#### **EMFAC-HK - Model Overview**

Dr. Mike Ng
Environmental Protection Officer
Environmental Protection Department
Hong Kong SAR Government
January 2019

#### What is *EMFAC-HK*?

- \* A vehicle emission model that estimates emission rates and emission inventories for motor vehicles operating on roads in Hong Kong.
- \* Adaptation of the California Air Resources
  Board (CARB) EMission FACtors (EMFAC) with
  modifications to cater for local factors such
  as local vehicle fleet characteristics.

#### **Reference Materials**

- \* Software
- \* User's Manual
- Guideline on Modeling Vehicle Emissions
- \* EMFAC-HK Modelling Assumptions

https://www.epd.gov.hk/epd/english/environmentinhk/air/guide\_ref/emf ac-hk.html

#### **Model Overview**

- \* Introduction
- \* Pollutants and Processes Modeled
- Overview of Basic Terminology
- \* Scenario Data
- \* Modeling Modes
- \* Editing Fundamental Data

#### Introduction

\* Emission: 'product of an emission rate (e.g. grams per pollutant emitted over a mile or km) and vehicle activity (e.g. miles or km driven per day)'

Emission Factor X Source Activity = Emissions

## Introduction (cont.)

- Vehicle tailpipe emissions are sensitive to driving patterns (In EMFAC-HK, they are characterized by average vehicle speeds, ambient conditions, etc.)
- A common set of fleet-averaged vehicle emission factors, irrespective of driving patterns, are no longer accepted by advanced countries like the EU and the USA.

# History Of EMFAC-HK

| Version Number                                        | Descriptions                                          |  |
|-------------------------------------------------------|-------------------------------------------------------|--|
| 1 7                                                   | Adapted from EMFAC2002 by CARB<br>Used from 2005-2012 |  |
| Adapted from EMFAC2009 by CARB Released on April 2012 |                                                       |  |
| 2.5 & 2.5.1                                           | Released on January 2013 with refinement on March     |  |
| 2.6                                                   | Released on January 2014                              |  |
| 3.1 & 3.1.1                                           | Released on January 2016 with refinement on February  |  |
| 3.3                                                   | Released on January 2017                              |  |
| 3.4                                                   | Released on Februray 2018                             |  |
| 4.1                                                   | Released on January 2019                              |  |

## Changes in EMFAC-HK V4.1

- Released on 2 January 2019
- Replaced EMFAC-HK V3.4
- Migrated to Intel Visual FORTRAN complier from Compaq Visual FORTRAN
- \* Base Year 2002-2016
- Updated implementation dates for Euro VI light buses more than 3.5t & buses between 3.5t and 9t and Euro 4 MC
- Introduced Euro IV diesel commercial vehicles phase-out program
- Updated Euro II/III franchised buses SCR retrofit program
- Updated base emission factors, speed correction factors and regime growth rates
- Disabled forecast algorithm in mitigating sharp anomalies in new sales
- Disabled 3-D array data online-editing in GUI
- Enforced speed fractions input normalization

#### **Activity Related**

| V3.4                                                                                                                | V4.1                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 2015 vehicle population distribution from TD (updated in 1/2017)                                                    | 2016 vehicle population distribution from TD                                                                                                 |
| 2015 VKT from TD                                                                                                    | 2016 VKT from TD                                                                                                                             |
|                                                                                                                     | 2016 survey on vehicle classification on 100 road segments from TD and EPD in-house surveys                                                  |
| EPD conducted surveys in 2012-15 on vehicle classifications to supplement TD's data (from 11 p.m. to 7 a.m.) and 64 | EPD conducted surveys in 2012-16 on vehicle classifications to supplement TD's data (from 11 p.m. to 7 a.m.) and 64 additional road segments |
| 2015 speed limits from TD & HyD                                                                                     | 2016 speed limits from TD & HyD                                                                                                              |
| 2015 speed surveys from TD                                                                                          | 2016 speed surveys from TD                                                                                                                   |
| 2015 ambient temperature & relative humidity from HKO                                                               | 2016 ambient temperature & relative humidity from HKO                                                                                        |

#### **Emission Factor Related**

| V3.4                                                                                                                                                                                                                                                                                                                                                      | V4.1                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Updated Speed Correction Factors (SCF), zero mile emission factors (ZMEF) and deterioration rates (DR). Real-world vehicle emission data (242 vehicles with 120 of Euro IV-VI) are used to determine these factors or as references. International emission factors are used using local data as reference if few data are collected in some tech groups. |                                                                                                                             |
| Estimated occurrence of normal, high and super emitters for petrol cars and LPG taxis based on 2015 remote sensing data.                                                                                                                                                                                                                                  | Estimated occurrence of normal, high and super emitters for petrol cars and LPG taxis based on 2016/17 remote sensing data. |
| No start emission for diesel vehicles.                                                                                                                                                                                                                                                                                                                    | Added start emissions for SCR diesel vehicles, aligning with CARB's EMFAC.                                                  |

#### **Modelling Methodology Related**

| V3.4                                                                                                                                          | V4.1                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Population Forecast:                                                                                                                          | Population Forecast:                                                                                              |
| • All except franchised buses, taxis & public light buses (PLB) used a smoothing function to mitigate sharp new sales in population forecast. | <ul> <li>Disabled the smoothing function in<br/>mitigating sharp new sales in population<br/>forecast.</li> </ul> |
| Exhaust Tech Group description:                                                                                                               | Exhaust Tech Group description:                                                                                   |
| No Euro 4 motorcycle (MC)                                                                                                                     | Added Euro 4 MC (TG278)                                                                                           |

#### **Policy Related**

| V3.4                                 | V4.1                                      |  |  |
|--------------------------------------|-------------------------------------------|--|--|
| Updated Euro VI implementation dates | Plan to implement -                       |  |  |
| according to legislative amendments  | • Euro 4 MC in 2020                       |  |  |
|                                      | • Euro VI light buses more than 3.5t      |  |  |
|                                      | and buses 3.5- 9t in 2021                 |  |  |
| LPG light buses are available        | Based on the information from trade, no   |  |  |
|                                      | newly registered LPG light buses from 202 |  |  |
|                                      | (for assessment purpose only).            |  |  |
| No program to phase out Euro IV DCV  | Plan to progressively phase out Euro IV   |  |  |
|                                      | DCV by end 2023                           |  |  |

# Changes in Implementation Dates of Vehicle Emission Standards

#### EMFAC-HK V3.4

| <b>Vehicle Class</b> \ |         | Euro VI      |                |        |  |
|------------------------|---------|--------------|----------------|--------|--|
| Fuel Type              |         | LPG          | Petrol         | Diesel |  |
| Private Car            |         |              | 1.7.17 1.10.17 |        |  |
| Goods <= 3.5t          |         | NA           | 1.1.18         |        |  |
| Vehicle                | >3.5 t  |              | 1.10.18        |        |  |
| Bus                    | <= 9 t  | NA No schedu |                | hedule |  |
|                        | >9 t    |              | 1.10.18        |        |  |
| Light                  | <= 3.5t | 1.1.18       |                |        |  |
| Bus                    | >3.5 t  | No schedule  |                |        |  |
| Taxi                   |         | 1.7.17 NA    |                | NA     |  |

#### EMFAC-HK V4.1

| Vehicle C    | Euro VI     |             |             |          |  |
|--------------|-------------|-------------|-------------|----------|--|
| Fuel Type    |             | LPG         | Petrol      | Diesel   |  |
| Private Ca   | Private Car |             | 1.7.17      | 1.10.17# |  |
| Goods        | <= 3.5t     | NA          | 1.1.18      |          |  |
| Vehicle      | >3.5 t      | 1           | 1.1         | 0.18     |  |
| cast.        | <= 9 t      |             | 1.1.2021    |          |  |
| Bus          |             | NA          | (tentative) |          |  |
|              | >9 t        |             | 1.10.18     |          |  |
| Light        | <= 3.5t     |             | 1.1.18      |          |  |
| Light<br>Bus | \2 5 +      | 1.1.2021    |             | 21       |  |
| Dus          | >3.5 t      | (tentative) |             |          |  |
| Taxi         | 1.7.17 NA   |             |             |          |  |

Changes highlighted in red.

