EMFAC-HK

Model Operation

January 18, 2017

What is *EMFAC-HK*?

- A mobile source emissions model that calculates emission rates and emission inventories for motor vehicles operating on roads in Hong Kong.
- Adaptation of the California Air Resources
 Board (CARB) EMission FACtors (EMFAC) with
 modifications to cater for local factors such as
 local vehicle fleet characteristics.

Model Introduction/Overview

- What you'll learn
 - Step by step tutorial to demonstrate examples of emission data routinely run by EMFAC-HK
 - Overview of what pollutants and processes are modeled
 - Editing fundamental data
 - Review sample output files

Reference Materials

- Software
- User's Manual
- Guideline on Modeling Vehicle Emissions, EPD, January 2016

EMFAC-HK

Model Overview

Model Overview

- Introduction
- Pollutants and Processes Modeled
- Overview of Basic Terminology
- Scenario Data
- Modeling Modes
- Editing Fundamental Data
- Exercises

Introduction

• Emission inventory: 'product of an emission rate (e.g. grams per pollutant emitted over a mile or km) and vehicle activity (e.g. miles or km driven per day)'

Emission Factor X Source Activity = Emissions

Introduction (cont.)

- Vehicle tailpipe emissions are sensitive to driving patterns (In EMFAC, they are characterized by average vehicle speeds, ambient conditions, etc.)
- A common set of fleet-averaged vehicle emission factors, irrespective of driving patterns, are no longer accepted by advanced countries like the EU and the USA.

History Of *EMFAC-HK*

- History
 - EMFAC-HK Version 1.2
 - Used from 2005-2012
 - Adapted from EMFAC2002 by CARB
 - EMFAC-HK Version 2.1
 - Released April 3, 2012
 - Adapted from EMFAC2009 by CARB
 - EMFAC-HK Version 2.6
 - Released January 2015
 - EMFAC-HK Version 3.1 & 3.1.1
 - Released on January 2016 with refinement on February.

EMFAC-HK Version 1.2

- Consisted of Two Sub-models:
 - -MC
 - 9 vehicle classes
 - TAXI
 - 7 vehicle classes
- 2003 calendar year baseline activity data

EMFAC-HK Version 2.1

- Released April 3, 2012
- Replaced EMFAC-HK Version 1.2
- Adapted from EMFAC 2009 from the California Air Resources Board (EMFAC2007)
- Modification of Vehicle Classes
 - Merged EMFAC-HK Version 1.2 MC and Taxi sub-models into single version.
- Base Year 2010
- Increased Exhaust Technology Groups
- Update of Hong Kong-Specific Data
- Increased Speed Distribution Bins

EMFAC-HK Version 2.6

- Released January 2, 2014
- Replaced EMFAC-HK V2.5.2
- Updated TG fractions for tentative Euro VI implementation
- Included catalytic converters and oxygen sensors replacement program for LPG/petrol taxis and LPG light bus.
- Revised I/M programme implementation date using remote sensing and dyno testing to Apr 2014
- Implemented mandatory retirement of pre-Euro IV diesel commercial vehicles
- Updated survival rates and revised methodology
- Removed new sales limits in the population forecast.

EMFAC-HK Version 3.1.1

- Released on February 2016
- Replaces EMFAC-HK V2.6
- Base Year 2002-2013
- Reorder of Vehicle Classes
- Revised INP format (SI Units, Header)
- Single Scenario limitation
- Alternate baseline forecasting algorithm and GUI

Pollutants

- Hydrocarbons (HC) can be expressed as the following:
 - TOG (Total Organic Gases, regardless of reactivity)
 - VOC (Volatile Organic Compounds), also known as reactive organic gases (ROG)
 - THC (Total HydroCarbons, compounds with H and C atoms only, carbonyls and halogens are not included)
 - CH4 (methane)
- Carbon monoxide (CO)
- Nitrogen oxides (NOx)

Pollutants (cont.)

- Carbon dioxide (CO₂)
- Particulate matter (PM)
 - PM estimates are provided either as total suspended particulate (30 microns or less), particulate matter 10 microns or less in diameter (PM_{10}) , or particulate matter 2.5 microns or less in diameter $(PM_{2.5})$.

Exhaust Evaporative (Evap) Other

EMISSIONS PROCESSES

Emission Processes

- Running Exhaust
- Starting Exhaust (petrol/LPG only)
- Diurnal Evap (partial day, multi-day)
- Resting Loss Evap (partial day, multi-day)
- Hot Soak Evap
- Running Evap

Running Exhaust Emissions

 emissions that come out of the vehicle tailpipe while it is traveling on the road, including at speed, and idling that occurs as part of normal driving, such as at intersections.

Starting Exhaust Emissions

- tailpipe emissions that occur as a result of starting a catalyst-equipped vehicle when the catalyst is cold.
- These emissions are independent of running exhaust emissions and can be thought of as a slug of emissions associated with starting a vehicle.
- The magnitude of these emissions is dependent on how long the vehicle has been sitting prior to starting.

