Summary of marine water quality parameters					
Parameter	Unit	Repo			

	Parameter	Unit	Reporting Limit	Sampling Depth	Standard Method / Technique used 20	Analysed by		
l	Temperature ¹	°C	0.1	Depth Profiling ¹⁰	Instrumental (thermistor), SEACAT19+ CTD and Water Quality Profiler	MMT/EPD ¹⁵		
	Salinity 1,8	-	0.1	Depth Profiling	Instrumental (electrical conductivity), SEACAT19+ CTD and Water Quality Profiler	MMT/EPD		
Dhariad and	Dissolved Oxygen ¹	mg/L % saturation ⁹	0.1 1	Depth Profiling	Instrumental (membrane elelectrode), SBE23Y dissolved oxygen sensor linked to SEACAT19+ CTD and Water Quality Profiler	MMT/EPD		
Physical and Aggregate Properties	Turbidity ²	NTU	0.1	Depth Profiling	Instrumental (nephelometric / infrared back scattering), OBS-3 turbidity sensor linked to SEACAT 19+ CTD and Water Quality Profiler	MMT/EPD		
.,	pH ¹	-	0.1	Depth Profiling	Instrumental (electrodemetric) SBE18 pH sensor linked to SEACAT19 + CTD and Water Quality Profiler	MMT/EPD		
	Secchi Disc Depth ²	m	0.1		Manual	MMT/EPD		
	Suspended Solids ²	mg/L	0.5	S,M,B ¹¹	In house method GL-PH-23, based on APHA 20ed. 2540D (weighing)	GL ¹⁸		
	Volatile Suspended Solids ³	mg/L	0.5	S,M,B	In house method GL-PH-23, based on APHA 20ed. 2540E (weighing)	GL		
Aggregate Organic Constituents	5-day Biochemical Oxygen Demand (BOD ₅) ⁴	mg/L	0.1	S,M,B	In house method based on APHA 18ed. 5210B	EML/EPD ¹⁶		
	Ammonia Nitrogen ⁵	mg/L	0.005	S,M,B	In house method GL-IN-15, based on ASTM D3590-89 B (FIA)	GL		
	Unionised Ammonia ⁵	mg/L	0.001	S,M,B	By calculation ¹²	MMT/EPD		
	Nitrite Nitrogen ⁵	mg/L	0.002	S,M,B	In house method GL-IN-18, based on APHA 20ed. 4500-NO2- B (FIA)	GL		
	Nitrate Nitrogen ⁵	mg/L	0.002	S,M,B	In house method GL-IN-18, based on APHA 20ed. 4500-NO3- F & I (FIA)	GL		
	Total Inorganic Nitrogen ⁵	mg/L	0.01	S,M,B	By calculation ¹³	MMT/EPD		
Nutrients and Inorganic	Total Kjeldahl Nitrogen ⁵ (soluble; soluble & particulate)	mg/L	0.05	S,M,B	In house method GL-IN-14 & GL-IN-15, based on ASTM D3590-89 B (FIA) & APHA 20ed 4500-N A&D (FIA)	GL		
Constituents	Total Nitrogen ⁵	mg/L	0.05	S,M,B	By calculation ¹³	MMT/EPD		
	Orthophosphate Phosphorus ⁵	mg/L	0.002	S,M,B	In house method GL-IN-16, based on ASTM D515-88 A (FIA)	GL		
	Total Phosphorus ⁵ (soluble; soluble & particulate)	mg/L	0.02	S,M,B	In house method GL-IN-14 $\&$ GL-IN-16, based on ASTM D515-88 B (FIA) $\&$ APHA 20ed 4500-P G (FIA)	GL		
	Silica (as SiO ₂) (soluble) ⁵	mg/L	0.05	S,M,B	In house method GL-IN-17, based on APHA 20ed. 4500-SiO2 C&E (FIA)	GL		
	Chlorophyll-a ⁶	μg/L	0.2	S,M,B	In house method GL-OR-34, based on APHA 20ed. 10200H 2 (spectrophotometric)	GL		
Biological and Microbiological	Escherichia coli (E. coli) ¹	cfu/100mL	1	S,M,B	In house method, membrane filtration with CHROMagar Liquid $\it E.~coli-$ coliform culture $\it ^{14}$	EML/EPD		
Examination	Faecal Coliforms ⁷	cfu/100mL	1	S,M,B	In house method, membrane filtration with CHROMagar Liquid $\it E.~coli$ -coliform culture 14	EML/EPD		
	Phytoplankton	cell/mL	1	S	In house method, 10 ml settled sub-sample using plankton chamber and inverted microscope. 19	WSL/EPD ¹⁷		

Note: 1. Indicate general oceanographic condition of marine water

- 6. Indicate the amount of algal biomass in marine water
- 7. Sewage bacteria indicate the extent of faecal pollution in marine water
- 8. Salinity (S) is calculated and presented based on the Practical Salinity Scale and International Equation of State of Seawater (UNESCO Technical Papers in

- 11. If water depth is 6m or above, sampling is taken at three depths during upcast: S 1m below water surface; M mid-depth of water column; B 1m above seabed. If water depth is 4 to 5 m, "M" is skipped; If water depth is 3m or less, "M" and "B" are skipped.

- 16. EML/EPD Environmental Microbiology Laboratory, Waste & Water Science Group, Environmental Protection Department.

- 19. i) Lund, J.H., Kipling, C. and Le Cren, E.D. 1958. The inverted microscope method of estimating algal numbers, and the statistical basis of estimations