Emfac-HK homepage, Appendix III

Notes: # HK adopted California LEV III Standards on 1 October 2017 for diesel PC.

# Changes in Implementation Dates of Vehicle Emission Standards

#### EMFAC-HK V3.4

# Vehicle Class\<br/>Fuel TypeEuro IVLPGPetrolDieselMotorcycleNANo Schedule

#### EMFAC-HK V4.1

| Vehicle Class\        | Euro IV        |                         |                              |  |
|-----------------------|----------------|-------------------------|------------------------------|--|
| Fuel Type             | LPG            | Petrol                  | Diesel                       |  |
| Motorcycle            | NA             | 1.7.2020<br>(tentative) | NA (from 1.7.2020 tentative) |  |
| <b>Motor tricycle</b> | le No Schedule |                         | edule                        |  |

Changes highlighted in red.

Emfac-HK homepage, Appendix III

## **Addition of Exhaust Tech Group**

#### Exhaust Tech Group Added:

| Vehicle Class | Vehicle Emission<br>Standards | Technology<br>Group Index |
|---------------|-------------------------------|---------------------------|
| Motorcycle    | Euro 4                        | 278                       |

#### **Graphical User Interface (GUI) Related**

| V3.4                                                                                                                                                                           | V4.1                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main screen size is pretty long                                                                                                                                                | Resized main screen for easier operation                                                                                                                                                                                                                                                         |
| <ul> <li>editing:</li> <li>Direct cell-by-cell editing in 2D grid</li> <li>Multiple cells editing by copying, editing and pasting to and from external spreadsheets</li> </ul> | <ul> <li>For Population, Accrual, Trip &amp; VKT editing:</li> <li>Disabled direct cell-by-cell editing in 2D grid</li> <li>Multiple cells editing by copying, editing and pasting to and from external spreadsheets</li> <li>Note: Nothing is changed from input file point of view.</li> </ul> |

## Revision History Of EMFAC-HK

# Visit EMFAC-HK webpage for full details:

https://www.epd.gov.hk/epd/english/environmentinhk/a ir/guide\_ref/emfac-hk.html

#### **Pollutants**

- Hydrocarbons (HC) can be expressed as the following:
  - TOG (Total Organic Gases, regardless of reactivity)
  - VOC (Volatile Organic Compounds), also known as Reactive Organic Gases (ROG)
  - THC (Total HydroCarbons, compounds with H and C atoms only, carbonyls and halogens are not included)
  - · CH4 (methane)
- Carbon monoxide (CO)
- Nitrogen oxides (NOx)

## Pollutants (cont.)

- Carbon dioxide (CO<sub>2</sub>)
- Particulate matter (PM)
  - \* PM estimates are provided either as total suspended particulate (30 microns or less) (TSP), respirable suspended particulate (10 microns or less in diameter) (RSP or PM<sub>10</sub>), or fine suspended particulate (2.5 microns or less in diameter) (FSP or PM<sub>2.5</sub>).

# Exhaust Evaporative (Evap) EMISSIONS PROCESSES

#### **Emission Processes**

- Running Exhaust
- Starting Exhaust (diesel vehicles fitted with SCR and petrol/LPG vehicles only)
- Diurnal Evap (partial day, multi-day)
- Resting Loss Evap (partial day, multi-day)
- Hot Soak Evap
- \* Running Evap

## **Running Exhaust Emissions**

\* emissions that come out of the vehicle tailpipe while it is traveling on the road, including at speed, and idling that occurs as part of normal driving, such as at

intersections.



## **Starting Exhaust Emissions**

- \* tailpipe emissions that occur as a result of starting a vehicle fitted with a 3-way catalyst or SCR# when the catalyst or SCR is cold.
- \* These emissions are independent of running exhaust emissions and can be thought of as a slug of emissions associated with starting a vehicle.
- \* The magnitude of these emissions is dependent on how long the vehicle has been sitting prior to starting.

# SCR – selective catalytic reduction device

### **Diurnal Evaporative Emissions**

- \* Hydrocarbon (HC) emissions that occur when rising ambient temperatures cause fuel evaporation from vehicles sitting throughout the day.
- \* These losses are from leaks in the fuel system, fuel hoses, connectors, and as a result of breakthrough of vapors from the carbon canister.
- \* If a vehicle is sitting for a period of time after running, emissions from the first 35 minutes are counted as hot soak and emissions from the remaining period are counted as diurnal emissions, provided that the ambient temperature is *increasing* during the remaining period of time.

#### **Resting Loss Evaporative Emissions**

- \* HC emissions from fuel permeation through rubber and plastic components while vehicle is sitting.
- \* Emissions are counted as resting loss emissions if the vehicle has not been operated for 35 minutes and vehicle is still stationary, but the ambient temperature is either constant or decreasing.



## **Hot Soak Evaporative Emissions**

- \* HC emissions that occur immediately after a trip end due to fuel heating and the fact that the engine remains hot for a short time after being switched off.
- \* In older, carbureted vehicles these emissions are attributed to vapor losses from the carburetor float bowl. In newer, fuelinjected vehicles, these vapor losses come from leaky fuel injectors or from fuel hoses.

## Running Losses Evaporative Emissions

\* Evaporative HC emissions that occur when hot fuel vapors escape from the fuel system or overwhelm the carbon canister while the vehicle is operating.

#### **BASIC TERMINOLOGY**

**Vehicle Fleet and Vehicle Class** 

**Fuel Type** 

**Technology Group** 

**Model Year** 

Activity

Population

**VKT** 

Trips

## **Vehicle Fleet / Vehicle Class**

#### \* "Vehicle Fleet"

\* "Vehicle fleet" refers to the mixture of all the different types of motor vehicles operating on roads in Hong Kong.

#### "Vehicle Class"

- \* The fleet is sub-divided into multiple categories called "vehicle classes" (for example, class 1, or private cars). These classes are based on the type of vehicle, but they also take weight class (e.g. >15 tonnes), fuel type (i.e. gas, diesel, or LPG), and usage into account.
- \* EMFAC-HK contains 16 vehicle classes, plus 5 unused "placeholders" for a total of 21 vehicle classes.