Diurnal Evaporative Emissions

- Hydrocarbon (HC) emissions that occur when rising ambient temperatures cause fuel evaporation from vehicles sitting throughout the day.
- These losses are from leaks in the fuel system, fuel hoses, connectors, and as a result of breakthrough of vapors from the carbon canister.
- If a vehicle is sitting for a period of time after running, emissions from the first 35 minutes are counted as hot soak and emissions from the remaining period are counted as diurnal emissions, provided that the ambient temperature is *increasing* during the remaining period of time.

Resting Loss Evaporative Emissions

- HC emissions from fuel permeation through rubber and plastic components while vehicle is sitting.
- Emissions are counted as resting loss emissions if the vehicle has not been operated for 35 minutes and vehicle is still stationary, but the ambient temperature is either

constant or decreasing.

Hot Soak Evaporative Emissions

- HC emissions that occur immediately after a trip end due to fuel heating and the fact that the engine remains hot for a short time after being switched off.
- In older, carbureted vehicles these emissions are attributed to vapor losses from the carburetor float bowl. In newer, fuel-injected vehicles, these vapor losses come from leaky fuel injectors or from fuel hoses.

Running Losses Evap Emissions

 evaporative HC emissions that occur when hot fuel vapors escape from the fuel system or overwhelm the carbon canister while the vehicle is operating. **Vehicle Fleet and Vehicle Class**

Fuel Type

Technology Group

Model Year

Activity

Population

VKT

Trips

BASIC TERMINOLOGY

Vehicle Fleet / Vehicle Class

"Vehicle Fleet"

 "Vehicle fleet" refers to the mixture of all the different types of motor vehicles operating on roads in Hong Kong.

"Vehicle Class"

- The fleet is broken into multiple categories called "vehicle classes" (for example, class 1, or private cars). These classes are based on the type of vehicle, but they also take weight class, fuel type (i.e. gas, diesel, or LPG), and usage into account.
- EMFAC-HK contains 16 vehicle classes, plus 5 unused "placeholders" for a total of 21 vehicle classes.

Fuel Type

- petrol vehicles (exhaust, evap)
- diesel vehicles (exhaust)
- Liquified Petroleum Gas (LPG) vehicles (exhaust)

EMFAC-HK Version 3.1

Vehicle Classification Chart (Classes 1-10)

Index	Vehicle Class Description		Gross Vehicle Weight (tonnes)	Code
1	Private Cars (PC)	ALL	ALL	PC
2	Taxi	ALL	ALL	TAXI
3	Light Goods Vehicles (<=2.5t)	ALL	≤ 2.5	LGV3
4	Light Goods Vehicles (2.5-3.5t)	ALL	2.5-3.5	LGV4
5	Light Goods Vehicles (3.5-5.5t)	ALL	3.5-5.5	LGV6
6	Medium & Heavy Goods Vehicles (5.5-15t)	ALL	5.5-15	HGV7
7	Medium & Heavy Goods Vehicles (≥15t)	ALL	≥ 15	HGV8
8	Public Light Buses	ALL	ALL	PLB
9	Private Light Buses (≤ 3.5t)	ALL	≤ 3.5	PV4
10	Private Light Buses (>3.5t)	ALL	> 3.5	PV5

^{*} All: petrol, diesel, or LPG.

EMFAC-HK Version 3.1

Vehicle Classification Chart (Classes 11-21)

Index	Vehicle Class Description	Fuel Type*	Gross Vehicle Weight (tonnes)	Code
11	Non-franchised Buses (<6.4t)	ALL	< 6.4	NFB6
12	Non-franchised Buses (6.4-15t)	ALL	6.4-15	NFB7
13	Non-franchised Buses (>15t)	ALL	>15	NFB8
14	Single Deck Franchised Buses	ALL	ALL	FBSD
15	Double Deck Franchised Buses	ALL	ALL	FBDD
16	Motor Cycles	ALL	ALL	MC
17	Placeholder (P1)	-	1	P1
18	Placeholder (P2)	-	1	P2
19	Placeholder (P3)			P3
20	Placeholder (P4)			P4
21	Placeholder (P5)			P5

28

Technology Groups

- represents vehicles from the same class but have distinct emission control technologies; have similar in-use deterioration rates; and, respond the same to repair.
- can represent vehicles whose emissions standards (i.e., pre-Euro, Euro-I) are the same, or those that have specific equipment installed on them (e.g., multi-port fuel injection, three-way catalyst, adaptive fuel controls, etc.) which makes them behave the same.
- Separate technology groups for exhaust and evap

Exhaust Tech Group Indexes (Example Only)

Diesel Heavy Goods Vehicles with GVW >15 t (HGV8)

Vehicle Class	Fuel Type	Vehicle Emission	Tech Group Index
HGV8	Diesel	pre-Euro	153
HGV8	Diesel	pre-Euro DOC Retrofitted	155
HGV8	Diesel	Euro I	154
HGV8	Diesel	Euro II	157
HGV8	Diesel	Euro III	159
HGV8	Diesel	Euro IV	160
HGV8	Diesel	Euro IV - DPF	163
HGV8	Diesel	Euro IV - SCR	164
HGV8	Diesel	Euro V	161
HGV8	Diesel	Euro V - DPF	165
HGV8	Diesel	Euro V - SCR	166
HGV8	Diesel	Euro VI	162

Model Years

- Within each vehicle class, each model year is represented by a combination of technology groups ("phase-in" schedules).
- model calculates emission rates for 1965 to 2040 model years.

