

Environmental Impact Assessment for Development of an EcoPark in Tuen Mun Area 38

Final EIA Report Volume 2 – Appendix D (AQIA Modelling)

April 2005

VOLUME 2

CONTENTS

D.1 RECOVERY PROCESSES REMAINING AFTER INITIAL SCREENING

D.2 DETAILED EMISSION RATE CALCULATIONS FOR AQIA (UNMITIGATED)

- D.2.1 Electronics Fluorescent Lamp Recovery
- D.2.2 Glass
- D.2.3 Organic Food Waste
- D.2.4 Non-ferrous Metals
- D.2.5 Paper
- D.2.6 Plastics
- D.2.7 Rubber Tyres
- D.2.8 Wood
- D.2.9 Fuel Combustion Emissions for Scenarios 2 and 3
- D.2.10 Emission Rate Calculations for Other Sources
- Annex 1 Emission Factors from USEPA AP-42 and Other International References (Scenario 1)
- Annex 2 Calculated Emission Rates (Scenario 1)
- Annex 3 Emission Factors from USEPA AP-42 and Other International References (Scenario 2)
- Annex 4 Calculated Emission Rates (Scenario 2)
- Annex 5 Emission Factor from USEPA AP-42 and other References Scenario 3
- Annex 6 Calculated Emission Rate Scenario 3
- Annex 7 Total Energy Consumption Calculations
- Annex 8 Comparison Table of Relevant BPMs and PM to Pollutant Ratio Calculations
- Annex 9 Emission Factor from USEPA AP-42 and other References Scenario 1
- Annex 10 Calculated Emission Rate (Heavy Metals and Non-criteria Pollutants) Scenario 1
- Annex 11 Emission Factor from USEPA AP-42 and other References –Scenario 2
- Annex 12 Calculated Emission Rate (Heavy Metals and Non-criteria Pollutants) Scenario 2
- Annex 13 References
- Annex A Recovery Efficiency of the Assessed Processes

D.3 DETAILED EMISSION RATE CALCULATIONS FOR AQIA SCENARIO 2 (MITIGATED)

- D.3.1 Emission Factors from AP-42 (Non-Ferrous Metal) (without Demagging of Aluminium)
- D.3.2 Calculated Emission Rates for Scenario 2 (Non-Ferrous Metal) (without Demagging of Aluminium)
- D.3.3 Controlled Emission Rates of the Gaseous Heavy Metal and Toxic Air Pollutants for Scenario 2 (Mitigated)
- D.3.4 Emission Factors from AP-42 (Non-Ferrous Metal) for Mitigated Scenario 2 (Uncontrolled Dust Emission Factors for Secondary Lead and Aluminium Recovery)
- D.3.5 Calculated Emission Rates for Mitigated Scenario 2 (Non-Ferrous Metal) (Without Demagging Process, with SO₂ Control Emission and Provided With up to 99.9% Dust Control Efficiency)
- Annex 1 Uncontrolled Emission Factor from USEPA AP-42 and other References Scenario 2 (Mitigated)
- Annex 2 Calculated Emission Rate (Heavy Metals and Non-criteria Pollutants) Scenario 2 with 99.9% Dust Control Efficiency

D.4 AQIA RESULTS (UNMITIGATED)

- D.5 AQIA RESULTS FOR SCENARIO 2 (MITIGATED)
- D.6 DUST IMPACT FROM ECOPARK FOR SCENARIOS 2 AND 3
- D.7 CONTOUR PLOTS OF THE MAJOR POLLUTANTS FOR MITIGATED SCENARIO 2
- D.8 CONTOUR PLOTS OF THE MAJOR POLLUTANTS FOR SCENARIO 3

Appendix D.1

Recovery Processes Remaining After Initial Screening

Material Type	Process	Potential Emissions	Available Control Equipment/ Measures	Level of impact	Included in Assessment ?
Batteries					
Lead-acid	Mechanical / Physical separation of battery into separate components	Fugitive dust from the dust attached on the battery surface (not from the components)	 Good site practice to minimise fugitive dust emission Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency) 	Negligible	No
			Enclosed system with active air extraction system with dust control system		
Zinc-carbon / Alkaline	Shredding, Electromagnetic separation & neutralization (of electrolyte) – will be within the enclosed machine	Fugitive dust from discharge point of shredded material	Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)	Negligible	No
			• Enclosed system with active air extraction system with dust control system		
Lithium	Shredding and Electromagnetic/ Physical separation/ Hydrosaline deactivation – will be within the enclosed machine	Fugitive dust from discharge point of shredded material	Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)	Negligible	No
			 Enclosed system with active air extraction system with dust control system 		
NiCd/ NiMH/ Li ion	Cadmium (13-22%); Cobalt (0.5-2%); Lithium Hydroxide (0-4%); Nickel (20-32%); Potassium Hydroxide (0-4%) and Sodium Hydroxide (0-4%) ⁶ ; Others (assume polymers,	Fugitive dust from discharge point of shredded material	Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)	Negligible	No
	metals; 32%)		 Enclosed system with active air extraction system with dust control system 		
Electronics			•		
CRT	Separation and Testing	Nil	N/A	Nil	N/A
Recovery	Shredding, electromagnetic and electrostatic sorting – will be within the enclosed machine	Fugitive dust from discharge point of shredded material	Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)	Negligible	No
			 Enclosed system with active air extraction system with dust control system 		
Computer/	Separation and Testing	Nil	N/A	Nil	N/A
Electronics Recovery	Shredding and Separation (Electromagnetic and electrostatic) – will be within the enclosed machine	Fugitive dust from discharge point of shredded material	Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)	Negligible	No
			Enclosed system with active air extraction system with dust control system		

Material Type	Process	Potential Emissions	Available Control Equipment/ Measures	Level of impact	Included in Assessment ?
White	Separation and Testing	Nil	N/A	Nil	N/A
Goods Dismantling	Manual Dismantling and Separation	CFC emitted from old type air conditioner and refrigerator	 Good site practice to remove residual CFC before dismantling. As the use of CFC for refrigerant is fading out, the white good with CFC will become less in the future. 	Negligible	No
Fluorescent Lamp Recovery	Crush-and-Sieve/ Volatization/ Cyclone / magnetic separation in the enclosed mercury recovery machine for fluorescent lamp	Fugitive dust from any opening of the recovery machine	 Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency) 	Negligible	No
		Hg from the mercury recovery machine for fluorescent lamp	• Cyclones, dust filter and carbon filter package as specified in the technical information of the mercury recovery machine for fluorescent lamp.	TBD	Yes
Glass					
	Manual/ Automated Sorting	Nil	N/A	Nil	N/A
	Crusher – to reduce the glass to smaller size to improve the melting efficiency of glass will be within the enclosed machine	Fugitive dust from discharge of glass particles to the melting furnace	 Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency) Enclosed system with active air extraction system with dust control system 	Negligible	No
	Melting furnace/ Moulding/ Forming and Finishing	Fugitive dust and VOC	 Baghouse with 99% PM control efficiency VOC control equipment such as condensation and/or activated carbon adsorption with 90% control efficiency 	TBD	Yes
	Fuel Combustion	PM, SO ₂ , NO ₂ , CO & VOC	Ultra-low sulphur diesel (ULSD) with 0.005% by weight of sulphur	TBD	Yes
Organic Foo	d Waste	-			
In-vessel Composting	Handling/ delivery of organic food waste	Odour	 All the containers should be covered The handling and delivery area should be enclosed and equipped with odour control device such as bio filter or activated carbon filter to remove odour before discharge to the atmosphere. Negative pressure should be provided for the enclosed space to avoid any un-controlled odour emit to the atmosphere 	Negligible	No

Material Type	Process	Potential Emissions	Available Control Equipment/ Measures	Level of impact	Included in Assessment ?
	Curing : Organic waste will be placed in a sealed container with heat and moisture controlled. Air is circulated through out the material to maintain the necessary porosity for even maturing. When the air temperature rises above the optimal operating range, air is drawn off through the exhaust passes through bio-filter to remove odour.	Odour	Bio filter or activated carbon filter to remove odour before discharge to the atmosphere		No
	Fuel combustion	PM, SO ₂ , NO ₂ , CO & VOC	Ultra-low sulphur diesel (ULSD) with 0.005% by weight of sulphur	TBD	Yes
Ferrous Me	etals				
	Sorting	Nil	N/A	Nil	N/A
	Baling	Nil	N/A	Nil	N/A
	Mechanical shearing and shredding	Nil	N/A	Nil	N/A
Non-ferrou	s Metals	•			
	Sorting – materials are sorted by visual inspection into various grades according to industry specifications	Nil	N/A	Nil	N/A
	Baling	Nil	N/A	Nil	N/A
	Processing (sweating, smelting, refining)	PM, SO ₂ , heavy metals, halogens, TAP, Dioxin	 Baghouse or ECP with 99.9% dust control efficiency, wet-scrubber with 80% SO₂ removal efficiency 	TBD	Yes
	Fuel combustion	PM, SO ₂ , NO ₂ , CO & VOC	Ultra-low sulphur diesel (ULSD) with 0.005% by weight of sulphur	TBD	Yes
Paper					
	Automated sorting via conveyors, optical sensors and chutes	Nil	N/A	Nil	N/A
	Baling	Nil	N/A	Nil	N/A
	Pulping (e.g. boiler and dryer) / Cleaning/ De-inking/ Flotation – based on the reference document on Best Available Technique in the Pulp and Paper Industry published by European Commission in December 2001, VOC emission from pulping process are very small	VOC	Nil	Negligible	No
	Bleaching – generally oxygen, ozone, peroxide and peracetic acid will be used in the bleaching process. (ref: Integrated Pollution Prevention and Control (IPPC), Reference Document on Best Available Techniques in the Pulp and Paper Industry, EU Directive, Dec 2001)	NIL	 Non-chlorine bleaching agents include oxygen, ozone, peroxide and peracetic aicd. 	NIL	No

Material Type	Process	Potential Emissions	Available Control Equipment/ Measures	Level of impact	Included in Assessment ?
	Fuel combustion	PM, SO ₂ , NO ₂ , CO & VOC	Ultra-low sulphur diesel (ULSD) with 0.005% by weight of sulphur	TBD	Yes
Plastics					
	Sorting	Nil	N/A	Nil	N/A
	Crushing and Baling	Nil	N/A	Nil	N/A
	Clean plastic flakes	Nil	N/A	Nil	N/A
	Blending – dried flakes and pellets (virgin material)	Nil	N/A	Nil	N/A
	Moulding/ Extrusion by electric moulding machine and extruder	Fugitive dust and VOC from moulding machine and extruder	 Localised collection hood at point of moulding and extrusion in the moulding machine and extruder with control devices Baghouse with 99% PM control efficiency 	TBD	Yes
			 VOC control equipment such as condensation and/or activated carbon adsorption with 90% control efficiency 		
		odour from moulding machine and extruder	Bio filter or activated carbon filter to remove odour before discharge to the atmosphere with 90% control efficiency	Negligible	No
Textiles					-
	Sorting	Nil	N/A	Nil	N/A
	Baling	Nil	N/A	Nil	N/A
Rubber Ty	res				
	De-beading	Fugitive dust from the dust attached on the	Good site practice to minimise fugitive dust emission	Negligible	No
		tyre surface	• Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)		
			 enclosed facility with active air extraction system with dust control system 		
	Shredding – enclosed mechanical shredding	Fugitive dust from discharge of shredded rubber	Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)	Negligible	No
			 Enclosed system with active air extraction system with dust control system 		

Environmental Impact Assessment for Development of an EcoPark in Tuen Mun Area 38