## **Fuel Type**

- \* Petrol vehicles (exhaust, evap)
- \* Diesel vehicles (exhaust)
- Liquefied Petroleum Gas (LPG) vehicles (exhaust)

# EMFAC-HK Version 4.1 Vehicle Classification Chart (Classes 1-10)

| Index | Vehicle Class<br>Description            | Fuel<br>Type* | Gross<br>Vehicle<br>Weight<br>(tonnes) | Code |
|-------|-----------------------------------------|---------------|----------------------------------------|------|
| 1     | Private Cars (PC)                       | ALL           | ALL                                    | PC   |
| 2     | Taxi                                    | ALL           | ALL                                    | TAXI |
| 3     | Light Goods Vehicles (<=2.5t)           | ALL           | ≤ 2.5                                  | LGV3 |
| 4     | Light Goods Vehicles (2.5-3.5t)         | ALL           | 2.5-3.5                                | LGV4 |
| 5     | Light Goods Vehicles (3.5-5.5t)         | ALL           | 3.5-5.5                                | LGV6 |
| 6     | Medium & Heavy Goods Vehicles (5.5-15t) | ALL           | 5.5-15                                 | HGV7 |
| 7     | Medium & Heavy Goods Vehicles (≥15t)    | ALL           | ≥ 15                                   | HGV8 |
| 8     | Public Light Buses                      | ALL           | ALL                                    | PLB  |
| 9     | Private Light Buses (≤ 3.5t)            | ALL           | ≤ 3.5                                  | PV4  |
| 10    | Private Light Buses (>3.5t)             | ALL           | > 3.5                                  | PV5  |

<sup>\*</sup> All: petrol, diesel, or LPG.

# EMFAC-HK Version 4.1 Vehicle Classification Chart (Classes 11-21)

| Index | Vehicle Class<br>Description   | Fuel<br>Type* | Gross<br>Vehicle<br>Weight<br>(tonnes) | Code |
|-------|--------------------------------|---------------|----------------------------------------|------|
| 11    | Non-franchised Buses (<6.4t)   | ALL           | < 6.4                                  | NFB6 |
| 12    | Non-franchised Buses (6.4-15t) | ALL           | 6.4-15                                 | NFB7 |
| 13    | Non-franchised Buses (>15t)    | ALL           | >15                                    | NFB8 |
| 14    | Single Deck Franchised Buses   | ALL           | ALL                                    | FBSD |
| 15    | Double Deck Franchised Buses   | ALL           | ALL                                    | FBDD |
| 16    | Motor Cycles                   | ALL           | ALL                                    | MC   |
| 17    | Placeholder (P1)               |               |                                        | P1   |
| 18    | Placeholder (P2)               |               |                                        | P2   |
| 19    | Placeholder (P3)               |               |                                        | P3   |
| 20    | Placeholder (P4)               |               |                                        | P4   |
| 21    | Placeholder (P5)               |               |                                        | P5   |

## **Technology Groups**

- \* represents vehicles from the same class but have distinct emission control technologies; have similar inuse deterioration rates; and, respond the same to repair.
- \* can represent vehicles whose emissions standards (i.e., pre-Euro, Euro-I) are the same, or those that have specific equipment installed on them (e.g., multi-port fuel injection, three-way catalyst, adaptive fuel controls, etc.) which makes them behave the same.
- Separate technology groups for exhaust and evap emissions

#### **Exhaust Tech Group Indexes (Example Only)**

#### **Diesel Heavy Goods Vehicles with GVW >15 t (HGV8)**

| <b>Vehicle Class</b> | Fuel Type | Vehicle Emission         | Tech Group Index |
|----------------------|-----------|--------------------------|------------------|
| HGV8                 | Diesel    | pre-Euro                 | 153              |
| HGV8                 | Diesel    | pre-Euro DOC Retrofitted | 155              |
| HGV8                 | Diesel    | Euro I                   | 154              |
| HGV8                 | Diesel    | Euro II                  | 157              |
| HGV8                 | Diesel    | Euro III                 | 159              |
| HGV8                 | Diesel    | Euro IV                  | 160              |
| HGV8                 | Diesel    | Euro IV - DPF            | 163              |
| HGV8                 | Diesel    | Euro IV - SCR            | 164              |
| HGV8                 | Diesel    | Euro V                   | 161              |
| HGV8                 | Diesel    | Euro V - DPF             | 165              |
| HGV8                 | Diesel    | Euro V - SCR             | 166              |
| HGV8                 | Diesel    | Euro VI                  | 162              |

#### **Model Years**

- \* model years tell the ages of the vehicles.
- within each vehicle class, each model year is represented by a combination of technology groups.
- \* model estimates emission rates for 1965 to 2040 model years.

#### **Calendar Years**

- \* EMFAC-HK estimates calendar years from 1997 to 2040.
- Only one calendar year/scenario can be run at a time

## Age

- How old a vehicle of a particular model year is relative to the calendar year
- Difference between the calendar year and model year, plus 1

## **Activity**

- \* for each vehicle class and fuel type, these terms are commonly referred to as vehicle activity:
  - \* Vehicle population
  - \* Accrual
  - \* Odometer
  - \* Vehicle Kilometers/Miles Travelled (VKT/VMT)
  - \* Trips

### **Population**

- \* determined through an analysis of traffic census data. These data are used in developing vehicle age matrices for the base year, as well as forecast/backcast of population to other calendar years
  - \* EMFAC-HK v4.1: 2002-2016 base years

#### Accrual

- \* Vehicle accrual is the annual mileage a vehicle travelled against its age.
- \* Newer vehicles driven more than older ones

### Vehicle Kilometers Traveled (VKT)

- represents total distance travelled on a weekday
- Estimate VKT based on vehicle population and vehicle accrual
- Modify the accrual rates to match the VKT estimates by vehicle class.

### Starts/Trips

- Number of trips or starts is the number of times a vehicle is started for separate trips made per weekday
- \* Emissions of diesel vehicles fitted with SCR and petrol and LPG vehicles are affected by starts/trips.

#### **Basic Data for a Scenario**

- Geographic area (Hong Kong)
- \* Forecast Year (i.e., "Calendar" Year)
- Alternate Baseline Year (2013 or newer)
- \* Title
- Month or Season
- Model Years Included in calculation
- \* Emissions mode (Burden or EMFAC)
- \* Output formats, and
- Output options (frequency, pollutant form)

#### **Mode Comparison**

#### **BURDEN**

- \* Emissions estimates
- \* total emissions in tonnes per period (weekday or hour) for each pollutant, by vehicle class and the total vehicle fleet
- emission factors--corrected for ambient conditions and speeds--combined with vehicle activity to calculate emissions in tonnes per day

#### **EMFAC**

- Emission Factors (EFs) in terms of grams of pollutant emitted per vehicle activity
- \* Calculates matrix of EFs at specific values of T (0°C to 40°C), RH (0% to 100%), and vehicle speed (10 kph to 130 kph) for each vehicle class/technology combination.

#### **BURDEN Mode Output Options**

\* Detailed Planning Inventory (CSV) - a comma-separated file (with a "csv" extension) which can be read by any spreadsheet program e.g. MS Excel. It contains emission estimates for all 16vehicle classes by fuel type. It is recommended that new users select this as an output option to get an idea of the entire emissions.

### **BURDEN Mode Output (cont.)**

\* MVEI7G (BCD) File - This is also a commaseparated file but it has a "bcd" extension. This file is in the same format. This file has the same information as "Detailed Planning Inventory" but in columnar format, which makes it suitable for sorting using spreadsheets.

### **BURDEN Mode Output (cont.)**

\* Weighted Model Year Activity Output (\*.WT)
Gives the activity components like
population, VKT, Trips, Accrual Rate and
Odometer by model year.