Calendar Years

- EMFAC-HK estimates calendar years from 1997 to 2040.
- Only one calendar year/scenario can be run at a time

Age

- How old a particular model year vehicle is relative to the calendar year
- Difference between the calendar year and model year, plus 1

Activity

- for each vehicle class and fuel type, these terms are commonly referred to as vehicle activity:
 - Vehicle population
 - Accrual
 - Odometer
 - Vehicle Kilometers/Miles Travelled (VKT/VMT)
 - Trips

Population

- determined through an analysis of traffic census data. These data are used in developing vehicle age matrices for the base year, as well as forecast/backcast of population to other calendar years
 - EMFAC-HK v3.1.1: 2002-2013 base years

Accrual

- Vehicle accrual is the annual mileage a vehicle travelled against its age.
- Newer vehicles driven more than older ones

Vehicle Kilometers Traveled (VKT)

- represents total distance travelled on a weekday
- calculated based on vehicle population and vehicle accrual
- from regional estimates of VKT by vehicle type. These VKT estimates matched by modifying the accrual rates.

Starts/Trips

- Number of trips or starts is the number of times a vehicle is started for separate trips made per weekday
- Petrol and LPG emissions are affected by starts/trips.

Geographic Area

Calendar Year

Alt. Baseline Year (optional)

Season or Month

Title

Model Years Included

Emissions Mode

Output Options

BASIC DATA FOR A SCENARIO

Basic Data for a Scenario

- Geographic area (Hong Kong)
- Forecast Year (i.e., "Calendar" Year)
- Alternate Baseline Year (2013 or newer)
- Title
- Month or Season
- Model Years Included in calculation
- Emissions mode (Burden or EMFAC)
- Output formats, and
- Output options (frequency, pollutant form)

Mode Comparison

BURDEN

- Emissions estimates
- total emissions as tonnes per period (weekday or hour) for each pollutant, by vehicle class and the total vehicle fleet
- emission factors--corrected for ambient conditions and speeds--combined with vehicle activity to calculate emissions in tonnes per day

EMFAC

- Emission Factors (EFs) in terms of grams of pollutant emitted per vehicle activity
- Calculates matrix of EFs at specific values of T (0°C to 40°C), RH (0% to 100%), and vehicle speed (10 kph to 130 kph) for each vehicle class/technology combination.

BURDEN Output Options

• Detailed Planning Inventory (CSV) - a commaseparated file (with a "csv" extension) which can be read by any spreadsheet program. It contains emission estimates for all 16-vehicle classes by fuel type. It is recommended that new users select this as an output option to get an idea of the entire emissions.

BURDEN Output (cont.)

 MVEI7G (BCD) File - This is also a commaseparated file but it has a "bcd" extension. This file is in the same format as that produced by the MVEI7G model. This file has the same information as "Detailed Planning Inventory" but in columnar format, which makes it suitable for sorting using spreadsheets.

BURDEN Output (cont.)

Weighted Model Year Activity Output (*.WT)
 Gives the activity components like population,
 VKT, Trips, Accrual Rate and Odometer by
 model year.

BURDEN Output (cont.)

Detailed Outputs (BDN) File - gives the
Burden output for each vehicle class and
emissions process by Model year and Tech
groups in a columnar, record-style format,
which makes it suitable for importing to a
spreadsheet or database. This format is useful
for the air pollution modeling and planning
communities.

Burden Report Output Types

Report Type	Description	Format	File Extension
Detailed Planning Inventory (CSV)	Contains emission estimates for all 16-vehicle classes by fuel type.	comma- separated	*.CSV
MVEI7G (BCD) File	Emissions Database for Planning.	comma- separated	*.BCD.CSV
Detailed Outputs (BDN)	Gives the Burden output by Model year, Tech groups and Speed bin.	comma- separated	*.BDN.CSV
Weighted Model Year Activity Output (WT)	Gives the Activity components like population, VKT, trips, accrual, and odometer by model year.	No delimiters	*.WT

Detailed Planning Inventory (*.csv)