Material Type	Process	Potential Emissions	Available Control Equipment/ Measures	Level of impact	Included in Assessment ?
	Mechanical Crumbing / Cryogenic Processing within the enclosed system	Fugitive dust from grinded fine rubber particles	Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)	TBD	Yes
			 Enclosed system with active air extraction system with dust control system 		
	Magnetic separation and air separator within the enclosed system/ Sieving	Fugitive dust attached on the tyre surface from	Good site practice to minimise fugitive dust emission	Negligible	No
		sieving	 Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency) 		
			 Enclosed system with active air extraction system with dust control system 		
	Re-treading – within the enclosed system and electric heating will be used for vulcanisation/ autoclave	Fugitive dust, VOC and odour emissions are localised at the re- treading machine	• To connect a collection system venting the fugitive dust and VOC from the enclosed re- treading machine to the control equipment before removing the re-treaded tyres out from the machine.	Negligible	No
			 Localised collection hood with control devices (e.g. baghouse, with 99% dust control efficiency and activated carbon filter or bio- filter with 90% control efficiency to control odour and VOC or wet scrubber to control both the fugitive dust and VOC emissions) 		
			 VOC control equipment such as condensation and/or activated carbon adsorption with 90% control efficiency 		
			 Enclosed system with active air extraction system with control system 		

Environmental Impact Assessment for Development of an EcoPark in Tuen Mun Area 38

Material Type	Process	Potential Emissions	Available Control Equipment/ Measures	Level of impact	Included in Assessment ?
Wood					
	Dismantling / Sorting	Nil	N/A	Nil	N/A
	Hydraulic compaction/ Mechanical shearing	Nil	N/A	Nil	N/A
	Pallet refurbishment	Nil	N/A	Nil	N/A
	Process – chipping within the enclosed machine	Fugitive dust from the discharge of wood chips	Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency)	Negligible	No
			 Enclosed system with active air extraction system with control system 		
	Bleaching – generally oxygen, ozone, peroxide and peracetic acid will be used in the bleaching process.	NIL	 Non-chlorine bleaching agents include oxygen, ozone, peroxide and peracetic aicd. 	NIL	No
	(ref: Integrated Pollution Prevention and Control (IPPC), Reference Document on Best Available Techniques in the Pulp and Paper Industry, EU Directive, Dec 2001)				
	Process – magnetic separation	Nil	N/A	Nil	N/A
	Plastic Wood Composite (PWC) Manufacturing – plastic and wood chips will mix together and heat up by electric power. PWC will then form by extrusion	Fugitive dust and VOC from the point of PWC extrusion from the	 Localised dust/ particles collection hood with dust control device (e.g. baghouse, with 99% control efficiency) 	TBD	Yes
		extruder	 VOC control equipment such as condensation and/or activated carbon adsorption with 90% control efficiency 		
		odour from the point of PWC extrusion from the extruder	 Bio filter or activated carbon filter with 90% control efficiency to remove odour before discharge to the atmosphere 	Negligible	No
	Fuel combustion	PM, SO ₂ , NO ₂ , CO & VOC	 Ultra-low sulphur diesel (ULSD) with 0.005% by weight of sulphur 	TBD	Yes
Spent Cop	per Etchant				
	Electrolytic Process	Nil	N/A	Nil	N/A
	Chemical Treatment Process	Nil	N/A	Nil	N/A

Appendix D.2

Detailed Emission Rate Calculations for AQIA (Unmitigated)

D.2.1 Electronics – Fluorescent Lamp Recovery

Total throughput of fluorescent lamp : 25,100 tpa x 25% = 6,275 tpa Recovery efficiency : 100%Total material produced from the process : 6,275 tpa

Emission rate calculation

Weight of fluorescent lamp: 120g (extract from http://www.elcfed.org/lighting material.html)

Total buffered throughput of fluorescent lamp : 6,275 ton/year

= $6,275 \times 10^{6}$ g/year = $6,275 \times 10^{6}$ / 120 tube / year = $6,275 \times 10^{6}$ / 120 / (300 x 12) tube / hour (assuming 1 year = 300 days and 12 hours /day) = 14,525 tube / hour

According to the technical data of the fluorescent lamp recovery machine, up to 5,000 tubes per hour can be processes. Therefore, 3 machines are required to cater the total throughput of 6,275 ton/year assuming the industry operating 300 days a year and 12 hours a day.

The Hg stack emission from the process is 0.001 mg/m^3 and the flow rate of stack is 2000 m^3/h . Therefore, the emission rate for one machine is:

 $0.001 \text{ mg/m}^3 \text{ x } 2000 \text{ m}^3/\text{h}$ = 0.001 x 10⁻³ g/m³ x 2000 / (60 x 60) m³/s = 5.5556e-7 g/s per machine

Total emission rate for 3 machines are = 5.5556e-7 g/s x 3 = 1.6667e-6 g/s

The fugitive Hg emission from the process : 0.003 mg/m^3 (average of $0.001-0.005 \text{ mg/m}^3$) Volume of plant-room : 300 m^3 ($100 \text{ m}^2 \text{ x} 3\text{m}$) Flow : 3 air changes per hour

Therefore, the emission rate for one machine is:

 $0.003 \text{ mg/m}^3 \text{ x } 300 \text{ m}^3 \text{ x } 3 /\text{hour}$ = 0.003 x 10⁻³ g/m³ x 300 x 3 / (60 x 60) m³/s = 2.5e-7 g/s per machine Total emission rate for 3 machines are = 2.5e-7 g/s x 3 = <u>7.5e-7 g/s</u>

Total Emission from the process	= <u>2.4167e-6 g/s</u>
Assumed Stack Height	= <u>6m above ground</u>
Stack Diameter	= <u>250mm</u>
Stack Temperature	= <u>23.5°C</u>
Efflux Velocity	= <u>16.41m/s</u>

Reference

1. MRT System AB, Technical Performance Data

D.2.2 Glass

Total throughput of glass : 42,680 tpa Recovery efficiency : 88% Total material produced from the process : 37,387 tpa

a. from fuel combustion (for Scenario 1 only)

Energy consumption of glass : 16 GJ/ton = 15.1651 MMBtu/ton (refer to Annex 7 for detailed calculations)

Unit	РМ	SO ₂	NO _x	CO	VOC
lb/ 1000 gal	2	0.785^	24	5	0.252
lb/ MMBtu*	0.0143	0.0056	0.1714	0.0357	0.0018
kg/ MMBtu	0.0065	0.0025	0.0778	0.0162	0.0008
kg/ Mg	0.0983	0.0386	1.1792	0.2457	0.0124
g/s	<u>0.2835</u>	<u>0.1113</u>	<u>3.4018</u>	<u>0.7087</u>	<u>0.0357</u>

b. from process (electric melting furnace)

Unit	PM	VOC
kg/ Mg	0.007 [@]	0.1
g/s	<u>0.0202[@]</u>	<u>0.0288[#]</u>

c. from process (forming and finishing)

Unit	РМ	VOC
kg/ Mg	(negligible)	4.4
g/s	-	<u>1.2693[#]</u>

^ 157 x 0.005% by weight of sulphur = 0.785 lb / 1000 gal

* lb/ 1000 gal / 140 = lb/ MMBtu

[@] controlled emission by baghouse with 99% control efficiency

* assumed all VOC are odorous and controlled emission by activated carbon filter with 90% control efficiency

References

- 1. Fuel consumption 16 GJ/ton from EP Indicator & Benchmark Shortlist Document Glass (Container), remas (<u>http://remas.ewindows.eu.org</u>)
- 2. USEPA AP-42 Chapter 1.3 Fuel Oil Combustion 0.005% by weight of sulphur, no.2 oil fired (SCC1-01-005-01, 1-02-005-01, SCC1-03-005-01)
- 3. USEPA AP-42 Chapter 11.15 Glass Manufacturing

D.2.3 Organic Food Waste

Total throughput of food : 19,750 tpa Recovery efficiency : 100% Total material produced from the process : 19,750 tpa

Emission rate calculation

from fuel combustion (for Scenario 1 only)

Energy consumption of organic food waste : 3.1353 MMBtu/ton (refer to Annex 7 for detailed calculations)

Unit	PM	SO ₂	NO _x	СО	VOC
lb/ 1000 gal	2	0.785^	24	5	0.252
lb/ MMBtu*	0.0143	0.0056	0.1714	0.0357	0.0018
kg/ MMBtu	0.0065	0.0025	0.0778	0.0162	0.0008
kg/ Mg	0.0203	0.0080	0.2438	0.0508	0.0026
g/s	<u>0.0310</u>	<u>0.0122</u>	<u>0.3715</u>	<u>0.0774</u>	<u>0.0039</u>

^ 157 x 0.005% by weight of sulphur = 0.785 lb / 1000 gal * lb/ 1000 gal / 140 = lb/ MMBtu

References

1. USEPA - AP-42 Chapter 1.3 Fuel Oil Combustion - 0.005% by weight of sulphur, no.2 oil fired (SCC1-01-005-01, 1-02-005-01, SCC1-03-005-01)

D.2.4 **Non-Ferrous Metals**

Assumed Material Throughput

Assessment Scenario	Scenario 1	Scenario 2	Scenario 3
Total throughput (tpa)	10,000	2,500	Nil
Recovery efficiency	100%	100%	Nil
Total material produced from the process (tpa)	10,000	2,500	Nil

Energy Consumptions

Non-Ferrous Metal	Energy Consumption (MMBtu/ton)
AI	11.3738
Pb	0.7483
Cu	7.0842
Zn	2.8999

Detailed calculations of energy consumptions for non-ferrous metal recovery are attached in Annex 7 of this Appendix.

Emission Factors from AP-42 (Non-Ferrous Metal)

Description of Secondary Non-Ferrous	Emi	ssion Facto	r (kg/ Mg ma	terial produ	iced)
Metals Manufacturing Process	PM	SO ₂	NOx	CO	VOC
Lead					
Fuel Combustion (for Scenario 1 only)	0.0048	0.0019	0.0582	0.0121	0.0006
Sweating	35	ND	-	-	-
Reverberatory Smelting/ Blast Smelting- Cupola	1.12 ^a	40 ^a	-	-	-
Reverberatory Smelting	0.5 ^ª	40 ^a	-	-	-
Blast Smelting-Cupola	1.12 ^ª	27 ^a	-	-	-
Fugitive Emission (Sweating)	1.8	-	-	-	-
Fugitive Emission (Smelting)	12.1	-	-	-	-
Aluminium					
Fuel Combustion (for Scenario 1 only)	0.0737	0.0289	0.8844	0.1843	0.0093
Sweating Furnace w/ baghouse	1.65	-	-	-	-
Smelting (Reverberatory Furnace) w/ baghouse	0.65	-	-	-	-
Demagging w/ baghouse	25	-	-	-	-
Copper Fuel Combustion (for Scenario 1 only)	0.0459	0.0180	0.5509	0.1148	0.0058
Cupola Furnace (scrap copper and brass)	35	-	-	-	-
- Fugitive Emission	1.1	-	_	-	-
Rotary Furnace (brass and bronze)	150	_	_	-	-
- Fugitive Emission	1.3	-	-	-	-
Zinc					
Fuel Combustion (for Scenario 1 only)	0.0188	0.0074	0.2255	0.0470	0.0024
Reverberatory Sweating (residual scrap)	16	-	-	-	-
- Fugitive Emission	0.63	-	-	-	-
Sodium Carbonate Leaching Calcining	44.5	-	-	-	-
Kettle pot	0.05	-	-	-	-
- Fugitive Emission	0.0025	-	-	-	-
Muffle distillation	22.5	-	-	-	-
- Fugitive Emission	1.18	-	-	-	-
Retort Reduction	23.5	-	-	-	-

^a maximum emission factors (controlled) of reverberatory smelting and blast smelting cupola were adopted.

For conservative approach, the maximum emission rates (g/s) of different air pollutants were adopted in the assessment. The following tables detail the selection of emission rates.