### **BURDEN Mode Output (cont.)**

\* Detailed Outputs (BDN) File - gives the Burden output for each vehicle class and emissions process by Model year and Tech groups in a columnar, record-style format, which makes it suitable for importing to a spreadsheet or database. This format is useful for the air pollution modeling and planning communities.

## **Burden Report Output Types**

| Report Type                                 | Description                                                                                     | Format              | File Extension |
|---------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------|----------------|
| Detailed Planning<br>Inventory (CSV)        | Contains emission estimates for all 16-vehicle classes by fuel type.                            | comma-<br>separated | *.CSV          |
| MVEI7G (BCD) File                           | Emissions Database for Planning.                                                                | comma-<br>separated | *.BCD.CSV      |
| Detailed Outputs<br>(BDN)                   | Gives the Burden output by Model year, Tech groups and Speed bin.                               | comma-<br>separated | *.BDN.CSV      |
| Weighted Model Year<br>Activity Output (WT) | Gives the Activity components like population, VKT, trips, accrual, and odometer by model year. | No delimiters       | *.WT           |

#### **Detailed Planning Inventory (\*.csv)**

| -          |            | SV  | -        | _           |              |            | _           |           |            |          |         |         |         |         |   |         |         | _       |         | 33.70 | = >     |
|------------|------------|-----|----------|-------------|--------------|------------|-------------|-----------|------------|----------|---------|---------|---------|---------|---|---------|---------|---------|---------|-------|---------|
| A          | В          |     | С        | D           | E            | F          | G           | Н         | l.         | J        | K       | L       | M       | N       | 0 | Р       | Q       | R       | S       | T     | U       |
|            |            |     |          |             | efault Title |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            |            |     |          | /3.0.9.beta | 151008 Sp    | : Beta Ver | sion Pr: Em | fac-HK HK | 3.0.9.beta |          |         |         |         |         |   |         |         |         |         |       |         |
|            | te: 2015/1 |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            |            |     | odel yea | rs in the r | ange 1986    | to 2030 se | lected      |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            | : Annua    |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            | : Hong Ko  | _   |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            | t:HKI/M    |     |          | m in effe   | ct           |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            | ons: Tonne |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            | ••••       |     |          |             |              |            |             |           |            | •••••    |         |         |         |         |   |         |         | •••••   | ••••••  | ••••• | •••••   |
| 0          | PC-NCA     |     |          |             |              | PC-TOT     |             |           | 1          | TAXI-LPG |         |         |         |         |   |         |         |         |         |       |         |
| 1 Vehicle  | es         |     | 790870   | 277         | 0            |            | 0           | 0         | -          |          | 18204   | 0       | 2       | 1003    | 0 | 1005    | 0       | 1058    | 53842   | 0     |         |
| 2 VKT      |            |     | 2087438  | 5777        |              | 22093266   | 0           | 0         |            |          | 7670384 | 14      | 96      | 74300   | 0 | 74410   | 7       | 67137   | 3550588 | 0     |         |
| 3 Trips    |            | 4 1 | 1186420  | 416         | 0            | 1186840    | 0           | 0         | 0          | 72821    | 72821   | 1       | 7       | 4013    | 0 | 4021    | 1       | 4231    | 215391  | 0     | 219622  |
|            | issions    |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
| 5 Run Ex   |            |     | 0.06256  | 0.0004      | 0            | 0.0000     | 0           | 0         |            |          | 0.16034 | 0.00002 | 0.00007 | 0.00114 | 0 | 0.00123 | 0.00001 | 0.00285 | 0.05605 | 0     |         |
| 6 Start Ex |            |     | 0.05779  | 0           | 0            | 0.05783    | 0           | 0         | 0          |          | 0.03817 | 0.00002 | 0.00003 | 0       | 0 | 0.00005 | 0.00001 | 0.00116 | 0       | 0     |         |
| 7          |            |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
| 8          |            |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
| 9 Diurna   |            |     | 0.30319  | 0           | 0            |            | 0           | 0         |            |          |         |         | 0       | 0       |   | 0.00001 | 0       | 0.00067 | 0       | 0     |         |
| 0 Hot So   |            |     | 0.19507  | 0           | 0            | 0.19509    | 0           | 0         |            |          |         | 0.00001 | 0.00001 | 0       | 0 | 0.00002 | 0       | 0.00137 | 0       | 0     |         |
| 1 Runnir   |            |     | 0.30161  | 0           | 0            |            | 0           | 0         |            |          |         | 0.00004 | 0.00002 | 0       |   | 0.00007 | 0.00001 | 0.00436 | 0       | 0     |         |
| 2 Restin   | 0.000      | 04  | 0.51523  | 0           | 0            | 0.51527    | 0           | 0         | 0          | 0        | 0       | 0.00001 | 0       | 0       | 0 | 0.00001 | 0       | 0.00105 | 0       | 0     | 0.00105 |
| 3          |            |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            | Monoxide   |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
| 5 Run Ex   |            |     | 3.85113  | 0.00243     | 0            | 3.85477    | 0           | 0         |            | 10.43512 |         | 0.00014 | 0.00112 | 0.01836 | 0 | 0.01961 | 0.00006 | 0.17308 | 0.8737  | 0     |         |
| 6 Start Ex | 0.000      | 21  | 1.34459  | 0           | 0            | 1.3448     | 0           | 0         | 0          | 0.18225  | 0.18225 | 0.00004 | 0.00025 | 0       | 0 | 0.0003  | 0.00002 | 0.03595 | 0       | 0     | 0.03597 |
| 7          |            |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            | of Nitroge |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
| 9 Run Ex   |            |     | 0.36871  | 0.00086     | 0            |            | 0           | 0         | -          | TOTAL ST | 2.0571  | 0.00006 | 0.00007 | 0.02986 | 0 | 0.02999 | 0.00003 | 0.00139 | 1.50595 | 0     |         |
| 0 Start Ex |            |     | 0.01248  | 0           | 0            | 0.01251    | 0           | 0         |            |          | 0.05446 | 0       |         | 0       |   | 0.00003 | 0       | 0.00057 | 0       | 0     |         |
| 1          |            |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
|            | Dioxide E  |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
| 3 Run Ex   |            |     | 4.84702  | 0.00124     | 0            |            | 0           | 0         |            |          | 1.78523 | 0       |         | 0.02227 | 0 | 0.02229 | 0       | 0.01223 | 1.06443 | 0     |         |
| 4 Start Ex |            | 0   | 0.08693  | 0           | 0            | 0.08694    | 0           | 0         | 0          | 0.00572  | 0.00572 | 0       | 0       | 0       | 0 | 0       | 0       | 0.00031 | 0       | 0     | 0.00031 |
| 5          |            |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
| 6 PM10 E   |            |     |          |             |              |            |             |           |            |          |         |         |         |         |   |         |         |         |         |       |         |
| 7 Run Ex   | 1          | 0   | 0.06703  | 0.00008     | 0            | 0.06712    | 0           | 0         | 0          | 0        | 0       | 0       | 0       | 0.00023 | 0 | 0.00023 | 0       | 0.00024 | 0.01329 | 0     | 0.01353 |