A	В	C	D	E	F	G	Н		1	K	aL .	M	N	0	P	Q	R	S	T	U
Title	Hong Kong	AR Annual	CYr 2030 D	efault Titl	ρ.								7.0.0	1 1						
	: Emfac-HK					sion Pr: Em	fac-HK HK	3.0.9.beta												
	te : 2015/11/																			
	ar: 2030 Al		ars in the r	ange 1986	to 2030 se	lected														
	: Annual																			
Area	: Hong Kong	SAR																		
	t : HK I/M CY		am in effec	t																
	ons: Tonnes																			
	***********		•••••	•••••	•••••		••••••		•••••	•••••	•••••	•••••	•••••	********	•••••	• • • • • • • • • • • • • • • • • • • •	********	•••••	•••••	•••••
	PC-NCAT	PC-CAT	PC-DSL	PC-LPG	PC-TOT	TAXI-NCAT	TAXI-CAT	TAXI-DSL	TAXI-LPG	TAXI-TOT	LGV<=2.5t-	LGV<=2.5t-	LGV<=2.5t-	LGV<=2.5t-	LGV<=2.5t-	LGV2.5-3.5	LGV2.5-3.5	LGV2.5-3.5	LGV2.5-3.5	LGV2.5-3
Vehicle		790870	277	0		0	0			18204	0	2	1003	0	1005	0	1058	53842	0	
VKT	51	22087438	5777	0	22093266	0	0) (7670384	7670384	14	96	74300	0	74410	7	67137	3550588	0	
Trips	4	1186420	416	0	1186840	0	0) (72821	72821	1	7	4013	0	4021	1	4231	215391	0	21962
VOC Em									71.2.2.4.2.2.			713					0.00			
Run Ext	0.00009	0.06256	0.0004	0	0.06305	0	0) (0.16034	0.16034	0.00002	0.00007	0.00114	0	0.00123	0.00001	0.00285	0.05605	0	0.0589
Start Ex	0.00004	0.05779	0	0	0.05783	0	0) (0.03817	0.03817	0.00002	0.00003	0	0	0.00005	0.00001	0.00116	0	0	0.0011
3																				
Diurna	0.00003	0.30319	0	0	0.30322	0	0) (0	0	0.00001	0	0	0	0.00001	0	0.00067	0	0	0.0006
Hot Soa	k 0.00002	0.19507	0	0	0.19509	0	0) (0	0	0.00001	0.00001	0	0	0.00002	0	0.00137	0	0	0.0013
Runnin	g 0.00009	0.30161	0	0	0.30171	0	0) (0	0	0.00004	0.00002	0	0	0.00007	0.00001	0.00436	0	0	0.0043
Resting	0.00004	0.51523	0	0	0.51527	0	0) (0	0	0.00001	0	0	0	0.00001	0	0.00105	0	0	0.0010
Carbon	Monoxide E	missions																		
Run Ext	0.00122	3.85113	0.00243	0	3.85477	0	0) (10.43512	10.43512	0.00014	0.00112	0.01836	0	0.01961	0.00006	0.17308	0.8737	0	1.0468
Start Ex	0.00021	1.34459	0	0	1.3448	0	0) (0.18225	0.18225	0.00004	0.00025	0	0	0.0003	0.00002	0.03595	0	0	0.0359
Oxides	of Nitrogen	Emissions																		
Run Ext	0.00016	0.36871	0.00086	0	0.36973	0	0) (2.0571	2.0571	0.00006	0.00007	0.02986	0	0.02999	0.00003	0.00139	1.50595	0	1.5073
Start Ex	0.00003	0.01248	0	0	0.01251	0	0) (0.05446	0.05446	0	0.00003	0	0	0.00003	0	0.00057	0	0	0.0005
Carbon	Dioxide Emi	ssions (000)																	
Run Ext	0.00001	4.84702	0.00124	0	4.84827	0	0) (1.78523	1.78523	0	0.00002	0.02227	0	0.02229	0	0.01223	1.06443	0	1.0766
Start Ex	0	0.08693	0	0	0.08694	0	0) (0.00572	0.00572	0	0	0	0	0	0	0.00031	0	0	0.0003
PM10 E	missions																			
Run Ext	1	0.06703	0.00008	0	0.06712	0) (0	0	0	0	0.00023	0	0.00023	0	0.00024	0.01329	0	0.0135

MVEI7G CSV file (*.bcd.csv)