References

- 1. USEPA AP-42 Chapter 12.11 Secondary Lead Processing
- 2. USEPA AP-42 Chapter 12.8 Secondary Aluminium Operations
- 3. USEPA AP-42 Chapter 12.9 Secondary Copper Smelting
- 4. USEPA AP-42 Chapter 12.14 Secondary Zinc Processing

Calculated Emission Rates for Scenario 1 (Non-Ferrous Metal)

Description of Secondary Non-Ferrous	Emission Rate			e (g/s)		
Metals Manufacturing Process	PM	SO ₂	NOx	CO	VOC	
Land	4.0450	20.0057	0.0440	0.0004	0.0005	
Lead	1.2453	<u>30.8657</u>	0.0449	0.0094	0.0005	
Fuel Combustion	0.0037	0.0015	0.0449	0.0094	0.0005	
Sweating	0.2701 ^c	-	-	-		
Reverberatory Smelting/ Blast Smelting-Cupola	0.8642 ^a	30.8642 ^a	-	-	-	
Reverberatory Smelting	0.3858 ^{ab}	30.8642 ^a	-	-	-	
Blast Smelting-Cupola	0.8642 ^{ab}	20.8333 ^a	-	-	-	
Fugitive Emission (Sweating)	0.0139 ^c	-	-	-	-	
Fugitive Emission (Smelting)	0.0934 ^c	-	-	-	-	
Aluminium	<u>21.1217</u>	0.0223	0.6824	0.1422	0.0072	
Fuel Combustion	0.0569	0.0223	0.6824	0.1422	0.0072	
Sweating Furnace w/ baghouse	1.2731 ^b	-	-	-	-	
Smelting (Reverberatory Furnace) w/ baghouse	0.5015 ^b	-	-	-	-	
Demagging w/ baghouse	19.2901 ^b	-	-	-	-	
	•					
Copper	1.4814	0.0139	0.4250	0.0886	0.0045	
Fuel Combustion	0.0354	0.0139	0.4250	0.0886	0.0045	
Cupola Furnace (scrap copper and brass)	0.2701 ^c	-	-	-	-	
- Fugitive Emission	0.0085 ^c	-	-	-	-	
Rotary Furnace (brass and bronze)	1.1574 ^c	-	-	-	-	
- Fugitive Emission	0.0100 ^c	-	-	-	-	
Zinc	0.8506	0.0057	0.1740	0.0362	0.0018	
Fuel Combustion	0.0145	0.0057	0.1740	0.0362	0.0018	
Reverberatory Sweating (residual scrap)	0.1235 ^c	-	-	-	-	
- Fugitive Emission	4.9E-03 ^c	-	-	-	-	
Sodium Carbonate Leaching Calcining	0.3434 ^c	-	-	-	-	
Kettle pot	0.0004 ^c	-	-	-	-	
- Fugitive Emission	1.9E-05 ^c	-	-	-	-	
Muffle distillation	0.1736 ^c	-	-	-	-	
- Fugitive Emission	0.0091 ^c	-	-	-	-	
Retort Reduction	0.1813 ^c	-	-	-	-	
Non-Ferrous Metal Emission Rate (Max)	<u>21.1217</u>	30.8657	0.6824	0.1422	0.0072	
	<u> 41.1411</u>	50.0057	0.0024	0.1422	0.0072	

^a maximum emission rates of reverberatory smelting and blast smelting cupola were adopted.

^b emission rates were calculated based on the controlled emission factors in USEPA's AP-42

^c controlled emission by baghouse with 99% control efficiency

Total emission rates in bold and underlined are the maximum emission rates for each pollutant

Calculated Emission Rates for Scenario 2 (Non-Ferrous Metal)

Description of Secondary Non-Ferrous						
Metals Manufacturing Process	PM	SO ₂	NOx	СО	VOC	
Lead	0.3104	7.7160	_	_		
Sweating	0.0675 ^c	<u></u>				
Reverberatory Smelting/ Blast Smelting- Cupola	0.2160 ^a	7.7160	-	-	-	
Reverberatory Smelting	0.0965 ^{ab}	7.7160 ^ª	-	-	-	
Blast Smelting-Cupola	0.2160 ^{ab}	5.2083 ^a	-	-	-	
Fugitive Emission (Sweating)	0.0035 ^c	-	-	-	-	
Fugitive Emission (Smelting)	0.0233 ^c	-	-	-	-	
Aluminium	<u>5.2662</u>	-	-	-	-	
Sweating Furnace w/ baghouse	0.3183 ^b	-	-	-	-	
Smelting (Reverberatory Furnace) w/ baghouse	0.1254 ^b	-	-	-	-	
Demagging w/ baghouse	4.8225 ^b	-	-	-	-	
Copper	0.3615	-	-	-	-	
Cupola Furnace (scrap copper and brass)	0.0675 ^c	-	-	-	-	
- Fugitive Emission	0.0021 ^c	-	-	-	-	
Rotary Furnace (brass and bronze)	0.2894 ^{cb}	-	-	-	-	
- Fugitive Emission	0.0025 ^c	-	-	-	-	
Zinc	0.2090	-	-	-	-	
Reverberatory Sweating (residual scrap)	0.0309 ^c	-	-	-	-	
- Fugitive Emission	0.0012 ^c	-	-	-	-	
Sodium Carbonate Leaching Calcining	0.0858 ^c	-	-	-	-	
Kettle pot	0.0001 ^c	-	-	-	-	
- Fugitive Emission	4.8E-06 ^c	-	-	-	-	
Muffle distillation	0.0434 ^c	-	-	-	-	
- Fugitive Emission	0.0023 ^c	-	-	-	-	
Retort Reduction	0.0453 ^c	-	-	-	-	
Non-Ferrous Metal Emission Rate (Max)	5.2662	7.7160	_	-	-	

^a maximum emission rates of reverberatory smelting and blast smelting cupola were adopted.

^b emission rates were calculated based on the controlled emission factors in USEPA's AP-42

^c controlled emission by baghouse with 99% control efficiency

Total emission rates in bold and underlined are the maximum emission rates for each pollutant

For scenario 2, because total fuel consumption rate was proposed for the whole Eco-Park, emission rates of non-ferrous metals due to fuel combustion are not presented in this section.

References

- 1. USEPA AP-42 Chapter 12.11 Secondary Lead Processing
- 2. USEPA AP-42 Chapter 12.8 Secondary Aluminium Operations
- 3. USEPA AP-42 Chapter 12.9 Secondary Copper Smelting
- 4. USEPA AP-42 Chapter 12.14 Secondary Zinc Processing

Heavy Metals in PM (Non-Ferrous Metal)

For those emission factors for heavy metals and Non-Criteria Pollutants not available in AP-42, the emission rates will be determined based on the Particulate Matter (PM) to pollutant ratios as stated in the Best Practicable Measures (BPMs) for different related Specified Processes (SP) issued by EPD. Moreover, the emission factors/rates for lead and tin are based on USEPA's AP-42 on secondary lead processing industry. Furthermore, in accordance with USEPA 1990b, 2.2% of total chromium emission would be chromium VI (Cr^{6+}). Detailed calculations can be referred to the attached tables in Annexes 8 to 12.

Dioxin Emission (Non-Ferrous Metal)

Process	Potential Release Route (µg I-TEQ/t)	Max. Emission Factor (µg I-TEQ/t)	Max. Emission Rate (g I-TEQ/s) (Worst-Impact)	Max. Emission Rate (g I-TEQ/s) (Clean)
2 nd Cu (controlled) ¹	50			
2 nd Al (controlled) ²	35	100	(Throughput = 10,000 tpa)	(Throughput = 2,500 tpa)
2 nd Pb (controlled) ³	8	<u>100</u>	7.716e-8	1.929e-8
2 nd Zn (controlled) ⁴	<u>100</u>			

The dioxin emission factors were based on "*Standardized Toolkit for Identification and Quantification of Dioxin and Furan Releases*", UNEP Chemicals Geneva, Switzerland, May 2003. For conservative approach, the maximum emission factor of the four processes was adopted in the assessment, i.e., emission factor of secondary zinc of <u>100 µg I-TEQ/t</u> was adopted.

Remarks

- 1. thermal processing of scrap copper materials is carried out in furnaces which are well controlled and fitted with afterburners and fabric filters; the scrap should undergo some sorting and classification prior to processing to minimize contaminants
- 2. controlled systems adopted using afterburners, scrap pre-treatment and gas cleaning with filters and lime injection
- 3. furnaces fitted with fabric filters where PVC is excluded from battery separators.
- 4. hot briquetting rotary furnaces are used with basic dust control such as fabric filter or electrostatic precipitator.

D.2.5 Paper

Total throughput of paper : 200,000 tpa Recovery efficiency : 100% Total material produced from the process : 200,000 tpa

Emission rate calculation

a. from fuel combustion (for Scenario 1 only)

Energy consumption of paper : 6.5 GJ/ton = 6.1608 MMBtu/ton (refer to Annex 7 for detailed calculations)

Unit	PM	SO ₂	NO _x	со	VOC
lb/ 1000 gal	2	0.785^	24	5	0.252
lb/ MMBtu*	0.0143	0.0056	0.1714	0.0357	0.0018
kg/ MMBtu	0.0065	0.0025	0.0778	0.0162	0.0008
kg/ Mg	0.0399	0.0157	0.4791	0.0998	0.0050
g/s	<u>0.6161</u>	<u>0.2418</u>	<u>7.3928</u>	<u>1.5402</u>	<u>0.0776</u>

^ 157 x 0.005% by weight of sulphur = 0.785 lb / 1000 gal * lb/ 1000 gal / 140 = lb/ MMBtu

References

- 1. Fuel consumption 6.5 GJ/ton from EP Indicator & Benchmark Shortlist Document Paper (Only), remas (<u>http://remas.ewindows.eu.org</u>)
- 2. USEPA AP-42 Chapter 1.3 Fuel Oil Combustion 0.005% by weight of sulphur, no.2 oil fired (SCC1-01-005-01, 1-02-005-01, SCC1-03-005-01)

D.2.6 Plastics

Total throughput of plastics : 102,740 tpa Recovery efficiency : 100% Total material produced from the process : 102,740 tpa

Emission rate calculation

a. from extrusion

Unit	PM	VOC
kg/ Mg	0.0479	0.0353
g/s	3.7973e-3 [@]	0.0280 [#]

b. from moulding

Unit	PM	VOC
kg/ Mg	0.0651	0.0307
g/s	5.1608e-3 [@]	0.0243 [#]

Total emission rate

Process	PM	VOC
Extrusion	3.7973e-3	0.0280 [#]
Moulding	5.1608e-3	0.0243 [#]
Total	<u>8.9580e-3</u>	<u>0.0523</u>

[@] controlled emission by baghouse with 99% control efficiency

[#] assumed all VOC are odorous and controlled emission by activated carbon filter with 90% control efficiency

Reference

<u>1.</u> Emission Calculation Fact Sheet - Plastic Production and Products Manufacturing, Environmental Science and Services Division of Michigan Department of Environmental Quality

D.2.7 Rubber Tyres

Grinding (cryogenic grinding)

Total throughput of rubber tyre for grinding : 16,558 tpa Recovery efficiency : 100% Total material produced from the process : 16,558 tpa

Emission rate calculation

PM Emission Rate : 0.4 kg/hr = 1.1111e-3 g/s (with 2000 tpa) PM Emission Rate : 1.1111e-3 g/s x 2000 / 16558 = **<u>9.1986e-3 g/s</u>** (with 16,558 tpa)

Reference

1. Technical Guidelines on the Identification and Management of Used Tyres, Technical Working Group of Basel Convention

D.2.8 Wood

Total throughput of wood : 41,260 tpa Recovery efficiency : 100% Total material produced from the process : 41,260 tpa

a. from fuel combustion (Scenario 1)

Energy consumption of wood : 3.1353 MMBtu/ton (refer to Annex 7 for detailed calculations)

Unit	РМ	SO ₂	NOx	со	VOC
lb/ 1000 gal	2	0.785^	24	5	0.252
lb/ MMBtu*	0.0143	0.0056	0.1714	0.0357	0.0018
kg/ MMBtu	0.0065	0.0025	0.0778	0.0162	0.0008
kg/ Mg	0.0203	0.0080	0.2438	0.0508	0.0026
g/s	0.0647	<u>0.0254</u>	0.7762	<u>0.1617</u>	<u>0.0081</u>

b. from extrusion

Unit	PM	VOC
kg/ Mg	0.0479	0.0353
g/s	<u>0.0015</u>	<u>0.0112[#]</u>

[®] controlled emission by baghouse with 99% control efficiency

[#] assumed all VOC are odorous and controlled emission by activated carbon filter with 90% control efficiency