## MVEI7G CSV file (\*.bcd.csv)

| 4 | А     | В        | С       | D      | E            | F      | G          | Н   | 1        | J        | K        | L        | M        | N     |
|---|-------|----------|---------|--------|--------------|--------|------------|-----|----------|----------|----------|----------|----------|-------|
|   | CALYR | START MY | END MYR | REGION | SAR          | STARTS | POPULATION | VKT | VEH TYPE | VEH TECH | POLLUTAN | PROCESS  | EMISSION | BASIS |
|   | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO       | Run Exh  | 0.001218 | Day   |
|   | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | NOx      | Run Exh  | 0.000157 | Day   |
|   | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | PM       | Run Exh  | 0.000001 | Day   |
|   | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | VOC      | Run Exh  | 0.00009  | Day   |
| ; | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO2      | Run Exh  | 0.011113 | Day   |
|   | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO       | Start Ex | 0.000213 | Day   |
|   | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | NOx      | Start Ex | 0.00003  | Day   |
|   | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | PM       | Start Ex | 0        | Day   |
| 0 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | VOC      | Start Ex | 0.000038 | Day   |
| 1 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO2      | Start Ex | 0.000884 | Day   |
| 2 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO       | Hot Soak | 0        | Day   |
| 3 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | NOx      | Hot Soak | 0        | Day   |
| 4 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | PM       | Hot Soak | 0        | Day   |
| 5 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | VOC      | Hot Soak | 0.00002  | Day   |
| 6 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO2      | Hot Soak | 0        | Day   |
| 7 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO       | Running  | 0        | Day   |
| 8 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | NOx      | Running  | 0        | Day   |
| 9 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | PM       | Running  | 0        | Day   |
| 0 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | VOC      | Running  | 0.000094 | Day   |
| 1 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO2      | Running  | 0        | Day   |
| 2 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO       | PD Rest  | 0        | Day   |
| 3 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | NOx      | PD Rest  | 0        | Day   |
| 4 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | PM       | PD Rest  | 0        | Day   |
| 5 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | VOC      | PD Rest  | 0.000036 | Day   |
| 6 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO2      | PD Rest  | 0        | Day   |
| 7 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO       | MD Rest  | 0        | Day   |
| 8 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | NOx      | MD Rest  | 0        | Day   |
| 9 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | PM       | MD Rest  | 0        | Day   |
| 0 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | VOC      | MD Rest  | 0.000002 | Day   |
| 1 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO2      | MD Rest  | 0        | Day   |
| 2 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO       | Resting  | 0        | Day   |
| 3 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | NOx      | Resting  | 0        | Day   |
| 4 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | PM       | Resting  | 0        | Day   |
| 5 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | VOC      | Resting  | 0.000039 | Day   |
| 6 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO2      | Resting  | 0        | Day   |
| 7 | 2030  | 1986     | 2030    | SAR Av | era Hong Kon | 4      | 3          | 51  | PC       | NCAT     | CO       | PD Diurn | 0        | Day   |

# Weighted Model Year Activity Output (\*.WT)

| 4        | HK_2030_Burden.wt  | ×    |                  |                      |                  |                                         |              |
|----------|--------------------|------|------------------|----------------------|------------------|-----------------------------------------|--------------|
|          | 0,,,,,,,,1,0,,,,,, | 20   | . 3,0, 4,1       | ٥,,,,,,,,,5,0,,,,,,, | . 6,0 7,0        | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 9.0          |
| 2        | Calendar Year:     | 2030 |                  |                      |                  |                                         |              |
| 3        | - Model Years:     |      |                  |                      |                  |                                         |              |
| 4        |                    |      |                  | -2030 -Default -Tit  | le               |                                         |              |
| 5        | Area:              |      | it illindar orr  | 2000 Delaulo 110.    |                  |                                         |              |
| 6        | SubArea:           |      |                  |                      |                  |                                         |              |
| 7        |                    | _    | 09-beta-V3.0     | .9.beta -151008 -Sp  | : Beta Version   | Pr: Emfac-HK-H                          | IK3.0.9.beta |
| 8        | Run Date:          |      |                  | -                    |                  |                                         |              |
| 9        |                    |      |                  |                      |                  |                                         |              |
| 10       | SCEN - VEH         |      | -VEH -POP        |                      | TRIPS            | ACCRUAL                                 | ODOMETER     |
| 11       | -YEARCLS -TECH -   | -MYR | (number) · · · · | ···(km/day)·····     | (per day) ····() | cm/yr/veh) · · · ·                      | (km/veh)     |
| 12       |                    |      |                  |                      |                  |                                         |              |
| 13       | -2030 1 -NCAT -:   | 1986 |                  | 3.31                 |                  | 6198.                                   | 352005.      |
| 14       | -2030 1 -NCAT -:   | 1987 | 0                | 3.43                 |                  | 6228.                                   | 345808.      |
| 15       |                    |      |                  | 5.28                 |                  |                                         |              |
| 16       |                    |      |                  | 8.41                 |                  |                                         |              |
| 17       |                    |      |                  | 11.29                |                  |                                         |              |
| 18       |                    |      |                  | 18.92                |                  |                                         |              |
| 19       |                    |      |                  | 0.00                 |                  |                                         |              |
| 20       |                    |      |                  | 0.00                 |                  |                                         |              |
| 21       |                    |      |                  | 0.00                 |                  |                                         |              |
| 22       |                    |      |                  |                      |                  |                                         |              |
| 23       |                    |      |                  | 0.00                 |                  |                                         |              |
| 24       |                    |      |                  |                      |                  |                                         |              |
| 25       |                    |      |                  | 0.00                 |                  |                                         |              |
| 26       |                    |      |                  | 0.00                 |                  |                                         |              |
| 27       |                    |      |                  | 0.00                 |                  |                                         |              |
| 28       |                    |      |                  | 0 . 00               |                  |                                         |              |
| 29       |                    |      |                  |                      |                  |                                         |              |
| 30<br>31 |                    |      |                  | 0.00                 |                  |                                         |              |
| 32       |                    |      |                  | 0.00                 |                  |                                         |              |
| 33       |                    |      |                  | 0 . 00               |                  |                                         |              |
| 34       |                    |      |                  | 0.00                 |                  |                                         |              |
| 35       |                    |      |                  | 0 . 00               |                  |                                         |              |
| 36       |                    |      |                  | 0 . 00               |                  |                                         |              |
| 37       |                    |      |                  | 0 . 00               |                  |                                         |              |
| 38       |                    |      |                  | 0 . 00               |                  |                                         |              |
| 39       |                    |      |                  | 0 . 00               |                  |                                         |              |
| 40       |                    |      |                  | 0.00                 |                  |                                         |              |
| 41       | -2030 1 -NCAT -:   | 2014 | 0                | 0 . 00               |                  | 0                                       | 0 .          |