j	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
	CALYR	START MYI	END MYR	REGION	SAR	STARTS	POPULATION		VEH TYPE	VEH TECH	POLLUTAN	PROCESS	EMISSION	BASIS
	2030	1986	2030	SAR Avera	Hong Kons	4	3	51	PC	NCAT	CO	Run Exh	0.001218	Day
	2030	1986			Hong Kong		3	51	PC	NCAT	NOx	Run Exh	0.000157	
	2030	1986			Hong Kons		3	51	PC	NCAT	PM	Run Exh	0.000001	-
	2030	1986	2030	SAR Avera	Hong Kons	4	3	51	PC	NCAT	VOC	Run Exh	0.00009	
	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO2	Run Exh	0.011113	Day
	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO	Start Ex	0.000213	Day
	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	NOx	Start Ex	0.00003	Day
	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	PM	Start Ex	0	Day
0	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	VOC	Start Ex	0.000038	Day
1	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO2	Start Ex	0.000884	Day
2	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO	Hot Soak	0	Day
3	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	NOx	Hot Soak	0	Day
4	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	PM	Hot Soak	0	Day
5	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	VOC	Hot Soak	0.00002	Day
5	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO2	Hot Soak	0	Day
7	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO	Running	0	Day
В	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	NOx	Running	0	Day
9	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	PM	Running	0	Day
0	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	VOC	Running	0.000094	Day
1	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO2	Running	0	Day
2	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO	PD Rest	0	Day
3	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	NOx	PD Rest	0	Day
4	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	PM	PD Rest	0	Day
5	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	VOC	PD Rest	0.000036	Day
5	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO2	PD Rest	0	Day
7	2030	1986	2030	SAR Avera	Hong Kong		_	51	PC	NCAT	CO	MD Rest	0	Day
8	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	NOx	MD Rest	0	Day
9	2030	1986	2030	SAR Avera	Hong Kong		_	51	PC	NCAT	PM	MD Rest	0	Day
0	2030	1986	2030	SAR Avera	Hong Kong	4	_	51	PC	NCAT	VOC	MD Rest	0.000002	Day
1	2030	1986			Hong Kong		3	51	PC	NCAT	CO2	MD Rest	0	Day
2	2030	1986	2030	SAR Avera	Hong Kong	4	3	51	PC	NCAT	CO	Resting	0	Day
3	2030	1986	2030	SAR Avera	Hong Kong		_	51	PC	NCAT	NOx	Resting	0	Day
1	2030	1986			Hong Kong		_	51	PC	NCAT	PM	Resting		Day
5	2030	1986			Hong Kong		_	51	PC	NCAT	VOC	Resting	0.000039	
5	2030	1986	2030	SAR Avera	Hong Kong		_	51	PC	NCAT	CO2	Resting	0	Day
7	2030	1986	2030	SAR Avera	Hong Kons	4	3	51	PC	NCAT	CO	PD Diurn	0	Day

Weighted Model Year Activity Output (*.WT)

	HK_2030_Burden.wt ×				
	Ÿ.,,,,,,1,0,,,,,2,0,,,,,	3,0, 4,1	9, , , , , , , , 5, 9, , , , , , , ,	. 6,0	
1					
2	-Calendar Year: 2030				
3	···Model ·Years: ·1986 ·to ·2030				
4	Title: Hong Kong SAR	-Annual-CYr	-2030 Default Titl	.e	
5	Area: Hong Kong				
6	SubArea: Average				
7	Program: Emfac-HK V3.0		.9.beta 151008 Sp:	-Beta-Version	Pr: Emiac-HK HK3.0.9.beta
8	Run -Date: -2015/11/10 -11	:18:08			
9	SCEN · VEH · · · · · · · · · · · · · · · · · · ·	ITTU DOD	1777	TDIDE	ACCRUINT ODOMETED
10					
11	·YEAR ··CLS ·TECH ··MYR ····· (number) · · · ·	(кт/аау)	(per day) ····(k	m/yr/ven) ·····(km/veh)
12	-2030 1 - NCAT - 1986	0	2 21	0	6109 353005
14	-2030 1 - NCAT - 1986				
15	-2030 1 NCAT - 1988				
16	2030 · · · 1 · NCAT · 1989 · · · · · · ·				
17	-2030 · · · · 1 · NCAT · 1989 · · · · · · · ·				
18	2030 · · · · 1 · NCAT · 1991 · · · · · · · ·				
19	·2030 · · · · 1 · NCAT · 1992 · · · · · · ·				
20	·2030 · · · · 1 · NCAT · 1993 · · · · · · · ·				
21	·2030 · · · · 1 · NCAT · 1994 · · · · · · · ·				
22	-2030 1 - NCAT - 1995				
23	2030 · · · 1 · NCAT · 1996 · · · · · · ·				
24	·2030 · · · · 1 · NCAT · 1997 · · · · · · · ·				
25	·2030 · · · · 1 · NCAT · 1998 · · · · · · · ·				
26	-2030 1 - NCAT - 1999				
27	·2030 · · · · 1 · NCAT · 2000 · · · · · · · ·				
28	-2030 1 ·NCAT ·2001 · · · · · · ·				
29	-2030 1 · NCAT · 2002 · · · · · · ·				
30	-2030 1 -NCAT -2003				
31	-2030 1 -NCAT -2004				
32	-2030 1 -NCAT -2005				
33	-2030 1 -NCAT -2006				
34	-2030 1 -NCAT -2007				
35	-2030 1 -NCAT -2008				
36	-2030 1 -NCAT -2009				
37	-2030 1 -NCAT -2010				
38	-2030 1 -NCAT -2011				
39	-2030 1 - NCAT -2012				
40	-2030 1 -NCAT -2013	0.	0 . 00	0	
41	-2030 1 - NCAT - 2014	0	0 . 00	0	0

Detailed Output File (*.BDN.CSV)