References

- 1. USEPA AP-42 Chapter 1.3 Fuel Oil Combustion 0.005% by weight of sulphur, no.2 oil fired (SCC1-01-005-01, 1-02-005-01, SCC1-03-005-01)
- 2. Emission Calculation Fact Sheet Plastic Production and Products Manufacturing, Environmental Science and Services Division of Michigan Department of Environmental Quality

Fuel Combustion Emissions for Scenarios 2 and 3 D.2.9

Sulphur content of Ultra-Low Sulphur Diesel (ULSD): 0.005%

Total fuel (ULSD) consumption : 7,500 L/hour (Scenario 2) Total fuel (ULSD) consumption : 3,500 L/hour (Scenario 3)

Emission rates calculation

Unit	PM	SO ₂	NOx	CO	VOC
lb/10 ³ gal	2	0.785°	24	5	0.252
kg/10 ³ L or g/L [*]	0.24	0.0942	2.88	0.6	0.0302
g/s (Scenario 2)	<u>0.5000</u>	<u>0.1963</u>	<u>6.0000</u>	<u>1.2500</u>	<u>0.0630</u>
g/s (Scenario 3)	<u>0.2333</u>	<u>0.0916</u>	<u>2.8000</u>	<u>0.5833</u>	<u>0.0294</u>

^ 157 x 0.005% by weight of sulphur = 0.785 lb / 1000 gal * kg/10³L or g/L = 0.12 x lb/10³gal

Reference

1. USEPA - AP-42 Chapter 1.3 Fuel Oil Combustion - 0.005% by weight of sulphur, no.2 oil fired (SCC1-01-005-01, 1-02-005-01, SCC1-03-005-01)

D.2.10 Emission Rate Calculations for Other Sources

Temporary Mixed Construction Waste Sorting Facility (TMCWSF)

Particular matter (PM) emissions from the Temporary Mixed Construction Waste Sorting Facility (TMCWSF) (formerly referred as C&D material sorting facility or C&DMSF) based on the emission inventory extracted from the Attachment 1 Environmental Protection Measures Incorporated into the Design of the Fill Bank Project of the Project Profile entitled "Expansion and Extension of Fill Bank at Tuen Mun Area 38" (Application No. DIR-113/2005).

a. Emission from TMCWSF

Descriptions of TMCWSF	PM Emission Rate, g/s
Oversized material crushing	0.0012
Screening	0.0531
Material Handling – loading/unloading	0.0088
Total	<u>0.0631</u>

The emission area was assumed to be 1m x 1m and so the total PM emission rate = 0.0631 g/s/m^2 .

	Fre	om	Т	o		Emission	Area,	Emission
ID	x	У	x	У	Length, m	Rate, g/s/m	m²	Rate, g/s/m ²
R1	811371	825618	811349	825592	34.06	0.000202	68.12	0.000101
R11	811349	825592	811476	825539	137.62	0.000202	275.24	0.000101
R12	811476	825539	811230	824959	630.01	0.000202	1260.02	0.000101

b. Emission from the access roads to TMCWSF (Road width = 2m)

Owing to the restriction of ISCST3, the access roads were broken into several segments so that the length/width ratio was less than 10.

Annex 1 Emission Factors from USEPA AP-42 and Other International References (Scenario 1)

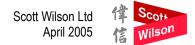
				E	mission Facto	r (kg/ Mg mat	erial produce	d) ^a	Ref.
	Total Throughput (tonnes/yr)	Recovery Efficiency ^b	Material Produced (tonnes/yr)	PM	SO ₂	NO	со	VOC	
Electronics	25100	100%	25100			0			
Fluorescent Lamp Recovery (Stack)	6275	100%	6275	Emission Ra	te calculated	directly based	l on the techn	ical info	1
Fluorescent Lamp Recovery (Fugitive)									1
Glass	42680	88%	37387						
Fuel Combustion				0.0983	0.0386	1.1792	0.2457	0.0124	2, 3
Container w/ baghouse				0.007				0.1	4
Forming & Finishing - Container				Negligible				4.4	4
Organic Food Waste									_
- In-vessel Composting	19750	100%	19750						
Fuel Combustion				0.0203	0.0080	0.2438	0.0508	0.0026	
Non-Ferrous Metals	10000	100%	10000						_
Lead	10000	100%	10000						_
Fuel Combustion	10000	10070	10000	0.0048	0.0019	0.0582	0.0121	0.0006	2, 5
Sweating	1			35	ND	0.0002	0.0121	0.0000	6
Reverberatory Smelting/ Blast Smelting-Cupola	1			1.12	40				6
Reverberatory Smelting				0.5	40				6
Blast Smelting-Cupola				1.12	27				6
Fugitive Emission (Sweating)				1.8					6
Fugitive Emission (Smelting)				12.1					6
Aluminium	10000	100%	10000						
Fuel Combustion				0.0737	0.0289	0.8844	0.1843	0.0093	2, 5, 7
Sweating Furnace w/ baghouse				1.65					8
Smelting (Reverberatory Furnace) w/ baghouse				0.65					8
Demagging w/ baghouse				25					8
Copper	10000	100%	10000						
Fuel Combustion				0.0459	0.0180	0.5509	0.1148	0.0058	2, 5
Cupola Furnace (scrap copper and brass)				35					9
- Fugitive Emission				1.1					9
Rotary Furnace (brass and bronze)				150					9
- Fugitive Emission				1.3					9
Zinc	10000	100%	10000						
Fuel Combustion				0.0188	0.0074	0.2255	0.0470	0.0024	2, 5
Reverberatory Sweating (residual scrap)				16					10
- Fugitive Emission				0.63					10
Sodium Carbonate Leaching Calcining				44.5					10
Kettle pot				0.05					10
- Fugitive Emission				0.0025					10
Muffle distillation				22.5					10
- Fugitive Emission				1.18					10
Retort Reduction				23.5					10
Paper	200000	100%	200000						
Fuel Combustion				0.0399	0.0157	0.4791	0.0998	0.0050	2, 5, 11
Plastics	102740	100%	102740						
Extruder	102140	10070	102140	0.0479				0.0353	13
Moulding Machine				0.0651				0.0307	13
	000000	4000	00000						
Rubber Tyres	20020	100%	20020	Emission D.	te estevilet : 1	-l'an ath i h a		inel infe	44
Grinding of rubber tyres	16558	100%	16558	Emission Ra	te calculated	uirectly based	i on the techn	ical into	14
Wood	41260	100%	41260						
Plastic Wood Composite Manufacturing									
				0.0203	0.0080	0.2438	0.0508	0.0026	2, 5
Fuel Combustion					0.0000	0.2400	0.0000		
Fuel Combustion Extrusion Process				0.0203	0.0000	0.2400	0.0000	0.0353	13

Annex 2 Calculated Emission Rates (Scenario 1)

				1	Em	ission Rate (g	ı/s) ^a	
	Total	_	Material			(3	r =/	
	Throughput	Recovery	Produced	PM ^a (w/		10	00	
Electronics	(tonnes/yr) 25100	Efficiency ⁰ 100%	(tonnes/yr) 25100	baghouse)	SO ₂	NO _x	CO	VOC
Fluorescent Lamp Recovery (Stack)	6275	100%	6275					
Fluorescent Lamp Recovery (Stack)	0275	10078	0275					
Glass	42680	88%	37387	0.3037	0.1113	3.4018	0.7087	1.3339
Fuel Combustion				0.2835	0.1113	3.4018	0.7087	0.0357
Container w/ baghouse				0.0202				0.0288
Forming & Finishing - Container								1.2693
Organic Food Waste								
- In-vessel Composting	19750	100%	19750	0.0310	0.0122	0.3715	0.0774	0.0039
Fuel Combustion	10100	10070	10700	0.0310	0.0122	0.3715	0.0774	0.0039
Non-Ferrous Metals	10000	100%	10000	21.1217	30.8657	0.6824	0.1422	0.0072
Lead	10000	100%	10000	1.2453	30.8657	0.0449	0.0094	0.0005
Fuel Combustion				0.0037	0.0015	0.0449	0.0094	0.0005
Sweating Reverberatory Smelting/ Blast Smelting-Cupola	1			0.2701 0.8642	30.8642			
Reverberatory Smelling/ Blast Smelling-Cupola Reverberatory Smelling	1			0.3858	30.8642			
Blast Smelting-Cupola				0.8642	20.8333			
Fugitive Emission (Sweating)				0.0139				
Fugitive Emission (Smelting)				0.0934				
Aluminium	10000	100%	10000	21.1217	0.0223	0.6824	0.1422	0.0072
Fuel Combustion				0.0569	0.0223	0.6824	0.1422	0.0072
Sweating Furnace w/ baghouse Smelting (Reverberatory Furnace) w/ baghouse				1.2731 0.5015				
Demagging w/ baghouse				19.2901				
				10.2001				
Copper	10000	100%	10000	1.4814	0.0139	0.4250	0.0886	0.0045
Fuel Combustion				0.0354	0.0139	0.4250	0.0886	0.0045
Cupola Furnace (scrap copper and brass)				0.2701				
- Fugitive Emission				0.0085				
Rotary Furnace (brass and bronze)				1.1574				
- Fugitive Emission				0.0100				
Zinc	10000	100%	10000	0.8506	0.0057	0.1740	0.0362	0.0018
Fuel Combustion				0.0145	0.0057	0.1740	0.0362	0.0018
Reverberatory Sweating (residual scrap)				0.1235				
- Fugitive Emission				4.9E-03				
Sodium Carbonate Leaching Calcining				0.3434				
Kettle pot				0.0004				
- Fugitive Emission Muffle distillation				1.9E-05 0.1736				
- Fugitive Emission				0.0091				
Retort Reduction				0.1813				
Paper	200000	100%	200000	0.6161	0.2418	7.3928	1.5402	0.0776
Fuel Combustion				0.6161	0.2418	7.3928	1.5402	0.0776
Planting	100740	1000/	100740	0.05005.00				0.0500
Plastics Extruder	102740	100%	102740	8.9580E-03 3.7973E-03				0.0523
Moulding Machine				5.1608E-03				0.0280
				0.1000L-03				0.0240
Rubber Tyres	20020	100%	20020	9.1986E-03				
Grinding of rubber tyres	16558	100%	16558	9.1986E-03				
Wood	41260	100%	41260	0.0662	0.0254	0.7762	0.1617	0.0194
Plastic Wood Composite Manufacturing				0.0647	0.0254	0 7760	0 1617	0.0004
Fuel Combustion Extrusion Process				0.0647 0.0015	0.0254	0.7762	0.1617	0.0081
	1			0.0010				0.0112
Total Fuel Combustion (considered in the process))							
					Total	Emission Rat	te (g/s)	
				PM [°] (w/	• -			
	£	- Davis director	.	baghouse)	SO2	NO _x	CO	VOC
			Temperature) Temperature)		31.2563	12.6247	2.6302	0.1614
	HOIL ECO Pa	Theidine) with	remperature)	0.019/		1		1.3329

Annex 3 Emission Factors from USEPA AP-42 and Other International References (Scenario 2)

