. For those samples with high concentrations, it should be noted that the repeatability of two consecutive samples is acceptable, indicating the procedures of sampling and analysis should be proper.

9.1 Observations at the inlet of west part of TPSTW (Location ID: S1, S2, S4)

A relatively high odour concentration is observed at the inlet area of the west part of TPSTW including the location of S1 – inlet pumping station, S2 – screens house and S4 – primary sedimentation tank (inlet). For the location of S1(inlet pumping station), a coarse screening was built inside the sampling well and some suspended matters and rubbish were observed inside the well (shown in Figure 9.1), which may increase the odour concentration to certain extend. While some coloured wastewater was also observed on one of the sampling days at the inlet area. For the location of S2, suspended foams and scums were observed during the sampling period (shown in Figure 9.2) which could lead to the increase of odour concentration. No particular status was observed at location S4.

Figure 9.1 Photos of the S1 sampling location and status

Figure 9.2 Photos of the S2 sampling location and status

Company Limited 理大科技及顧問有限公司

The consistent high odour emission rates at S1, S2 and S4, which were 115.86 ou/ m^2/s , 81.93 ou/ m^2/s and 117.06 ou/ m^2/s in average, respectively, affirming the high odour concentration at the inlet area during our sampling periods. However, both the sampling locations of S1 and S2 are fully covered with constructed chambers and access doors, and only little odour in nearby ambient could be perceived when doors were closed.

9.2 Observations at the primary sedimentation tanks of TPSTW (West and East, Location ID: S3, S3a, S17, S17a, S18, S18a)

A common situation of suspended matters/foams/scums was observed at the primary sedimentation tanks in both west and east part of TPSTW (shown in Figure 9.3). The said situation may impact the odour concentration and emission rate at the water surface of primary sedimentation tanks, which will further explain the variance of the olfactometry results between different sedimentation tanks and the two-round of sampling works.

Figure 9.3 Photos of the west and east sedimentation tanks at TPSTW

Company Limited 理大科技及顧問有限公司

Appendix

A. Concentration of QA/QC Samples

QA/QC Samples for Source Sampling

Sample ID	Sampling Date	Odour Concentration (ou/m ³)	Averaged Concentration for Correction (ou/m ³)		
R1-QA/QC-D1	27 Jul 2021	26	26		
R1-QA/QC-D2-A	28 1-1 2021	40	53		
R1-QA/QC-D2-B	28 Jul 2021	66	55		
R2-QA/QC-D1-A	10 4 - 2021	16	17		
R2-QA/QC-D1-B	10 Aug 2021	18	1/		
R2-QA/QC-D2-A	11 Arr = 2021	38	21		
R2-QA/QC-D2-B	11 Aug 2021	24	51		

The sampling strategy of all QA/QC samples were laboratory-based nitrogen injection sampling. There was only one sample taken for the first day of sampling. To ensure a valid and repeatable QA/QC sample, the sampling quantity change to two from the second day on. All these QA/QC samples were in a normal range and were then averaged for each day for the correction of the odour concentration of practical source samples.

B. Certificates of Qualified Odour Assessors

Company Limited 理大科技及顧問有限公司

Certificate for Qualified Odour Panel Member

This is to certify that

Mr LAM Yuet Hang

had demonstrated that his nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, his individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, he is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 14 July 2021

Ref.: 20210714QP02

Hung Hom Kowloon Hong Kong 香港 九雜 紅磯 Tel 電話 (852) 2766 5111 Fax 德真 (852) 2784 3374 Email 電郵 polyu@polyu.edu.hk Website 網址 www.polyu.edu.hk

Company Limited 理大科技及顧問有限公司

Certificate for Qualified Odour Panel Member

This is to certify that

Miss LI Xinwei

had demonstrated that her nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, her individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, she is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 14 July 2021

Ref.: 20210714QP05

Hung Hom Kowloon Hong Kong 香港 九麗 紅磡 Tel 電話 (852) 2766 5111 Fax 傅真 (852) 2784 3374 Email 電影 polyu@polyu.edu.hk Website 總趾 www.polyu.edu.hk

Company Limited 理大科技及顧問有限公司

Certificate for Qualified Odour Panel Member

This is to certify that

Mr LO Wing Yat

had demonstrated that his nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, his individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, he is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 14 July 2021

Ref.: 20210714QP04

Hung Hom Kowloon Hong Kong 香港 九麗 紅磡 Tel 電話 (852) 2766 5111 Fax 傅真 (852) 2784 3374 Email 電影 polyu@polyu.edu.hk Website 總趾 www.polyu.edu.hk

Company Limited 理大科技及顧問有限公司

Certificate for Qualified Odour Panel Member

This is to certify that

Miss TAN Yan

had demonstrated that her nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, her individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, she is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 14 July 2021

Ref.: 20210714QP07

Hung Hom Kowloon Hong Kong 香港 九麗 紅磡 Tel 電話 (852) 2766 5111 Fax 傅真 (852) 2784 3374 Email 電影 polyu@polyu.edu.hk Website 銀趾 www.polyu.edu.hk

Company Limited 理大科技及顧問有限公司

Certificate for Qualified Odour Panel Member

This is to certify that

Miss WANG Meng

had demonstrated that her nose has a normal sensitivity to comply with the requirements of European Standard Method of Air Quality – Determination of Odour Concentration by Dynamic Olfactometry (EN13725). In a set of screening tests carried out by Odour Research Laboratory of the HKPolyU, her individual threshold (n-butanol) was determined to be in the range of 20 to 80 ppb/v with a standard deviation of R < 2.3. According to the requirement of the EN13725, she is qualified to participate in olfactometry analysis. This certificate will be valid for a period of <u>3 months</u> from the day of issue.