Δ	В	C	D	-	-	G	Н	1 1	- 1	K	- 1	M	N	0	p	Q	R	S	T	U	V	W	X	v
1 #Title :	Hong Kong SAF			Default	Title	G	- 11		-		-	191	14	U	-	ч		3	-	0	V	VV	^	
2 # Version :						sion Pr F	mfar-HK Hk	3 0 0 heta																
3 # Run Date	: 11/10/2015 1		2.000	151000	op. Deta ve.	210111112		0.0.5.0014																
4 # Scen Year			the ra	nge 1986	5 to 2030 sel	ected																		
5 #Season :		,																						
6 # Area :	Hong Kong																							
	HK I/M CY2013-	program i	n effec	t																				
	s: Tonnes Per Pe	The second second																						
9 RecType	ScenNum Cal	Yr Area		Veh	MdIYr	Tech	Period	Pop	VKT	Trips	VOC RUNE	VOC STRE	VOC DIUR	VOC HTSK	VOC RUNI	VOC REST	CO RUNE	CO STREX	NOx RUNE	NOx STRE	CO2 RUNE	CO2 STRE	PM10 RUI	PM10 ST
10 MY	1	2030 Hor	g Koni	PC	1985	GAS	Day	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
11 MY	1	2030 Hon	-		1985	DSL	Day	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
12 MY	1	2030 Hon	g Kon	PC	1985	LPG	Day	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13 MY	1	2030 Hor	g Kon	PC	1985	TOT	Day	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
14 MY	1	2030 Hor	g Koni	PC	1986	GAS	Day	0.19513	3.313592	0.292725	5.93E-06	2.57E-06	2.22E-06	1.36E-06	6.26E-06	2.58E-06	7.98E-05	1.42E-05	1.02E-05	2.02E-06	7.27E-04	5.89E-05	6.91E-08	3.82E-09
15 MY	1	2030 Hon	g Kon	PC	1986	DSL	Day	4.01E-02	0.68047	6.01E-02	3.96E-07	0	0	0	0	0	8.99E-07	0	8.25E-07	0	1.63E-04	0	2.20E-07	
16 MY	1	2030 Hon	g Kon	PC	1986	LPG	Day	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
17 MY	1	2030 Hon	g Konį	PC	1986	TOT	Day	0.235202	3.994063	0.352838	6.32E-06	2.57E-06	2.22E-06	1.36E-06	6.26E-06	2.58E-06	8.07E-05	1.42E-05	1.11E-05	2.02E-06	8.90E-04	5.89E-05	2.89E-07	3.82E-09
18 MY	1	2030 Hon	g Koni	PC	1987	GAS	Day	0.20096	3.429411	0.301471	6.12E-06	2.64E-06	2.28E-06	1.40E-06	6.44E-06	2.66E-06	8.25E-05	1.46E-05	1.06E-05	2.08E-06	7.53E-04	6.06E-05	7.15E-08	3.93E-09
19 MY	1	2030 Hon	g Konį	PC	1987	DSL	Day	4.26E-02	0.72657	6.39E-02	3.72E-07	0	0	0	0	0	8.44E-07	0	8.81E-07	0	1.74E-04	0	2.33E-07	(
20 MY	1	2030 Hor	g Kon	PC	1987	LPG	Day	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
21 MY	1	2030 Hon	g Koni	PC	1987	TOT	Day	0.243537	4.155981	0.365341	6.49E-06	2.64E-06	2.28E-06	1.40E-06	6.44E-06	2.66E-06	8.34E-05	1.46E-05	1.15E-05	2.08E-06	9.27E-04	6.06E-05	3.05E-07	3.93E-09
22 MY	1	2030 Hon	g Konį	PC	1988	GAS	Day	0.307875	5.279747	0.461859	9.40E-06	4.03E-06	3.50E-06	2.15E-06	9.88E-06	4.08E-06	1.27E-04	2.23E-05	1.63E-05	3.19E-06	1.16E-03	9.29E-05	1.10E-07	6.03E-09
23 MY	1	2030 Hon	g Konį	PC		DSL	Day	7.87E-02	1.349935	0.118089	7.20E-07	0	0	0	0	0	1.64E-06		1.64E-06		3.24E-04	0	4.30E-07	
24 MY	1	2030 Hon	g Kon	PC	1988	LPG	Day	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
25 MY	1	2030 Hon	-		1988		Day	0.386594	6.629683	0.579948	1.01E-05	4.03E-06	3.50E-06	2.15E-06	9.88E-06	4.08E-06	1.29E-04	2.23E-05	1.80E-05	3.19E-06		9.29E-05	5.41E-07	
26 MY	1	2030 Hon	g Konį	PC		GAS	Day	0.488049			1.49E-05	6.37E-06	5.54E-06	3.41E-06	1.57E-05	6.46E-06	2.02E-04	3.54E-05	2.60E-05	5.05E-06		1.47E-04	1.75E-07	9.55E-09
27 MY	1	2030 Hon	-		1989		Day		2.337905	0.203521		0	0	0	0		2.80E-06		2.84E-06		5.61E-04		7.41E-07	
28 MY	1	2030 Hon	-			LPG	Day	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
29 MY	1	2030 Hon	-		1989		Day		10.74829		1.62E-05	6.37E-06	5.54E-06		1.57E-05	6.46E-06	2.05E-04	3.54E-05		5.05E-06		1.47E-04	9.16E-07	
30 MY	1	2030 Hor	-			GAS	Day	0.6516			2.00E-05	8.49E-06	7.40E-06	4.55E-06	2.09E-05	8.63E-06	2.71E-04	4.73E-05		6.74E-06	2.48E-03	1.97E-04	2.35E-07	1.28E-08
31 MY	1	2030 Hon	-		1990		Day		3.119802	0.270203		0	0	0	0		3.73E-06		3.78E-06		7.48E-04	0	9.83E-07	(
32 MY	1	2030 Hon	-			LPG	Day	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
33 MY	1	2030 Hon	-		1990		Day	0.831717		1.2477	2.16E-05	8.49E-06	7.40E-06	4.55E-06	2.09E-05	8.63E-06	2.75E-04	4.73E-05	3.87E-05	6.74E-06	3.22E-03	1.97E-04	1.22E-06	
34 MY	1	2030 Hor	-			GAS	Day	1.086558			3.34E-05	1.41E-05	1.23E-05	7.59E-06	3.49E-05	1.44E-05	4.55E-04	7.88E-05	5.85E-05	1.12E-05		3.28E-04		
35 MY	1	2030 Hor			1991		Day	0.235271	4.096891			0	0	0	0		4.74E-06		4.97E-06		9.82E-04		1.28E-06	
36 MY	1	2030 Hon	g Koni	PC	1991	LPG	Day	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