				Em	ission Facto	r (kg/ Mg mate	arial producer	1) ^a	Ref.	1
	Total		Material		15510111 4010	r (ng/ mg man	shar produced	<i>.</i>)	1.01.	
	Throughput	Recovery	Produced							
	(tonnes/yr)	Efficiency ^b	(tonnes/yr)	PM	SO ₂	NOx	CO	VOC		
Electronics	25100	100%	25100							
Fluorescent Lamp Recovery (Stack)	6275	100%	6275	Emission Rate	calculated	directly based	on the techni	cal info	1	
Fluorescent Lamp Recovery (Fugitive)									1	
Glass	42680	88%	37387							
Container w/ baghouse	42000	0070	01001	0.007				0.1	4	
Forming & Finishing - Container				Negligible				4.4	4	
- Forming of moning Container				rtogiigibio						
Organic Food Waste	10750	1000/	10750							
- In-vessel Composting	19750	100%	19750							
Non-Ferrous Metals	2500	100%	2500							
Lead	2500	100%	2500							
Sweating				35	ND					
Reverberatory Smelting/ Blast Smelting-Cupola				1.12	40					
Reverberatory Smelting				0.5	40				6	
Blast Smelting-Cupola				1.12	27				6	
Fugitive Emission (Sweating)				1.8					6	
Fugitive Emission (Smelting)				12.1					6	
Aluminium	2500	100%	2500							
Sweating Furnace w/ baghouse				1.65					8	
Smelting (Reverberatory Furnace) w/ baghouse				0.65					8	
Demagging w/ baghouse				25					8	
Copper	2500	100%	2500							
Cupola Furnace (scrap copper and brass)	2000	10070	2000	35					9	
- Fugitive Emission				1.1					9	
Rotary Furnace (brass and bronze)				150					9	
- Fugitive Emission				1.3					9	
Zinc	2500	100%	2500							
Reverberatory Sweating (residual scrap)				16					10	
- Fugitive Emission				0.63					10	
Sodium Carbonate Leaching Calcining				44.5					10	
Kettle pot				0.05					10	
- Fugitive Emission				0.0025					10	
Muffle distillation				22.5					10	
- Fugitive Emission				1.18					10	
Retort Reduction				23.5					10	
Paper	200000	100%	200000							
Plastics	102740	100%	102740	0.0470				0.0252	10	
Extruder				0.0479				0.0353	13	
Moulding Machine				0.0651				0.0307	13	
Rubber Tyres	20020	100%	20020							
Grinding of rubber tyres	16558	100%	16558	Emission Rate	calculated	directly based	on the techni	cal info	14	
Wood	44000	100%	41260							
Wood Plastic Wood Composite Manufacturing	41260	100%	41260							
Extrusion Process	+			0.0479				0.0353	13	
LAUGOULT FLOCESS				0.0479				0.0303	13	
Total Fuel Combustion (7500 L/hr)										

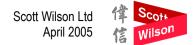


Annex 4 Calculated Emission Rates (Scenario 2)

	Tetel		Madarial		Em	ission Rate (g/s) ^a	
	Total Throughput (tonnes/yr)	Recovery Efficiency ^b	Material Produced	PM ^a (w/	00	NO		1/00
Electronics	25100	100%	(tonnes/yr) 25100	baghouse)	SO ₂	NO _x	CO	VOC
Fluorescent Lamp Recovery (Stack)	6275	100%	6275					
Fluorescent Lamp Recovery (Fugitive)								
Glass	42680	88%	37387	0.0202				1.2982
Container w/ baghouse				0.0202				0.0288
Forming & Finishing - Container								1.2693
Organic Food Waste								
- In-vessel Composting	19750	100%	19750					
Non-Ferrous Metals	2500	100%	2500	5.2662	7.7160			
Lead	2500	100%	2500	0.3104	7.7160			
Sweating				0.0675	7 7400			
Reverberatory Smelting/ Blast Smelting-Cupola Reverberatory Smelting				0.2160 0.0965	7.7160			
Blast Smelting-Cupola				0.0965	5.2083			
Fugitive Emission (Sweating)				0.0035	5.2005			
Fugitive Emission (Sweating)	1			0.0033				
r dgiaro Ernosion (ernolang)				0.0200				
Aluminium	2500	100%	2500	5.2662				
Sweating Furnace w/ baghouse				0.3183				
Smelting (Reverberatory Furnace) w/ baghouse				0.1254				
Demagging w/ baghouse				4.8225				
0	0500	1000/	0500	0.0045				
Copper	2500	100%	2500	0.3615				
Cupola Furnace (scrap copper and brass) - Fugitive Emission				0.0675 0.0021				
Rotary Furnace (brass and bronze)				0.0021				
- Fugitive Emission				0.2034				
				0.0020				
Zinc	2500	100%	2500	0.2090				
Reverberatory Sweating (residual scrap)				0.0309				
- Fugitive Emission				0.0012				
Sodium Carbonate Leaching Calcining				0.0858				
Kettle pot				0.0001				
- Fugitive Emission				4.8E-06				
Muffle distillation				0.0434				
- Fugitive Emission Retort Reduction				0.0023 0.0453				
Reion Reduction				0.0455				
Paper	200000	100%	200000					
Plastics	102740	100%	102740	8.9580E-03				0.0523
Extruder				3.7973E-03				0.0280
Moulding Machine				5.1608E-03				0.0243
Dubber Turee	000000	1000	00000	0.40007-00				
Rubber Tyres	20020	100%	20020	9.1986E-03				
Grinding of rubber tyres	16558	100%	16558	9.1986E-03				
Wood	41260	100%	41260	0.0015				0.0112
Plastic Wood Composite Manufacturing		.0070		0.0010				0.0112
Extrusion Process				0.0015				0.0112
Total Fuel Combustion (7500 L/hr)				0.5000	0.1963	6.0000	1.2500	0.0630
				Total Emissio I	n Rate (g/s)			
				PM ^c (w/				
				baghouse)	SO ₂	NOx	со	voc
	from Eq	Park (High	Temperature)		7.9123	6.0000	1.2500	0.0918
			Temperature)					1.3329

Annex 5 Emission Factor from USEPA AP-42 and other References – Scenario 3

					Emissior	Factor (kg/ M	Ig material produc	ced) ^a		Ref.
	Total Throughput (tonnes/yr)	Recovery Efficiency ^b	Material Produced (tonnes/yr)	PM	SO ₂	NO _x	CO	Hg	VOC	
Electronics	25100	100%	25100		002	NOX		iig	100	
Fluorescent Lamp Recovery (Stack)	6275	100%	6275	Emission Rat	e calculated	directly based	on the technical in	nfo		1
Fluorescent Lamp Recovery (Fugitive)										1
Glass	42680	88%	37387							
Container w/ baghouse				0.007					0.1	4
Forming & Finishing - Container				Negligible					4.4	4
Organic Food Waste										+
- In-vessel Composting	19750	100%	19750							
Paper	200000	100%	200000							
Plastics	102740	100%	102740							
Extruder				0.0479					0.0353	13
Moulding Machine				0.0651					0.0307	13
Rubber Tyres	20020	100%	20020							
Grinding of rubber tyres	16558	100%	16558	Emission Rat	e calculated	directly based	on the technical in	nfo		14
Wood	41260	100%	41260							
Plastic Wood Composite Manufacturing										
Extrusion Process				0.0479					0.0353	13
Total Fuel Combustion (3500 L/hr)										



Annex 6 Calculated Emission Rate – Scenario 3

						Emission	Rate (g/s) ^a		
	Total	Deeever	Material						
	Throughput	Recovery	Produced	PM ^a (w/					
	(tonnes/yr)	Efficiencyb	(tonnes/yr)	baghouse)	SO ₂	NO _x	CO	Hg	VOC
Electronics	25100	100%	25100					2.42E-06	
Fluorescent Lamp Recovery (Stack)	6275	100%	6275					1.67E-06	
Fluorescent Lamp Recovery (Fugitive)								7.50E-07	
-								1.0390E-06	
Glass	42680	88%	37387	0.0202					1.2982
Container w/ baghouse				0.0202					0.0288
Forming & Finishing - Container									1.2693
Organic Food Waste									
- In-vessel Composting	19750	100%	19750						
		4000/	000000						
Paper	200000	100%	200000						
Plastics	102740	100%	102740	8.9580E-03					0.0523
Extruder				3.7973E-03					0.0280
Moulding Machine				5.1608E-03					0.0243
Rubber Tyres	20020	100%	20020	9.1986E-03					
Grinding of rubber tyres	16558	100%	16558	9.1986E-03					
Waad	44.000	4000/	44.000	0.0045					0.0110
Wood	41260	100%	41260	0.0015					0.0112
Plastic Wood Composite Manufacturing				0.0015					0.0110
Extrusion Process				0.0015					0.0112
Total Fuel Combustion (3500 L/hr)				0.2333	0.0916	2.8000	0.5833		0.0294
						Total Emissi	on Rate (g/s)		
				PM ^c (w/					
				baghouse)	SO ₂	NO _x	со	Hg	voc
			Temperature)	0.2535	0.0916	2.8000	0.5833		0.0582
	from Eco Pa	rk (Ambient	Temperature)	0.0197				2.42E-06	1.3329

Total Energy Consumption Calculations Annex 7

Material	Latent Heat of fusion (Btu/lb) ¹	Specific Heat Capacity (Btu/lb F) ²	Melting Point (F) ²	Room Temperature (F) ³	Heat transfer per unit mass (Btu/lb)	Total Energy required to melt metal from solid at room temperature to liquid at melting temperature (Btu/lb)	Ratio to Al	Total Energy Consumption (MMBtu/ton) ⁴	Total Material to be Produced (tpa)	Total Energy Consumption in Eco Park (MMBtu/ yr)	Total Fuel Consumption (L/ hr)
	q(lhf)	Ср	T1	T2	q(shc) = Cp (T1 - T2)	q(total) = q(lhf) +q(shc)	f = q (total) metal / q (total) al	E = 7.58 x f			
AI	169	0.22	1220	74.3	252.054	421.054	1.0000	11.3738	10000	113738	
Pb	11.3	0.03	621	74.3	16.401	27.701	0.0658	0.7483	10000	7483	
Cu	91.1	0.09	1976	74.3	171.153	262.253	0.6228	7.0842	10000	70842	
Zn	43.3	0.09	786	74.3	64.053	107.353	0.2550	2.8999	10000	28999	
						Highest E	nergy Consumption f	rom Non-ferrous	Metal Recovery	113738	
Glass	-	-	-	-	-	-	-	15.1651	37387	566973	
Paper	-	-	-	-	-	-	-	6.1608	200000	1232162	
						-		Total	247387	1912873	MMBtu/ yr
								10% of Total Ene	ergy Consumption	191287	MMBtu/ yr
							Organic Food Waste	3.1353	19750	61923	
							Wood	3.1353	41260	129364]

Total of Organic Food Waste and Wood 61010

Total Energy Consumption (Scenario 1) 2104160 MMBtu/ yr 15781

Total Fuel Consumption (Scenario 1)

L/ hr

191287

Note:

1 Specific latent heat of fusion for different metals are extracted from the Engineers Edge website (http://www.engineersedge.com/properties_of_metals.htm)

2 Specific heat capacity and melting point for different metals are extracted from the Engineering Tool Box website (http://www.engineeringtoolbox.com/24_152.html)

3 Room temperature is determined based on the average temperature of year 2002 meterological data of Tuen Mun Station

4 Total energy consumptions of 12000 MJ/tonne for secondary aluminium process, 16 GJ/tonne glass manufacturing and 6.5 GJ/tonne for paper

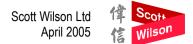
are extracted from EP Indicator & Benchmark Shortlisy Document, REMAS Website