Professor S.C. Lee Lab-in-charge, Odour Research Laboratory, HKPolyU.

Date: 14 July 2021

Ref.: 20210714QP06

Hung Hom Kowloon Hong Kong 香港 九雜 紅瓋 Tel 電話 (852) 2766 5111 Fax 德真 (852) 2784 3374 Email 電郵 polyu@polyu.edu.hk Website 網址 www.polyu.edu.hk

		Odour Survey at TPSTW (2020)	Odour Survey at TPSTW (2021)	
		SOFR from the Equivalent	SOFR from the Equivalent	Max. SOER from the
Sampling	Description	Sampling Points	Sampling Points	Points
POIN		(ou/m2.s)	(ou/m2.s)	
\$1	Inlet pumping station (West part of TPSTW)	8.27	120.95	120.95
S2	Screens house (West part of TPSTW)	20.46	96.89	96.89
S2a	Screens house grit collection tank (West part of TPSTW)	4.65	-	4.65
S3	Primary sedimentation tank (outlet) (West part of TPSTW)*	<u>9.89</u>	12.1	12.10
S3a	Primary sedimentation tank (outlet)(West part of TPSTW)*	4.65	<u>126.38</u>	<u>126.38</u>
S4	Primary sedimentation tank (inlet) (West part of TPSTW)*	<u>1.83</u>	<u>120.95</u>	<u>120.95</u>
S4a	Primary sedimentation tank (inlet) (West part of TPSTW)*	3.72	56.82	56.82
S5	Aeration tank (inlet)(West part of TPSTW)*	9.03		9.03
S5a	Aeration tank (inlet) (West part of TPSTW)*	<u>5.78</u>		<u>5.78</u>
\$6	Aeration tank (outlet)(West part of TPSTW)*	0.3		<u>0.30</u>
S6a	Aeration tank (outlet) (West part of TPSTW)*	0.2		0.20
S7	Final sedimentation tank (outlet) (West part of TPSTW)*	0.34		0.34
S7a	Final sedimentation tank (outlet) (West part of TPSTW)*	0.19	=	0.19
S8	Final sedimentation tank (outlet) (West part of TPSTW)*	0.41	=	0.41
S8a	Final sedimentation tank (inlet) (West part of TPSTW)*	0.34	=	<u>0.34</u>
S9	Sludge digestion tank (West part of TPSTW)	31.16	110.66	110.66
\$10	Sludge consolidation tank (West part of TPSTW)	5.46		5.46
\$11	Primary sludge gravity thickener (West part of TPSTW)	1.64		1.64
\$12	Sludge dewatering house (inlet tank) (West part of TPSTW)	0.81	-	0.81
\$12a	Sludge dewatering house (dry sludge) (West part of TPSTW)	1.25	-	1.25
\$13	SAS thickening house (West part of TPSTW)	0.59		0.59
S14	Sludge pumping station (West part of TPSTW)	1.96	-	1.96
S15	Inlet pumping station (East part of TPSTW)	5.02	3.27	5.02
\$16	Screens house (East part of TPSTW)	5.11	5.4	5.40
\$16a	Screens house grit collection tank (East part of TPSTW)	<u>1.19</u>		<u>1.19</u>
\$17	Primary sedimentation tank (inlet) (East part of TPSTW)*	<u> </u>	<u>105.91</u>	105.91
\$17a	Primary sedimentation tank (inlet) (East part of TPSTW)*	<u> </u>	<u>101.33</u>	101.33
S18	Primary sedimentation tank (inlet) (East part of TPSTW)*	<u>-</u>	74.32	74.32
\$18a	Primary sedimentation tank (outlet) (East part of TPSTW)*	<u> </u>	<u>67.98</u>	67.98
S19	Aeration tank (inlet) (East part of TPSTW)*	<u> </u>	<u>8.72</u>	<u>8.72</u>
\$19a	Aeration tank (inlet) (East part of TPSTW)*	<u> </u>	<u>10.5</u>	<u>10.50</u>
\$20	Aeration tank (outlet) (East part of TPSTW)*	<u>-</u>	<u>1.05</u>	<u>1.05</u>
\$20a	Aeration tank (outlet) (East part of TPSTW)*	<u> </u>	2.45	2.45
\$21	Final sedimentation tank (outlet) (East part of TPSTW)*	0.35	<u> </u>	0.35
\$21a	Final sedimentation tank (outlet) (East part of TPSTW)*	0.58	<u> </u>	0.58
\$22	Final sedimentation tank (inlet) (East part of TPSTW)*	0.46	=	0.46
S22a	Final sedimentation tank (inlet) (East part of TPSTW)*	<u>0.41</u>	-	<u>0.41</u>
S23	Sludge digestion tank (East part of TPSTW)	8.37	-	8.37
S24	Sludge consolidation tank (East part of TPSTW)	1.45	-	1.45
S25	Leachate pre-treatment tank (Sheun Wan leachate pre-	0.63	-	0.63
	treatment works)			

Remarks: *

Due to abnormal operation, the sampling results (underlined) were considered not representative for assessment.