EMFAC Output Options

 Impact Rate Detail (RTL). This file generates detailed emission factors for each vehicle class and technology group by speed bin. 9 different emission factor tables are provided, described in next slide. This file has an "RTL" extension, but is in a CSV format. Hence, any spreadsheet program can read this file. It is recommended that new users output this file to get a feel for the type of information generated in EMFAC mode.

EMFAC Output Options (cont.)

- Impact Rate Detail (RTL). The tables contained in the RTL file include:
 - Table 1: Running Exhaust Emissions (grams/km)
 - Table 2: Starting Emissions (grams/trip)
 - Table 4: Hot Soak Emissions (grams/trip)
 - Table 5a: Partial Day Diurnal Loss Emissions (grams/hour)
 - Table 5b: Multi-Day Diurnal Loss Emissions (grams/hour)
 - Table 6a: Partial Day Resting Loss Emissions (grams/hour)
 - Table 6b: Multi-Day Resting Loss Emissions (grams/hour)
 - Table 7: Estimated Travel Fractions
 - Table 8: Evaporative Running Loss Emissions (grams/minute)

EMFAC Report Output Types

Report Type	Description	Format	File Extension
Impact Rate Detail (RTL)	generates detailed emission factors by activity (i.e., g/km, g/trip) for each vehicle class and technology group by speed bin.	comma- separated	*.RTL.CSV

EMFAC Impact Rate Detail Format (*.RTL)