Annex 8 Comparis	on Tab	le of R	elevant	BPMs	and P	M to Po	ollutant	Ratio (Calcula	tions									
	Particulates	Hydrogen Chloride	Chlorine	Fluorine	Phosphorus	Lead	Beryllium	Cadmium	Mercury	Nickel	Arsenic	Ţ	Molybdenum	Copper	Antimony	Chromium	Platinum	Selenium	Rhodium
BPM Emission Limit (ma/m ³)																			
Metal Recovery (BPM 10)	50	50	30	10		2	0.002	0.2	0.2	1	1								
Aluminium (Secondary) Works (BPM 2/1)	50	50		10	10	5	0.002	1	1		2	10	10	5	5	2	2	2	1
Copper Works (BPM 6)	50			5		2				10		10		20					
Max Pollutant Emission Limit	50	50	30	10	10	5	0.002	1	1	10	2	10	10	20	5	2	2	2	1
Max PM to Pollutant Ratio	100%	100%	60%	20%	20%	42% *	0.004%	2%	2%	20%	4%	30%	20%	40%	10%	4%	4%	4%	2%
Emission Rate Calculations																			
	PM	HCI	CI	HF	Р	Pb	Be	Cd	Hg	Ni	As	Sn	Мо	Cu	Sb	Cr	Pt	Se	Rh
ΔΙ	21 06/18	21.0648	12 6380	4.2130	4.2130	8 8/172	8.43E-04	0.4213	0.4213	4.2130	0.8426	s) 6.3194	4.2130	8.4259	2.1065	0.8426	0.8426	0.8426	0.4213
Pb		1.2415	0.7449	0.2483	0.2483		4.97E-05	0.0248	0.0248	0.2483	0.0420	0.3725	0.2483	0.4966	0.1242	0.0420	0.0420	0.0420	0.0248
Cu	1.4460	1.4460	0.8676	0.2892	0.2892		5.78E-05	0.0289	0.0289	0.2892	0.0578	0.4338	0.2892	0.5784	0.1446	0.0578	0.0578	0.0578	0.0289
Zn	0.8361	0.8361	0.5017	0.1672	0.1672	0.3512	3.34E-05		0.0167	0.1672		0.2508	0.1672	0.3345	0.0836	0.0334	0.0334	0.0334	0.0167
	5.2662	5.2662	3.1597	1.0532	1.0532	2 2110	2.11E-04		nission R 0.1053	ate - Scer 1.0532		s) 1.5799	1.0532	2.1065	0.5266	0.2106	0.2106	0.2106	0.1053
Pb		0.3104	0.1862	0.0621	0.0621	0.1304	1.24E-05	0.0062	0.0062	0.0621	0.2100	0.0931	0.0621	0.1242	0.0310	0.2100	0.0124	0.2100	0.0062
Cu	0.3615	0.3615	0.2169	0.0723	0.0723	0.1518	1.45E-05	0.0072	0.0072	0.0723	0.0121	0.1084	0.0723	0.1446	0.0361	0.0121	0.0145	0.0145	0.0072
Zn	0.2090	0.2090	0.1254	0.0418	0.0418		8.36E-06	0.0042	0.0042	0.0418	0.0084	0.0627	0.0418	0.0836	0.0209	0.0084	0.0084	0.0084	0.0042
Worst	5.2662	5.2662	3.1597	1.0532	1.0532	2.2118	2.11E-04	0.1053	0.1053	1.0532	0.2106	1.5799	1.0532	2.1065	0.5266	0.2106	0.2106	0.2106	0.1053

* Percentage Composition of lead and tin were extracted from USEPA AP-42 Chapter 12.11 Secondary Lead Processing

Annex 9 Emission Factor from USEPA AP-42 and other References – Scenario 1

		Emission Factor (kg/ Mg material produced) ^a																			
	Material																				1
	Produced				_	_		_					-		_		-		-		
	(tonnes/yr)	PM	CI	HCI	F	Р	Pb	Be	Cd	Hg	Ni	As	Sn	Mo	Cu	Sb	Cr	Pt	Se	Rh	<u> </u>
Electronics	25100			<u> </u>			<u> </u>														<u> </u>
Fluorescent Lamp Recovery (Stack)	6275	Emissi	on Rat	e calcula	ated dir	ectly bas	sed on	n the teo	chnical	info											1
Fluorescent Lamp Recovery (Fugitive)																					1
																					<u> </u>
Non-Ferrous Metals	10000																				<u> </u>
Lead	10000																				<u> </u>
Sweating		35					8														
Reverberatory Smelting/ Blast Smelting-Cupola		1.12					0.15														\vdash
Reverberatory Smelting		0.5					ND														6
Blast Smelting-Cupola		1.12					0.15														6
Fugitive Emission (Sweating)		1.8					0.9														6
Fugitive Emission (Smelting)		12.1					0.3														6
Aluminium	10000																				
Sweating Furnace w/ baghouse		1.65																			8
Smelting (Reverberatory Furnace) w/ baghouse		0.65																			8
Demagging w/ baghouse		25																			8
Copper	10000																				
Cupola Furnace (scrap copper and brass)		35																			9
- Fugitive Emission		1.1																			9
Rotary Furnace (brass and bronze)		150																			9
- Fugitive Emission		1.3																			9
Zinc	10000																				
Reverberatory Sweating (residual scrap)		16																			10
- Fugitive Emission		0.63																			10
Sodium Carbonate Leaching Calcining		44.5																			10
Kettle pot		0.05																			10
- Fugitive Emission		0.003																			10
Muffle distillation		22.5																			10
- Fugitive Emission		1.18																			10
Retort Reduction		23.5																			10
																					1



Annex 10 Calculated Emission Rate (Heavy Metals and Non-Criteria Pollutants) – Scenario 1

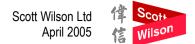
	Emission Rate (g/s) ^a																			
	Material																			
	Produced	PM ^a (w/			_	_		_					-		-					
	(tonnes/yr)	baghouse)	CI	HCI	F	Р	Pb	Be	Cd	Hg	Ni	As	Sn	Мо	Cu	Sb	Cr	Pt	Se	Rh
Electronics	25100									2.42E-06										
Fluorescent Lamp Recovery (Stack)	6275									1.67E-06										
Fluorescent Lamp Recovery (Fugitive)										7.50E-07										
Non-Ferrous Metals	10000	21.0648	12.6389	21.0648	4.2130	4.2130	8.8472	8.43E-04	0.4213	0.4213	4.2130	0.8426	6.3194	4.2130	8.4259	2.1065	0.8426	0.8426	0.8426	0.4213
Lead	10000	1.2415						4.97E-05												
Sweating		0.2701					0.0617													
Reverberatory Smelting/ Blast Smelting-Cupola		0.8642					0.1157													
Reverberatory Smelting		0.3858																		
Blast Smelting-Cupola		0.8642					0.1157													
Fugitive Emission (Sweating)		0.0139					0.0069													
Fugitive Emission (Smelting)		0.0934					0.0023													
Aluminium	10000	21.0648	12.6389	21.0648	4.2130	4.2130	8.8472	8.43E-04	0.4213	0.4213	4.2130	0.8426	6.3194	4.2130	8.4259	2.1065	0.8426	0.8426	0.8426	0.4213
Sweating Furnace w/ baghouse		1.2731																		
Smelting (Reverberatory Furnace) w/ baghouse		0.5015																		
Demagging w/ baghouse		19.2901																		
Copper	10000	1.4460	0.8676	1.4460	0.2892	0.2892	0.6073	5.78E-05	0.0289	0.0289	0.2892	0.0578	0.4338	0.2892	0.5784	0.1446	0.0578	0.0578	0.0578	0.0289
Cupola Furnace (scrap copper and brass)		0.2701																		
- Fugitive Emission		0.0085																		
Rotary Furnace (brass and bronze)		1.1574																		
- Fugitive Emission		0.0100																		
Zinc	10000	0.8361	0 5017	0.8361	0 1672	0 1672	0 3512	3.34E-05	0.0167	0.0167	0 1672	0.0334	0 2508	0 1672	0 3345	0.0836	0 0334	0.0334	0 0334	0.0167
Reverberatory Sweating (residual scrap)	10000	0.1235	0.0017	0.0001	0.1072	0.1072	0.0012	0.042 00	0.0107	0.0107	0.1072	0.0004	0.2000	0.1072	0.0040	0.0000	0.0004	0.0004	0.0004	0.0107
- Fugitive Emission		4.9E-03																		
Sodium Carbonate Leaching Calcining		0.3434																		
Kettle pot		0.0004																		
- Fugitive Emission		1.9E-05																		
Muffle distillation		0.1736																		
- Fugitive Emission		0.0091																		
Retort Reduction		0.1813																		
										al Emissi										
		PM	CI	HCI	F	Р	Pb	Be	Cd	Hg	Ni	As	Sn	Мо	Cu	Sb	Cr	Pt	Se	Rh
from Eco Park (High			12.6389	21.0648	4.2130	4.2130	8.8472	8.43E-04	0.4213			0.8426	6.3194	4.2130	8.4259	2.1065	0.8426	0.8426	0.8426	0.4213
from Eco Park (Ambient	Temperature)									2.42E-06										

Annex 11 Emission Factor from USEPA AP-42 and other References –Scenario 2

		Emission Factor (kg/ Mg material produced) ^a										Ref.									
	Material																				
	Produced																				
	(tonnes/yr)	PM	CI	HCI	F	P	Pb	Be	Cd	Hg	Ni	As	Sn	Mo	Cu	Sb	Cr	Pt	Se	Rh	
Electronics	25100																				
Fluorescent Lamp Recovery (Stack)	6275	Emissi	ion Rat	e calcula	ated dir	ectly bas	ed on	the teo	hnical i	info											1
Fluorescent Lamp Recovery (Fugitive)																					1
Non-Ferrous Metals	2500																				
Lead	2500																				
Sweating		35					8														
Reverberatory Smelting/ Blast Smelting-Cupola		1.12					0.15														\square
Reverberatory Smelting		0.5					ND														6
Blast Smelting-Cupola		1.12					0.15														6
Fugitive Emission (Sweating)		1.8					0.9														6
Fugitive Emission (Smelting)		12.1					0.3														6
Aluminium	2500																				
Sweating Furnace w/ baghouse		1.65																			8
Smelting (Reverberatory Furnace) w/ baghouse		0.65																			8
Demagging w/ baghouse		25																			8
Copper	2500																				
Cupola Furnace (scrap copper and brass)		35																			9
- Fugitive Emission		1.1																			9
Rotary Furnace (brass and bronze)		150																			9
- Fugitive Emission		1.3																			9
Zinc	2500																				
Reverberatory Sweating (residual scrap)		16																			10
- Fugitive Emission		0.63																			10
Sodium Carbonate Leaching Calcining		44.5																			10
Kettle pot		0.05																			10
- Fugitive Emission		0.003																			10
Muffle distillation		22.5																			10
- Fugitive Emission		1.18																			10
Retort Reduction		23.5																			10

Annex 12 Calculated Emission Rate (Heavy Metals and Non-Criteria Pollutants) – Scenario 2

		Emission Rate (g/s) ^a																		
	Material																			
	Produced	PM ^a (w/																		
	(tonnes/yr)	baghouse)	CI	HCI	F	Р	Pb	Be	Cd	Hg	Ni	As	Sn	Mo	Cu	Sb	Cr	Pt	Se	Rh
Electronics	25100									2.42E-06										
Fluorescent Lamp Recovery (Stack)	6275									1.67E-06										
Fluorescent Lamp Recovery (Fugitive)										7.50E-07										
Non-Ferrous Metals	2500	5.2662	3.1597	5.2662	1.0532	1.0532	-	2.11E-04							2.1065					
Lead	2500	0.3104	0.1862	0.3104	0.0621	0.0621	0.2060	1.24E-05	0.0062	0.0062	0.0621	0.0124	0.0931	0.0621	0.1242	0.0310	0.0124	0.0124	0.0124	0.0062
Sweating		0.0675					0.0154													
Reverberatory Smelting/ Blast Smelting-Cupola		0.2160					0.0289													
Reverberatory Smelting		0.0965																		
Blast Smelting-Cupola		0.2160					0.0289													
Fugitive Emission (Sweating)		0.0035					0.0017													
Fugitive Emission (Smelting)		0.0233					0.0006													
Aluminium	2500	5.2662	3.1597	5.2662	1.0532	1.0532	2.2118	2.11E-04	0.1053	0.1053	1.0532	0.2106	1.5799	1.0532	2.1065	0.5266	0.2106	0.2106	0.2106	0.1053
Sweating Furnace w/ baghouse		0.3183																		
Smelting (Reverberatory Furnace) w/ baghouse		0.1254																		
Demagging w/ baghouse		4.8225																		
Copper	2500	0.3615	0.2169	0.3615	0.0723	0.0723	0.1518	1.45E-05	0.0072	0.0072	0.0723	0.0145	0.1084	0.0723	0.1446	0.0361	0.0145	0.0145	0.0145	0.0072
Cupola Furnace (scrap copper and brass)		0.0675																		
- Fugitive Emission		0.0021																		
Rotary Furnace (brass and bronze)		0.2894																		
- Fugitive Emission		0.0025																		
¥																				
Zinc	2500	0.2090	0.1254	0.2090	0.0418	0.0418	0.0878	8.36E-06	0.0042	0.0042	0.0418	0.0084	0.0627	0.0418	0.0836	0.0209	0.0084	0.0084	0.0084	0.0042
Reverberatory Sweating (residual scrap)		0.0309																		
- Fugitive Emission		1.2E-03																		
Sodium Carbonate Leaching Calcining		0.0858																		
Kettle pot		0.0001																		
- Fugitive Emission		4.8E-06																		
Muffle distillation		0.0434																		
- Fugitive Emission		0.0023																		
Retort Reduction		0.0453																		
μ		Total Emission Rate (g/s)																		
		РМ	CI	HCI	F	Р	Pb	Be	Cd	Ha	Ni	As	Sn	Mo	Cu	Sb	Cr	Pt	Se	Rh
from Eco Park (High	Temperature)		3.1597			-	-	2.11E-04	-	0.1053			-	-	2.1065			-		
from Eco Park (Ambient				0.2002				•4		2.42E-06		0100				0.0200				
nom Eco Park (Ambient Temperature)		L								2.722-00				I					L	