## **Detailed Output File (\*.BDN.CSV)**

| HK_2030_Bt     | ırden.bdn.csv |           |              |            |              |            |           |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
|----------------|---------------|-----------|--------------|------------|--------------|------------|-----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
| A              | В             | C         | D            | E          | F            | G          | H         | 1          | 1        | K        | L        | M        | N        | 0        | P        | Q        | R        | S        | T        | U        | V        | W        | X        | Υ       |
| 1 #Title :     | Hong Kong     | SAR Annu  | ial CYr 2030 | Default    | Title        |            |           |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 2 # Version :  | Emfac-HK V    | 3.09 beta | V3.0.9.bet   | a 151008 S | Sp: Beta Ver | sion Pr: E | mfac-HK H | 3.0.9.beta |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 3 # Run Date   | : 11/10/20    | 15 11:18  | 1            |            |              |            |           |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 4 # Scen Year  | r: 2030 All r | nodel yea | ars in the r | ange 1986  | 5 to 2030 se | lected     |           |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 5 # Season     | Annual        |           |              |            |              |            |           |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 6 # Area :     | Hong Kong     |           |              |            |              |            |           |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 7 # I/M Stat : | HK I/M CY20   | 013+ prog | ram in effe  | ect        |              |            |           |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 8 # Emission   | s: Tonnes Per | Period    |              |            |              |            |           |            |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
| 9 RecType      | ScenNum       | CalYr     | Area         | Veh        | MdIYr        | Tech       | Period    | Pop        | VKT      | Trips    | VOC_RUNE | VOC_STRE | VOC_DIUR | VOC_HTSK | VOC_RUNI | VOC_REST | CO_RUNE  | CO_STREX | NOx_RUNE | NOx_STRE | CO2_RUNE | CO2_STRE | PM10_RUN | PM10_S  |
| 10 MY          | 1             | 2030      | Hong Kor     | I PC       | 1985         | GAS        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 11 MY          | 1             | 2030      | Hong Kor     | I PC       | 1985         | DSL        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 12 MY          | 1             | 2030      | Hong Kor     | I PC       | 1985         | LPG        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 13 MY          | 1             | 2030      | Hong Kor     | PC PC      | 1985         | TOT        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 14 MY          | 1             | 2030      | Hong Kor     | PC PC      | 1986         | GAS        | Day       | 0.19513    | 3.313592 | 0.292725 | 5.93E-06 | 2.57E-06 | 2.22E-06 | 1.36E-06 | 6.26E-06 | 2.58E-06 | 7.98E-05 | 1.42E-05 | 1.02E-05 | 2.02E-06 | 7.27E-04 | 5.89E-05 | 6.91E-08 | 3.82E-0 |
| 15 MY          | 1             | 2030      | Hong Kor     | I PC       | 1986         | DSL        | Day       | 4.01E-02   | 0.68047  | 6.01E-02 | 3.96E-07 | 0        | 0        | 0        | 0        | 0        | 8.99E-07 | 0        | 8.25E-07 | 0        | 1.63E-04 | 0        | 2.20E-07 |         |
| 16 MY          | 1             | 2030      | Hong Kor     | I PC       | 1986         | LPG        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 17 MY          | 1             | 2030      | Hong Kor     | I PC       | 1986         | TOT        | Day       | 0.235202   | 3.994063 | 0.352838 | 6.32E-06 | 2.57E-06 | 2.22E-06 | 1.36E-06 | 6.26E-06 | 2.58E-06 | 8.07E-05 | 1.42E-05 | 1.11E-05 | 2.02E-06 | 8.90E-04 | 5.89E-05 | 2.89E-07 | 3.82E-0 |
| 18 MY          | 1             | 2030      | Hong Kor     | I PC       | 1987         | GAS        | Day       | 0.20096    | 3.429411 | 0.301471 | 6.12E-06 | 2.64E-06 | 2.28E-06 | 1.40E-06 | 6.44E-06 | 2.66E-06 | 8.25E-05 | 1.46E-05 | 1.06E-05 | 2.08E-06 | 7.53E-04 | 6.06E-05 | 7.15E-08 | 3.93E-0 |
| 19 MY          | 1             | 2030      | Hong Kor     | I PC       | 1987         | DSL        | Day       | 4.26E-02   | 0.72657  | 6.39E-02 | 3.72E-07 | 0        | 0        | 0        | 0        | 0        | 8.44E-07 | 0        | 8.81E-07 | 0        | 1.74E-04 | 0        | 2.33E-07 |         |
| 20 MY          | 1             | 2030      | Hong Kor     | PC PC      | 1987         | LPG        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 21 MY          | 1             | 2030      | Hong Kon     | PC         | 1987         | TOT        | Day       | 0.243537   | 4.155981 | 0.365341 | 6.49E-06 | 2.64E-06 | 2.28E-06 | 1.40E-06 | 6.44E-06 | 2.66E-06 | 8.34E-05 | 1.46E-05 | 1.15E-05 | 2.08E-06 | 9.27E-04 | 6.06E-05 | 3.05E-07 | 3.93E-0 |
| 22 MY          | 1             | 2030      | Hong Kon     | PC         | 1988         | GAS        | Day       | 0.307875   | 5.279747 | 0.461859 | 9.40E-06 | 4.03E-06 | 3.50E-06 | 2.15E-06 | 9.88E-06 | 4.08E-06 | 1.27E-04 | 2.23E-05 | 1.63E-05 | 3.19E-06 | 1.16E-03 | 9.29E-05 | 1.10E-07 | 6.03E-0 |
| 23 MY          | 1             | 2030      | Hong Kon     | PC         | 1988         | DSL        | Day       | 7.87E-02   | 1.349935 | 0.118089 | 7.20E-07 | 0        | 0        | 0        | 0        | 0        | 1.64E-06 | 0        | 1.64E-06 | 0        | 3.24E-04 | 0        | 4.30E-07 |         |
| 24 MY          | 1             | 2030      | Hong Kon     | PC         | 1988         | LPG        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 25 MY          | 1             | 2030      | Hong Kon     | PC         | 1988         | TOT        | Day       | 0.386594   | 6.629683 | 0.579948 | 1.01E-05 | 4.03E-06 | 3.50E-06 | 2.15E-06 | 9.88E-06 | 4.08E-06 | 1.29E-04 | 2.23E-05 | 1.80E-05 | 3.19E-06 | 1.48E-03 | 9.29E-05 | 5.41E-07 | 6.03E-0 |
| 26 MY          | 1             | 2030      | Hong Kor     | PC         | 1989         | GAS        | Day       | 0.488049   | 8.410387 | 0.732147 | 1.49E-05 | 6.37E-06 | 5.54E-06 | 3.41E-06 | 1.57E-05 | 6.46E-06 | 2.02E-04 | 3.54E-05 | 2.60E-05 | 5.05E-06 | 1.85E-03 | 1.47E-04 | 1.75E-07 | 9.55E-  |
| 27 MY          | 1             | 2030      | Hong Kor     | PC         | 1989         | DSL        | Day       | 0.135667   | 2.337905 | 0.203521 | 1.23E-06 | 0        | 0        | 0        | 0        | 0        | 2.80E-06 | 0        | 2.84E-06 | 0        | 5.61E-04 | 0        | 7.41E-07 |         |
| 28 MY          | 1             |           | Hong Kor     |            | 1989         | LPG        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 29 MY          | 1             | 2030      | Hong Kor     | I PC       | 1989         | TOT        | Day       | 0.623716   | 10.74829 | 0.935668 | 1.62E-05 | 6.37E-06 | 5.54E-06 | 3.41E-06 | 1.57E-05 | 6.46E-06 | 2.05E-04 | 3.54E-05 | 2.88E-05 | 5.05E-06 | 2.41E-03 | 1.47E-04 | 9.16E-07 | 9.55E-0 |
| 30 MY          | 1             | 2030      | Hong Kor     | PC         | 1990         | GAS        | Day       | 0.6516     | 11.28634 | 0.977497 | 2.00E-05 | 8.49E-06 | 7.40E-06 | 4.55E-06 | 2.09E-05 | 8.63E-06 | 2.71E-04 | 4.73E-05 | 3.49E-05 | 6.74E-06 | 2.48E-03 | 1.97E-04 | 2.35E-07 | 1.28E-0 |
| 31 MY          | 1             | 2030      | Hong Kor     | PC         | 1990         | DSL        | Day       | 0.180117   | 3.119802 | 0.270203 | 1.64E-06 | 0        | 0        | 0        | 0        | 0        | 3.73E-06 | 0        | 3.78E-06 | 0        | 7.48E-04 | 0        | 9.83E-07 |         |
| 32 MY          | 1             | 2030      | Hong Kor     | PC         | 1990         | LPG        | Day       | 0          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |
| 33 MY          | 1             | 2030      | Hong Kor     | PC PC      | 1990         | тот        | Day       | 0.831717   | 14.40614 | 1.2477   | 2.16E-05 | 8.49E-06 | 7.40E-06 | 4.55E-06 | 2.09E-05 | 8.63E-06 | 2.75E-04 | 4.73E-05 | 3.87E-05 | 6.74E-06 | 3.22E-03 | 1.97E-04 | 1.22E-06 | 1.28E-0 |
| 34 MY          | 1             | 2030      | Hong Kor     | I PC       | 1991         | GAS        | Day       | 1.086558   | 18.92076 | 1.629999 | 3.34E-05 | 1.41E-05 | 1.23E-05 | 7.59E-06 | 3.49E-05 | 1.44E-05 | 4.55E-04 | 7.88E-05 | 5.85E-05 | 1.12E-05 | 4.15E-03 | 3.28E-04 | 3.94E-07 | 2.13E-0 |
| 35 MY          | 1             |           | Hong Kor     | Transit .  | 1991         | DSL        | Day       | 0.235271   | 4.096891 | 0.352942 | 2.09E-06 | 0        | 0        | 0        | 0        | 0        | 4.74E-06 | 0        | 4.97E-06 | 0        | 9.82E-04 | 0        | 1.28E-06 |         |
| 36 MY          | 1             |           | Hong Kor     | 1000       |              | LPG        | Day       | 0          |          |          | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |         |

