

APPENDIX 3.10

DERIVATION OF CUMULATIVE ANNUAL AVERAGE NO_X TO NO₂ CONVERSION EQUATION USING JENKIN METHOD

Derivation of Cumulative Annual Average NO_x to NO₂ Conversion Equation using Jenkin Method

Introduction

In order not to overestimate the NO₂ emissions during the conversion of NO_x to NO₂, besides OLM and DPM, an alternative method using the Jenkin method [1] is proposed. This method can estimate annual NO₂ based on a project-specific empirical relationship of NO_x to NO₂ derived from a fitted curve, making reference to annual NO₂ and NO_x monitoring data.

Jenkin Method

With reference to the "*Review of Methods for NO to NO*₂ Conversion in plumes at short ranges" (EA UK, 2007) [2], the annual NO₂ concentrations can be estimated by the Jenkin method with the derived project-specific empirical relationship of NO_x to NO₂ and the use of the latest available and representative data from EPD's air quality monitoring stations (AQMS). The empirical relationship can be described by selected annual NO₂ and NO_x monitoring data and a fitted curve [1]. The annual NO₂ concentrations can be determined from the functional form curve using the total NO_x concentrations. The functional form is presented below [1]:

$$NO2 = \frac{(\text{NOx} + \text{OX} + \frac{J}{k}) - \sqrt{\left(\text{NOx} + \text{OX} + \frac{J}{k}\right)^2 - 4 \times \text{NOx} \times \text{OX}]}}{2}$$

where NO_2 is the NO_2 concentration NO_x is the NO_x concentration O_x is the sum of NO_2 and O_3 concentration (i.e. $O_x = NO_2 + O_3$) J is the photolysis rate of NO_2 k is the rate coefficient for the reaction between NO and O_3

Derivation Process

Step 1: Obtain representative data from EPD's AQMS

Three AQMS are selected to analyse the annual NO_x to NO₂ relationship, including Tuen Mun General Station, Tap Mun General Station and Mong Kok Roadside Station. The recent five years (i.e. Year 2017 to 2021) annual mean data of NO₂, NO_x and O₃ are extracted from the reports "Air Quality in Hong Kong" published by EPD and presented in **Table 1** below. The annual mean OX (i.e. NO₂ + O₃) is also presented in **Table 1**.

Year	Location	Annual Mean NO ₂	Annual Mean NO _x	Annual Mean O ₃	Annual Mean OX [NO ₂ + O ₃]
		(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
2017	Mong Kok	81	164	24	105
2018	Mong Kok	79	163	27	106
2019	Mong Kok	78	154	32	110
2020	Mong Kok	74	162	30	104
2021	Mong Kok	70	139	32	102
2017	Tap Mun	10	12	74	84
2018	Tap Mun	11	13	72	83
2019	Tap Mun	10	12	80	90
2020	Tap Mun	9	11	71	80
2021	Tap Mun	10	12	75	85
2017	Tuen Mun	46	70	43	89
2018	Tuen Mun	47	68	46	93
2019	Tuen Mun	47	69	51	98
2020	Tuen Mun	40	55	48	88
2021	Tuen Mun	44	59	49	93

Step 2: Calculate and plot functional form curve

With the use of $OX=110\mu g/m^3$ and $J/k=23.5\mu g/m^3$, NO_2 concentrations can be calculated from the functional form based on the measured annual mean NO_x concentrations shown in **Table 1** above. The calculated NO_2 concentrations are shown in **Table 2**. The value of OX and J/k are considered reasonable as they are within typical value range for Hong Kong. The range of annual average OX from the selected AQMS is $80\mu g/m^3$ to $110\mu g/m^3$.

Table 2. Calculated NO₂ Concentrations using the Functional Form based on Annual NOx Concentrations Measured at Selected EPD AQMS

Year	Location	Calculated NO ₂	
rear	Location	(µg/m³)	
2017	Mong Kok	85	
2018	Mong Kok	85	
2019	Mong Kok	83	
2020	Mong Kok	84	
2021	Mong Kok	79	
2017	Tap Mun	10	
2018	Tap Mun	11	
2019	Tap Mun	10	
2020	Tap Mun	9	
2021	Tap Mun	10	
2017	Tuen Mun	50	
2018	Tuen Mun	49	
2019	Tuen Mun	50	
2020	Tuen Mun	41	
2021	Tuen Mun	44	

A plot for annual means of NO₂ versus NO_x obtained from selected AQMS from the recent 5 years is created in **Figure 1** below. The functional form curve, adopting OX of $110\mu g/m^3$ and J/k of $23.5\mu g/m^3$, fits with all annual mean data from the selected AQMS. Underestimation of the annual average NO₂ concentration is not expected.

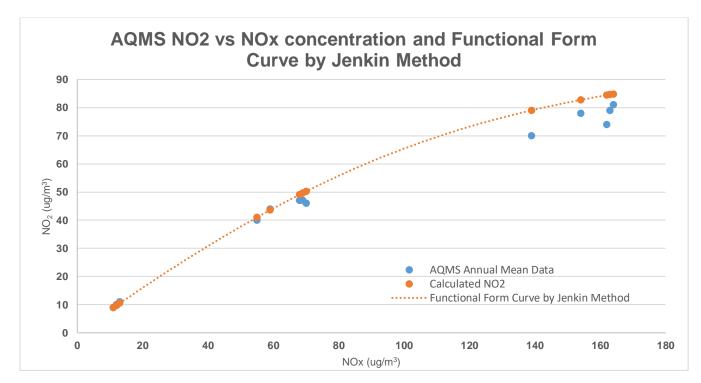


Figure 1. AQMS NO₂ vs NO_x concentration and Functional Form Curve by Jenkin Method

Step 3: Convert predicted cumulative annual NO_x results to cumulative annual NO₂ results

The functional form curve will be adopted for annual NO₂ assessment, where predicted cumulative annual NO_x results can be converted to predicted cumulative annual NO₂ results. The conversion equation for the annual NO₂ assessment is as follows:

NO2 _c	where	
$(NOx_c + 110 + 23.5) - \sqrt{(NOx_c + 110 + 23.5)^2 - 4 \times NOx_c \times 110}$	NO _{2c} is the predicted cumulative NO ₂	
=(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1)(1+1	concentration	
Z	NO _{xc} is the predicted cumulative NO _x	
	concentration	

References

- [1] J. M. E, "Analysis of sources and partitioning of oxidant in the UK Part 1: The NOx-dependence of annual mean concentrations of nitrogen dioxide and ozone.," Atmospheric Environment, 2004.
- [2] Environment Agency UK, "Review of methods for NO to NO2 conversion in plumes at short ranges," Environment Agency UK, UK, 2007.