Annex 13 References

- 1. MRT System AB, Technical Performance Data
- 2. USEPA AP-42 Chapter 1.3 Fuel Oil Combustion 0.005% by weight of sulphur, no.2 oil fired (SCC1-01-005-01, 1-02-005-01, SCC1-03-005-01)
- 3. Fuel consumption 16 GJ/ton from EP Indicator & Benchmark Shortlist Document Glass (Container), remas (http://remas.ewindows.eu.org)
- 4. USEPA AP-42 Chapter 11.15 Glass Manufacturing
- 5. Energy Consumption Calculations in Annex B of Appendix D
- 6. USEPA AP-42 Chapter 12.11 Secondary Lead Processing
- 7. Fuel consumption 12,000 MJ/ton from EP Indicator & Benchmark Shortlist Document Aluminium (Secondary), remas (http://remas.ewindows.eu.org)
- 8. USEPA AP-42 Chapter 12.8 Secondary Aluminium Operations
- 9. USEPA AP-42 Chapter 12.9 Secondary Copper Smelting
- 10. USEPA AP-42 Chapter 12.14 Secondary Zinc Processing
- 11. Fuel consumption 6.5 GJ/ton from EP Indicator & Benchmark Shortlist Document Paper (Only), remas (<u>http://remas.ewindows.eu.org</u>)
- 12. Davis, W.T., 2000, "Air Pollution Engineering Manual", Air and Waste Management Associations, John Wiley & Sons, Inc. New York, N.Y.
- 13. Emission Calculation Fact Sheet Plastic Production and Products Manufacturing, Environmental Science and Services Division of Michigan Department of Environmental Quality
- 14. Technical Guidelines on the Identification and Management of Used Tyres, Technical Working Group of Basel Convention
- 15. Locating and Estimating Air Emissions from Sources of Dioxins and Furans, USEPA
- a. Particulate Matter (PM) will be collected and pass through a baghouse. It is a normal practice for a baghouse with control efficiency of 99% to be installed to control PM emission.
- b. Details of Recovery Efficiency of the Material refer to Annex A

Annex A Recovery Efficiency of Assessed Processes

							Material Produced						
Material Type & Estimated Throughput	Composition of Process Feedstock	Type and Qty of Material Diverted	Remarks	Throughput (tonnes/yr)	Recovery Efficiency	tonnes/yr	tonnes/day (300 days)	Operation Hour	tonnes/hour	tonnes/sec			
	hroughput = 25,100tpa (15% of c	overall estimated arisings in 2021 ¹)		25100	100%	25100	83.67	12	6.9722	0.001936728			
CRT Recovery				6275	100%	6275	20.92	12	1.7431	0.000484182			
Computer/Electronics Recover	ery			6275	100%	6275	20.92	12	1.7431	0.000484182			
White Goods Dismantling				6275	100%	6275	20.92	12	1.7431	0.000484182			
Fluorescent Lamp Recovery				6275	100%	6275	20.92	12	1.7431	0.000484182			
		em = 42,680 tpa (15.1% of overall es		10000			10100						
Sorting	Glass, Others (dyes, paper,	5-15% residual waste (by	Process rate: 10 tph for	42680	88%	37387	124.62	12	10.3852	0.002884779			
	plastics)	automated sorting)	coloured glass through										
			automated sorting technology										
Processing	Sorted glass	Typical residual waste factor ~2%	Selection of process will be										
		(paper, plastics from labels)	dependent on the output										
			required										
Re-manufacturing	Crushed glass (to 20mm)	Typical residual waste factor of	Production capabilities - 50 to										
		3% (paper, plastics from labels)	300 tpd glass										
	Molten Glass	Typical residual waste factor of											
		3% (ceramics and other											
		contaminants)	1	10750									
Organic Food Waste (Estima	ted total throughput = 82,180tpa	(4.2% of overall estimated arisings	in 2021 '); 19,748tpa for in-	19750	1000/	10750	05.00	10	5 4004	0.00450000			
	Organic material (from agriculture premises; markets)			19750	100%	19750	65.83	12	5.4861	0.00152392			
		ntegrated system = 57,100tpa (25%	of overall estimated arisings in	57100									
Processing (Lead)	5,		from non-ferrous	14275	100%	14275	47.58	12	3.9653	0.001101466			
Processing (Aluminum)		Loss in drosses (Reverberatory (2-		14275	100%	14275	47.58	12	3.9653	0.001101466			
,		3%) ¹¹)											
Processing (Copper)		0.0. 1		14275	100%	14275	47.58	12	3.9653	0.001101466			
Processing (Zinc)				14275	100%	14275	47.58	12	3.9653	0.001101466			
	ughput in vertically integrated sys	tem = 507,590 tpa (15.8% of overall	estimated arisings in 2021 ¹))										
				200000	100%	200000	666.67	12	55.5556	0.015432099			
Plastics (Estimated Total Thr	oughput in vertically integrated s	ystem = 102,740tpa (7.1% of overall	estimated arisings in 2021 ¹))										
		······································		102740	100%	102740	342.47	12	28.5389	0.007927469			
Rubber Tyres (Estimated Tot	al Throughput = 20.020 tpa (52.3	3% of overall estimated arisings in 20	21 ¹): assumes 3.462tpa diverted										
				20020	100%	20020	66.73	12	5.5611	0.001544753			
Retreading	Used Tyre casings	buffed rubber tyre; 0.325kg per		3462	100%	3462	11.54	12	0.9618	0.000267165			
-		tvre (or 5% of total feedstock) ³											
Grinding				16558	100%	16558	55.19	12	4.5993	0.001277588			
Wood (Estimated Total Throu	upput in vertically integrated sys	tem = 41,260 tpa (12.6% of overall e	estimated arisings in 2021 ¹))										
Plastic Wood Composite		, () o totall .		41260	100%	41260	137.53	12	11.4611	0.003183642			
Manufacturing													

Detailed Emission Rate Calculations for AQIA Scenario 2 (Mitigated)

D.3.1 Emission Factors from AP-42 (Non-Ferrous Metal) (without Demagging of Aluminium)

Description of Secondary Non-Ferrous	Emission Factor (kg/ Mg material produced)
Metals Manufacturing Process	РМ
Lead	
Fuel Combustion (for Scenario 1 only)	0.0048
Sweating	35
Reverberatory Smelting/ Blast Smelting- Cupola	1.12 ^a
Reverberatory Smelting	0.5 ^a
Blast Smelting-Cupola	1.12 ^ª
Fugitive Emission (Sweating)	1.8
Fugitive Emission (Smelting)	12.1
Aluminium	
Fuel Combustion (for Scenario 1 only)	0.0737
Sweating Furnace w/ baghouse	1.65
Smelting (Reverberatory Furnace) w/ baghouse	0.65
Demagging w/ baghouse	25
Copper	
Fuel Combustion (for Scenario 1 only)	0.0459
Cupola Furnace (scrap copper and brass)	35
- Fugitive Emission	1.1
Rotary Furnace (brass and bronze)	150
- Fugitive Emission	1.3
Zinc	
Fuel Combustion (for Scenario 1 only)	0.0188
Reverberatory Sweating (residual scrap)	16
- Fugitive Emission	0.63
Sodium Carbonate Leaching Calcining	44.5
Kettle pot	0.05
- Fugitive Emission	0.0025
Muffle distillation	22.5
- Fugitive Emission	1.18
Retort Reduction	23.5

^a maximum emission factors (controlled) of reverberatory smelting and blast smelting cupola were adopted.

For conservative approach, the maximum emission rates (g/s) of different air pollutants were adopted in the assessment. The following tables detail the selection of emission rates.

References

- 1. USEPA AP-42 Chapter 12.11 Secondary Lead Processing
- 2. USEPA AP-42 Chapter 12.8 Secondary Aluminium Operations
- 3. USEPA AP-42 Chapter 12.9 Secondary Copper Smelting
- 4. USEPA AP-42 Chapter 12.14 Secondary Zinc Processing

D.3.2 Calculated Emission Rates for Scenario 2 (Non-Ferrous Metal) (without Demagging of Aluminium)

Department of Secondary Non Forrows Metals Manufacturing Presso	Emission Rate (g/s)
Description of Secondary Non-Ferrous Metals Manufacturing Process	PM
	0.0404
	0.3104
Sweating	0.0675 ^c
Reverberatory Smelting/Blast Smelting-Cupola	0.2160 ^a
Reverberatory Smelting	0.0965 ^{ab}
Blast Smelting-Cupola	0.2160 ^{ab}
Fugitive Emission (Sweating)	0.0035 ^c
Fugitive Emission (Smelting)	0.0233 ^c
Aluminium	0.4437
Sweating Furnace w/ baghouse	0.3183 ^b
Smelting (Reverberatory Furnace) w/ baghouse	0.1254 ^b
Copper	0.3615
Cupola Furnace (scrap copper and brass)	0.0675 ^c
- Fugitive Emission	0.0021 ^c
Rotary Furnace (brass and bronze)	0.2894 ^{cb}
- Fugitive Emission	0.0025 ^c
Zinc	0.2090
Reverberatory Sweating (residual scrap)	0.0309 ^c
- Fugitive Emission	0.0012 ^c
Sodium Carbonate Leaching Calcining	0.0858 ^c
Kettle pot	0.0001 ^c
- Fugitive Emission	4.8E-06 ^c
Muffle distillation	0.0434 ^c
- Fugitive Emission	0.0023 ^c
Retort Reduction	0.0453 ^c
Non-Ferrous Metal Emission Rate (Max)	0.4437

^a maximum emission rates of reverberatory smelting and blast smelting cupola were adopted.

^b emission rates were calculated based on the controlled emission factors in USEPA's AP-42 ^c controlled emission by baghouse with 99% control efficiency

Total emission rates in bold and underlined are the maximum emission rates for each pollutant

For scenario 2, because total fuel consumption rate was proposed for the whole Eco-Park, emission rates of non-ferrous metals due to fuel combustion are not presented in this section.

References

- 1. USEPA AP-42 Chapter 12.11 Secondary Lead Processing
- 2. USEPA AP-42 Chapter 12.8 Secondary Aluminium Operations
- 3. USEPA AP-42 Chapter 12.9 Secondary Copper Smelting
- 4. USEPA AP-42 Chapter 12.14 Secondary Zinc Processing

D.3.3 Controlled Emission Rates of the Gaseous Heavy Metal and Toxic Air Pollutants for Scenario 2 (Mitigated)

Chlorine (Cl₂), hydrogen chloride (HCl), Fluorine/Fluoride (F) and Mercury are gaseous pollutants arising from non-ferrous metal manufacturing. According to the 1996 EU Directive on *Integrated Pollution Prevention and Control (IPPC)* – *Reference Document on Best Available Techniques in the Non Ferrous Metals Industries, December 2001*, chlorine, hydrogen chloride and fluorine/fluoride emissions can be controlled by wet or semi-dry alkaline scrubber. Mercury emission can be abated by several control devices as listed below.