#### **EMFAC Mode Output Options**

\* Impact Rate Detail (RTL). This file generates detailed emission factors for each vehicle class and technology group by speed bin. 9 different emission factor tables are provided, described in next slide. This file has an "RTL" extension, but is in a CSV format. Hence, any spreadsheet program can read this file. It is recommended that new users output this file to get a feel for the type of information generated in EMFAC mode.

#### **EMFAC Mode Output Options (cont.)**

- Impact Rate Detail (RTL). The tables contained in the RTL file include:
  - \* Table 1: Running Exhaust Emissions (grams/km)
  - \* Table 2: Starting Emissions (grams/trip)
  - \* Table 4: Hot Soak Emissions (grams/trip)
  - \* Table 5a: Partial Day Diurnal Loss Emissions (grams/hour)
  - \* Table 5b: Multi-Day Diurnal Loss Emissions (grams/hour)
  - \* Table 6a: Partial Day Resting Loss Emissions (grams/hour)
  - Table 6b: Multi-Day Resting Loss Emissions (grams/hour)
  - \* Table 7: Estimated Travel Fractions
  - \* Table 8: Evaporative Running Loss Emissions (grams/minute)

## **EMFAC** Report Output Types

| Report Type              | Description                                                                                                                                      | Format              | File Extension |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| Impact Rate Detail (RTL) | generates detailed<br>emission factors by<br>activity (i.e., g/km,<br>g/trip) for each<br>vehicle class and<br>technology group by<br>speed bin. | comma-<br>separated | *.RTL.CSV      |