	A	В	C	D	E	F	G	H	1	J	K	L	M	N	0		P	Q	R	S	T	U	V	W		Х
1	Title : H	ong Kong S	AR Annua	CYr 2030 E	efault Titl	e																				
2	Version:	Emfac-HK	V3.09 beta	V3.0.9.bet	a 151008 Sp	p: Beta Ver	sion Pr:	Emfac-HK H	K3.0.9.bet	1																
3	Run Date	: 2015/11/:	10 12:17:33																							
4	Scen Year:	2030 AI	I model ye	ars in the	range 1986	to 2030 se	elected																			
5	Season :	Annual																								
	and the state of t	ong Kong																								
7	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	******																
8	Year:	2030		Model		1986			30 Inclusi			Annual														
9	Emfac-	HK V3.09 b	eta Emissi	on Factors	: V3.0.9.bet	ta 151008 S	p: Beta \	/ersion Pr:	Emfac-HK	HK3.0.9.be	ta															
10																										
	SAR Avera	ge				Hong	Kong					SAR Avera	ige													
12																										
13					Table 1:	Running E	xhaust E	missions (grams/km)																	
14						200000000000000000000000000000000000000	XVIII II II II II																			
	Pollutant	Name: Vo	latile Org (pds	Temperat	ure: 25C	Relativ	Humidity	: 40%																	
16	20000																									
		PC	PC	PC	PC	PC	TAXI	TAXI	TAXI	TAXI	TAXI	LGV3	LGV3	LGV3	LGV3 LPG	LGV			LGV4		LGV4 LPG	LGV4	LGV6	LGV6 CAT		GV6
19	km/hr	NCAT	CAT	DSL	LPG	ALL	NCAT	CAT	DSL	LPG	ALL	NCAT	CAT	DSL	LPG	ALL	- '	NCAT	CAT	DSL	LPG	ALL	NCAT	CAT	D:	SL
20	10	4.1273	0.0081	0.1724	0	0.0082		0	0	0 0.03	17 0.0317	2.3043	2.6258	0.0306		0 0	0.0344	2.2355	0.0647	0.0316		0.0322		0	0	0.155
21	20		0.0052					0	0	0 0.0			2.5913	0.0236		0 0	0.0273	1.9492	0.0636	0.0243				0	0	0.071
22	30	2.1658	0.0036	0.0997	0	0.0036		0	0	0 0.03	.88 0.0188	1.8835	2.5846	0.0189		0 0	0.0225	1.7162	0.0633	0.0194		0.0202		0	0	0.032
23	40	1.7489	0.0028	0.0798	0	0.0028		0	0	0 0.03	.65 0.0165	1.7379	2.5829	0.0156	i	0 0	0.0193	1.5365	0.0633	0.0161	(0.017		0	0	0.028
24	50	1.506	0.0023	0.0661	0	0.0023		0	0	0 0.03	.52 0.0152	1.6354	2.5808	0.0134		0	0.017	1.4102	0.0632	0.0138	(0.0147		0	0	0.024
25	60	1.3747	0.002	0.0566	0	0.0021		0	0	0 0.03	45 0.0145	1.5761	2.5772	0.0119		0 0	0.0155	1.3371	0.0632	0.0122	(0.0132		0	0	0.021
26	70	1.3241	0.0019	0.0501	0	0.0019		0	0	0 0.03	.42 0.0142	1.56	2.5734	0.0108		0 0	0.0144	1.3172	0.0631	0.0111	(0.0121		0	0	0.019
27	80	1.343	0.0019	0.046	0	0.0019		0	0	0 0.03	41 0.0141	1.587	2.5714	0.0102		0 0	0.0138	1.3505	0.063	0.0104	(0.0114		0	0	0.017
28	90		0.002	0.0436	0	0.002		0	0	0 0.03	.43 0.0143	1.6572		0.0098		0 0	0.0134	1.437	0.063	0.0101	(0.011		0	0	0.016
20	100	1.6231	0.0021	0.0428				0	0	0 0.03			2.5935	0.0097		0 0	0.0133	1.5769	0.0632	0.0099				0	0	0.015
29	110	1.7527	0.0023	0.0429	0	0.0020		0	0	0 0.03	.51 0.0151	1.8373	2.638	0.0097		0 0	0.0134	1.6592	0.0635	0.0099	(0.0109		0	0	0.01
29 30	1600	1.7527	0.0023	0.0429		100000000000000000000000000000000000000		0	0	0 0.03			2.638	0.0097			0.0134	1.6592	0.0635	0.0099	(0	0	0.016
29 30 31	120		0.0023	0.0429	0	0.0023		0	0	0 0.03	.51 0.0151	1.8373	2.638	0.0097		0 (0.0134	1.6592	0.0635	0.0099	(0.0109		0	0	0.018
29 30 31 32	120 130	1.7527	0.0023																							
29 30 31 32 33	1600000	1.7527	0.0023																							
29 30 31 32 33 34	130						NAME OF TAXABLE																			
29 30 31 32 33 34	1600000			xide	Temperat	ure: 25C	Relativ	e Humidity	: 40%																	

Other Output Options

- Output Frequency (BURDEN mode Only)
 - Daily (average weekday), or
 - hourly (values for all 24-hours, and includes daily total). Note: hourly generates 25 times more output, which can lead to very large output files.
- Output Particulate As...
 - User selects either total PM, PM $_{10}$ (or RSP), or PM $_{2.5}$
- Output Hydrocarbon As..
 - User selects either TOG, THC, VOC, or CH4

Exhaust Tech Fractions

Evap Tech Fractions

Population (Calendar or Alternate Baseline)

Accrual

Trips

VKT

RVP

Speed Fractions

Temperature

Relative Humidity

EDITING FUNDAMENTAL DATA

Editing Fundamental Data – Tech / IM

- ! **SEQUENCE** of edits Scenario Model
- Exhaust Technology Fraction
 - Apply to model year / model year range
 - Apply to other vehicle classes
 - Technology specific
- Evaporative Technology Fractions
 - Petrol vehicles only

Editing Fundamental Data - Activity

- ! SEQUENCE of edits Edits applied proportionally
- Population (Alt. Base Year or Calendar Year)
 - Edits applied proportionally
 - Edits by vehicle, fuel, and age
 - Age distributions
- Accrual (defn.) annual distance driven
 - Population weighted accrual rates
 - Edits by vehicle class, fuel and age
- **Trips** based on the number of engine on to off events
 - Edits by vehicle class, fuel and hour (hourly model!)
- VKT
 - Edits by vehicle class, fuel and hour

Editing Fundamental Data - Profile/Speeds

 RVP (evap emissions for petrol vehicles only)

Speed Fractions

- Edits by vehicle class, hour and speed bin
- Apply changes to this hour / vehicle class
- Apply to others

Editing Fundamental Data - Temperature/RH Profiles

Temperature

- Edits by hour
- Modify for range of hours

Relative Humidity (RH)

- Edits by hour
- Modify for range of hours

END OF MODEL OVERVIEW