Pollutant	Controlled Emission Rates by IPPC*	Controlled Devices suggested by IPPC	Adopted Controlled Emission Rates
Chlorine	2 mg/m ³		2 mg/m ³
Hydrogen chloride	0.1 – 40 mg/m ³	Wet or Semi-dry alkaline scrubber	40 mg/m ³
Fluorine/ Fluoride	0.1 – 5 mg/m ³		5 mg/m ³
Mercury	0.02 – 0.1 mg/m ³	Boliden/Norzink process ^a Bolchem process ^b Outokumpu process ^c Sodium thiocyanate process ^d Activated Carbon Filter ^e Superlig Ion Exchange Process ^f Added with Potassium Iodide ^g Selenium Scrubber ^h Selenium Filter ⁱ Lead Sulphide Process ^j	0.1 mg/m ³


Remarks:

- a. This based on a wet scrubber using the reaction between mercuric chloride and mercury to form mercurous chloride (calomel), which precipitates from the liquor.
- b. Mercury is oxidised by 99% sulphuric acid and the mercury containing acid is diluted to 80%. The mercury is then precipitated as sulphide with thiosulphate and filtered off.
- c. The gas at, about 350 °C, is led through a packed bed tower where it is washed counter currently with an about 90% sulphuric acid at about 190 °C. The acid is formed in situ from the SO3 in the gas. The mercury is precipitated as a selenium-chloride compound. The mercury sludge is removed from the cooled acid, filtered and washed.
- d. This process is used at a zinc roaster. The SO2 gas is washed with a solution of sodium thiocyanate and the Hg is removed as sulphide.
- e. An adsorption filter using activated carbon is used to remove mercury vapour from the gas stream.
- f. This process uses ion exchange to remove mercury from the product acid and achieves a concentration of mercury < 0.5 ppm (~0.1 mg/m³).
- g. Potassium iodide is added to the acid, which has to be at least 93% strength, at temperature of about 0 °C. Mercury iodide, Hgl2, is then precipitated.
- h. This is based on a wet scrubber and uses the reaction between amorphous selenium in sulphuric acid and mercury to remove high concentrations of mercury vapour.
- i. A dry scrubbing process which uses amorphous selenium to react with mercury vapour to form mercury selenide
- j. A dry scrubbing process using lead sulphide nodules as the media removes mercury from the gas stream.

Controlled Emission rate (g/s) = max. PM emission rate of non-ferrous metal (g/s) \times {average controlled emission rates (in mg/m³) / PM emission limit of BPM (i.e., 50mg/m³)}

Controlled Cl ₂ emission rate	=	0.4437 × (2 / 50)	=	0.0177 g/s
Controlled HCI emission rate	=	0.4437 × (40 / 50)	=	0.3550 g/s
Controlled F emission rate	=	0.4437 × (5 / 50)	=	0.0444 g/s
Controlled Hg emission rate	=	0.4437 × (0.1 / 50)	=	$8.9 imes 10^{-4}$ g/s

The calculation of the controlled emission rates for PM, SO_2 and other heavy metals are presented in the following pages of this appendix.

D.3.4 Emission Factors from AP-42 (Non-Ferrous Metal) for Mitigated Scenario 2 (Uncontrolled Dust Emission Factors for Secondary Lead and Aluminium Recovery)

Description of Secondary Non-Ferrous Metals Manufacturing Process	Emission Fact Mg material pro- Mg material pro- PM 35 1 35 1 162° 1 153° 1 153° 1 12.1 1 7.25 2 2.15 1 35 1 1.1 150 1.3 1 16 0.63 44.5 0.05 0.0025 22.5 1.18 1	
Metals Manufacturing Frocess	PM	SO ₂
Lead		
Sweating	35	ND
Reverberatory Smelting/ Blast Smelting- Cupola	162 ^a	40 ^ª
Reverberatory Smelting	162 ^ª	40 ^a
Blast Smelting-Cupola	153 [°]	27 ^a
Fugitive Emission (Sweating)	1.8	-
Fugitive Emission (Smelting)	12.1	-
Aluminium		
Sweating Furnace	7.25	-
Smelting (Reverberatory Furnace)	2.15	-
Copper		
Cupola Furnace (scrap copper and brass)	35	-
- Fugitive Emission	1.1	-
Rotary Furnace (brass and bronze)	150	-
- Fugitive Emission	1.3	-
Zinc		
Reverberatory Sweating (residual scrap)	16	-
- Fugitive Emission	0.63	-
Sodium Carbonate Leaching Calcining	44.5	-
Kettle pot	0.05	-
- Fugitive Emission	0.0025	-
Muffle distillation	22.5	-
- Fugitive Emission	1.18	-
Retort Reduction	23.5	-

^a maximum emission factors of reverberatory smelting and blast smelting cupola were adopted.

D.3.5 Calculated Emission Rates for Mitigated Scenario 2 (Non-Ferrous Metal) (Without Demagging Process, with SO₂ Control Emission and Provided With up to 99.9% Dust Control Efficiency)

Description of Secondary Non-Ferrous	Emission	Rate (g/s)
Metals Manufacturing Process	РМ	SO ₂
Lead	<u>0.0407</u>	<u>1.5432</u>
Sweating	0.0068 ^b	
Reverberatory Smelting/ Blast Smelting- Cupola	0.0313 ^{ab}	1.5432
Reverberatory Smelting	0.0313 ^{ab}	1.5432 ^a
Blast Smelting-Cupola	0.0295 ^{ab}	1.0417 ^a
Fugitive Emission (Sweating)	0.0003 ^b	-
Fugitive Emission (Smelting)	0.0023 ^b	-
Aluminium	0.0018	-
Sweating Furnace	0.0014 ^b	-
Smelting (Reverberatory Furnace)	0.0004 ^b	-
<u>Copper</u>	0.0361	-
Cupola Furnace (scrap copper and brass)	0.0068 ^b	-
- Fugitive Emission	0.0002 ^b	-
Rotary Furnace (brass and bronze)	0.0289 ^b	-
- Fugitive Emission	0.0003 ^b	-
Zinc	0.0209	-
Reverberatory Sweating (residual scrap)	0.0031 ^b	-
- Fugitive Emission	0.0001 ^b	-
Sodium Carbonate Leaching Calcining	0.0086 ^b	-
Kettle pot	0.00001 ^b	-
- Fugitive Emission	4.8E-07 ^b	-
Muffle distillation	0.0043 ^b	-
- Fugitive Emission	0.0002 ^b	-
Retort Reduction	0.0045 ^b	-
Non-Ferrous Metal Emission Rate (Max)	<u>0.0407</u>	<u>1.5432</u>

^a maximum controlled emission rates (with 80% SO₂ removal) of reverberatory smelting and blast smelting cupola were adopted

^b controlled emission by baghouse or ECP with 99.9% control efficiency

References

- 1. USEPA AP-42 Chapter 12.11 Secondary Lead Processing
- 2. USEPA AP-42 Chapter 12.8 Secondary Aluminium Operations
- 3. USEPA AP-42 Chapter 12.9 Secondary Copper Smelting
- 4. USEPA AP-42 Chapter 12.14 Secondary Zinc Processing
- 5. Pollution Prevention and Abatement Handbook, World Bank Group, July 1998

Annex 1 Uncontrolled Emission Factor from USEPA AP-42 and other References – Scenario 2 (Mitigated)

		Emission Factor (kg/ Mg material produced) ^a												Ref.			
	Material																
	Produced																
	(tonnes/yr)	PM	Р	Pb	Be	Cd	Ni	As	Sn	Мо	Cu	Sb	Cr	Pt	Se	Rh	
Electronics	25100																
Fluorescent Lamp Recovery (Stack)	6275	Emissic	on Rate	calculate	d direct	ly based	d on the	e techni	cal info								1
Fluorescent Lamp Recovery (Fugitive)																	1
Non-Ferrous Metals	2500																
Lead	2500																
Sweating		35		8													
Reverberatory Smelting/ Blast Smelting-Cupola		162		52													
Reverberatory Smelting		162		32													6
Blast Smelting-Cupola		153		52													6
Fugitive Emission (Sweating)		1.8		0.9													6
Fugitive Emission (Smelting)		12.1		0.3													6
Aluminium	2500																
Sweating Furnace		7.25															
Reverberatory Furnace		2.15															
Copper	2500																
Cupola Furnace (scrap copper and brass)		35															9
- Fugitive Emission		1.1															9
Rotary Furnace (brass and bronze)		150															9
- Fugitive Emission		1.3															9
Zinc	2500																
Reverberatory Sweating (residual scrap)		16															10
- Fugitive Emission		0.63															10
Sodium Carbonate Leaching Calcining		44.5															10
Kettle pot		0.05															10
- Fugitive Emission		0.003															10
Muffle distillation		22.5															10
- Fugitive Emission		1.18															10
Retort Reduction		23.5															10

Annex 2 Calculated Emission Rate (Heavy Metals and Non-Criteria Pollutants) – Scenario 2 with 99.9% Dust Control Efficiency

		Emission Rate (g/s) ^a														
	Material															
	Produced	PM ^a (w/	_		_				_		_		-	_	-	
	(tonnes/yr)	baghouse)	Р	Pb	Be	Cd	Ni	As	Sn	Мо	Cu	Sb	Cr	Pt	Se	Rh
Electronics	25100															
Fluorescent Lamp Recovery (Stack)	6275															
Fluorescent Lamp Recovery (Fugitive)																
Non-Ferrous Metals	2500	0.0407	0.0081	0.0389	1.63E-06	0.0008	0.0081	0.0016	0.0122	0.0081	0.0163	0.0041	0.0016	0.0016	0.0016	0.0008
Lead	2500	0.0407	0.0081	0.0389	1.63E-06	0.0008	0.0081	0.0016	0.0122	0.0081	0.0163	0.0041	0.0016	0.0016	0.0016	0.0008
Sweating		0.0068		0.0015												
Reverberatory Smelting/ Blast Smelting-Cupola		0.0313		0.0100												
Reverberatory Smelting		0.0313		0.0062												
Blast Smelting-Cupola		0.0295		0.0100												
Fugitive Emission (Sweating)		0.0003		0.0002												
Fugitive Emission (Smelting)		0.0023		0.0001												
Aluminium	2500	0.0018	0.0004	0.0008	7.25E-08	0.0000	0.0004	0.0001	0.0005	0.0004	0.0007	0.0002	0.0001	0.0001	0.0001	0.0000
Sweating Furnace		0.0014														
Reverberatory Furnace		0.0004														
Copper	2500	0.0361	0.0072	0.0152	1.45E-06	0.0007	0.0072	0.0014	0.0108	0.0072	0.0145	0.0036	0.0014	0.0014	0.0014	0.0007
Cupola Furnace (scrap copper and brass)		0.0068														
- Fugitive Emission		0.0002														
Rotary Furnace (brass and bronze)		0.0289														
- Fugitive Emission		0.0003														
Zinc	2500	0.0209	0.0042	0.0088	8.36E-07	0.0004	0.0042	0.0008	0.0063	0.0042	0.0084	0.0021	0.0008	0.0008	0.0008	0.0004
Reverberatory Sweating (residual scrap)		0.0031														
- Fugitive Emission		1.2E-04														
Sodium Carbonate Leaching Calcining		0.0086														
Kettle pot		0.0000														
- Fugitive Emission		4.8E-07														
Muffle distillation		0.0043														
- Fugitive Emission		0.0002														
Retort Reduction		0.0045														
	-	Total Emission Rate (g/s)														
	PM	Р	Pb	Be	Cd	Ni	As	Sn	Мо	Cu	Sb	Cr	Pt	Se	Rh	
from EcoPark (High			0.0081	0.0389	1.63E-06	0.0008	0.0081	0.0016	0.0122	0.0081	0.0163	0.0041	0.0016	0.0016	0.0016	0.0008
from EcoPark (Ambient	Temperature)															

AQIA Results (Unmitigated)

AQIA Results for Scenario 2 (Mitigated)

Dust Impact From EcoPark for Scenarios 2 and 3

Contour Plots of the Major Pollutants for Scenario 2

Contour Plots of the Major Pollutants for Scenario 3