# EMFAC Impact Rate Detail Format (\*.RTL)

|     | HK_2030_E | MFAC.rtl.                                | SV C                      |            |                             |             |            | 1 8          | 11 42        |     |           |        |           |        |        |      |     |        |        |        |        | -    |        |        | 144  |    | 14  |
|-----|-----------|------------------------------------------|---------------------------|------------|-----------------------------|-------------|------------|--------------|--------------|-----|-----------|--------|-----------|--------|--------|------|-----|--------|--------|--------|--------|------|--------|--------|------|----|-----|
| 4 - | A         | В                                        | C                         | D          | E                           | F           | G          | Н            | - 1          |     | J         | K      | L         | M      | N      | 0    |     | Р      | Q      | R      | S      | T    | U      | V      | W    | -  | Х   |
|     |           |                                          |                           |            | Default Titl<br>a 151008 Si |             |            |              | 1V2 0 0 b -  |     |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
|     |           |                                          | vs.09 beta<br>10 12:17:33 |            | a 151009 5                  | o. beta ver | Sion Pr. I | mrac-nk r    | 1K3.U.9.DE1  | la  |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
| -   |           | and the second section of the section of |                           |            | range 1000                  | *= 2020 ==  | lastad     |              |              | -   |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
|     |           |                                          | i model ye                | als in the | range 1986                  | 10 2030 56  | rected     |              |              | -   |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
|     | Season :  |                                          |                           |            |                             |             |            |              |              | -   |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
| 1   |           | long Kong                                |                           |            |                             |             |            |              |              |     |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
|     | Year:     | 2030                                     |                           | Model      |                             | 1986        |            |              | 30 Inclus    |     |           |        | Annual    |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
| -   |           |                                          |                           |            | : V3.0.9.bet                |             |            |              |              |     |           |        | Attitual  |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
| )   | Cilliat-i | U 60.64 VI                               | eta ciiiissi              | On Factors | . V3.U.3.DE                 | a 131000 3  | p. beta v  | eision Pi.   | CIIII ac-rik | ПКЭ | .U.9.DELA |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
| -   | SAR Avera |                                          |                           |            |                             | Hong I      | Vona       |              |              | -   |           |        | SAR Avera |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
| 2   | UNA AVEIG | 5-                                       |                           |            |                             | Tiong       | Kong       |              |              |     |           |        | JAN AVEIG | 50     |        |      |     |        |        |        |        |      |        |        |      | -  |     |
|     |           |                                          |                           |            | Table 1:                    | Dunning F   | vhaust E   | nissions (   | arame/bm     | 1   |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
|     |           |                                          |                           |            | Table 1.                    | Kullillig L | AllauSt Li | 1115510115 ( | grains/kin   | 1   |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
| -   | Dollutant | Name: Ve                                 | latile Org (              | nde        | Temperat                    | uro: 25C    | Dolative   | Humidity     | - 400/       | -   |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
| ,   | ronutant  | Name. vo                                 | attie Oig C               | pus        | Temperat                    | ule. 250    | Kelative   | numunty      | . 4070       |     |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      | -  |     |
|     | Speed     | PC                                       | PC                        | PC         | PC                          | PC          | TAXI       | TAXI         | TAXI         | -   | TAXI      | TAXI   | LGV3      | LGV3   | LGV3   | LGV3 |     | LGV3   | LGV4   | LGV4   | LGV4   | LGV4 | LGV4   | LGV6   | LGV6 | 17 | GV6 |
| 3   |           | NCAT                                     | CAT                       | DSL        | LPG                         | ALL         | NCAT       | CAT          | DSL          |     |           | ALL    | NCAT      | CAT    | DSL    | LPG  |     | ALL    |        | CAT    | DSL    | LPG  | ALL    | NCAT   | CAT  |    | SL  |
| 9   | any in    | 110711                                   | 0/11                      | DOL        |                             | FILE        | 140711     | 0711         | DOL          | ď   |           | TILL   | 110711    | O/II   | DOL    |      | - 1 | rice   | 110711 | 0711   | DOL    | LI C | FILE   | 140711 | O/11 |    | -   |
| )   | 10        | 4.1273                                   | 0.0081                    | 0.1724     | . 0                         | 0.0082      |            | 0            | 0            | 0   | 0.0317    | 0.0317 | 2.3043    | 2.6258 | 0.0306 |      | 0   | 0.0344 | 2.2355 | 0.0647 | 0.0316 |      | 0.0322 |        | 0    | 0  | 0.  |
|     | 20        |                                          | 0.0052                    |            |                             |             |            | 0            | 0            | 0   | 0.023     | 0.023  | 2.0723    | 2.5913 | 0.0236 |      | 0   | 0.0273 | 1.9492 | 0.0636 | 0.0243 |      | 0.025  |        | 0    | 0  | 0.  |
|     | 30        |                                          |                           |            |                             |             |            | 0            | 0            | 0   | 0.0188    | 0.0188 | 1.8835    |        |        |      | 0   | 0.0225 | 1.7162 |        | 0.0194 |      | 0.0202 |        | 0    | 0  | 0.  |
|     | 40        |                                          | 0.0028                    |            |                             |             |            | 0            | 0            | 0   | 0.0165    | 0.0165 | 1.7379    |        |        |      | 0   | 0.0193 | 1.5365 |        | 0.0161 |      | 0.017  |        | 0    | 0  | 0.  |
|     | 50        | 1.506                                    | 0.0023                    | 0.0661     | 0                           | 0.0023      |            | 0            | 0            | 0   | 0.0152    | 0.0152 | 1.6354    | 2.5808 | 0.0134 |      | 0   | 0.017  | 1.4102 | 0.0632 | 0.0138 |      | 0.0147 |        | 0    | 0  | 0.  |
|     | 60        | 1.3747                                   | 0.002                     | 0.0566     | 0                           | 0.0021      |            | 0            | 0            | 0   | 0.0145    | 0.0145 | 1.5761    | 2.5772 | 0.0119 |      | 0   | 0.0155 | 1.3371 | 0.0632 | 0.0122 |      | 0.0132 |        | 0    | 0  | 0.  |
|     | 70        | 1.3241                                   | 0.0019                    | 0.0501     | . 0                         | 0.0019      |            | 0            | 0            | 0   | 0.0142    | 0.0142 | 1.56      | 2.5734 | 0.0108 |      | 0   | 0.0144 | 1.3172 | 0.0631 | 0.0111 |      | 0.0121 |        | 0    | 0  | 0.  |
| N   | 80        | 1.343                                    | 0.0019                    | 0.046      | 0                           | 0.0019      |            | 0            | 0            | 0   | 0.0141    | 0.0141 | 1.587     | 2.5714 | 0.0102 |      | 0   | 0.0138 | 1.3505 | 0.063  | 0.0104 |      | 0.0114 |        | 0    | 0  | 0.  |
|     | 90        | 1.4357                                   | 0.002                     | 0.0436     | 0                           |             |            | 0            | 0            | 0   | 0.0143    | 0.0143 | 1.6572    | 2.5735 |        |      | 0   | 0.0134 | 1.437  | 0.063  | 0.0101 |      | 0.011  |        | 0    | 0  | 0.  |
|     | 100       | 1.6231                                   | 0.0021                    | 0.0428     | 0                           | 0.0021      |            | 0            | 0            | 0   | 0.0148    | 0.0148 | 1.7705    | 2.5935 | 0.0097 |      | 0   | 0.0133 | 1.5769 | 0.0632 | 0.0099 |      | 0.0109 |        | 0    | 0  | 0.  |
|     | 110       | 1.7527                                   | 0.0023                    | 0.0429     | 0                           | 0.0023      |            | 0            | 0            | 0   | 0.0151    | 0.0151 | 1.8373    | 2.638  | 0.0097 |      | 0   | 0.0134 | 1.6592 | 0.0635 | 0.0099 |      | 0.0109 |        | 0    | 0  | -   |
|     | 120       | 1.7527                                   | 0.0023                    | 0.0429     | 0                           | 0.0023      |            | 0            | 0            | 0   | 0.0151    | 0.0151 | 1.8373    | 2.638  | 0.0097 |      | 0   | 0.0134 | 1.6592 | 0.0635 | 0.0099 |      | 0.0109 |        | 0    | 0  | 0   |
|     | 130       | 1.7527                                   | 0.0023                    | 0.0429     | 0                           | 0.0023      |            | 0            | 0            | 0   | 0.0151    | 0.0151 | 1.8373    | 2.638  | 0.0097 |      | 0   | 0.0134 | 1.6592 | 0.0635 | 0.0099 |      | 0.0109 |        | 0    | 0  | 0   |
|     |           |                                          |                           |            |                             |             |            |              |              |     |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      |    |     |
|     |           |                                          |                           |            |                             |             |            |              |              |     |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      |    |     |
| 9   |           | Name: Car                                | bon Mono                  | xide       | Temperat                    | ure: 25C    | Relative   | Humidity     | 40%          |     |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      |    |     |
| 1   | Pollutant | realist. Car                             |                           |            |                             |             |            |              |              |     |           |        |           |        |        |      |     |        |        |        |        |      |        |        |      |    |     |

#### **Other Output Options**

- Output Frequency (BURDEN mode Only)
  - \* Daily (average weekday), or
  - \* hourly (values for all 24-hours, and includes daily total). Note: hourly generates 25 times more output, which can lead to very large output files.
- Output Particulate As...
  - \* User selects either total PM (or TSP),  $PM_{10}$  (or RSP), or  $PM_{2.5}$  (or FSP)
- Output Hydrocarbon As..
  - \* User selects either TOG, THC, VOC, or CH4

#### **EDITING FUNDAMENTAL DATA**

**Exhaust Tech Fractions** 

**Evap Tech Fractions** 

Population (Calendar or Alternate Baseline)

Accrual

**Trips** 

VKT

**RVP** 

**Speed Fractions** 

**Temperature** 

**Relative Humidity** 

## Editing Fundamental Data – Tech / IM

- \* Extra I&M benefits
- \* Exhaust Technology Fraction
  - Apply to model year / model year range
  - Apply to other vehicle classes
  - Technology specific
- \* Evaporative Technology Fractions
  - Petrol vehicles only

#### **Editing Fundamental Data - Activity**

#### ! SEQUENCE of edits

**Edits** applied proportionally

#### \* Population (Alt. Base Year or Calendar Year)

- Edits applied proportionally
- Edits by vehicle, fuel, and age
- Age distributions

#### \* Accrual (defn.) annual distance driven

- Population weighted accrual rates
- Edits by vehicle class, fuel and age

#### \* Trips based on the number of engine on to off events

- Edits by vehicle class, fuel and hour (hourly model!)

#### \* VKT

- Edits by vehicle class, fuel and hour

## Editing Fundamental Data - Profile/Speeds

- \* Reid Vapour Pressure (RVP) (evap emissions for petrol vehicles only)
- Speed Fractions
  - Edits by vehicle class, hour and speed bin
  - Apply changes to this hour / vehicle class
  - Apply to others

# Editing Fundamental Data - Temperature/RH Profiles

- \* Temperature / Relative Humidity (RH)
  - \* Edits by hour
  - \* Modify for range of hours
  - \* Only annual average can be edited via GUI
  - \* Monthly average can be customized via INP file

