Training Exercises

Exercise Setup

Folders for each Exercise

Save input/output to folders for each Exercise

• Exercises require MS Office 2007 or above (Excel).

Exercise Overview

Basic

- 1. Burden mode
- 2. Emfac mode
- 3. Exhaust Technology Group (TG) fraction
- 4. Vehicle Kilometer Travelled (VKT)
- 5. Trips
- 6. Speed fraction
- 7. Relative Humidity

<u>Advanced</u>

- 8. Alternate Base Year
- 9. Bus retirement
- 10. Link example

Basic Exercises

Exercise #1: Daily Emissions Inventory

 This exercise will generate an average daily emissions inventory for Hong Kong at calendar year 2030 using BURDEN output formats

Require 1 scenario for calendar year 2030

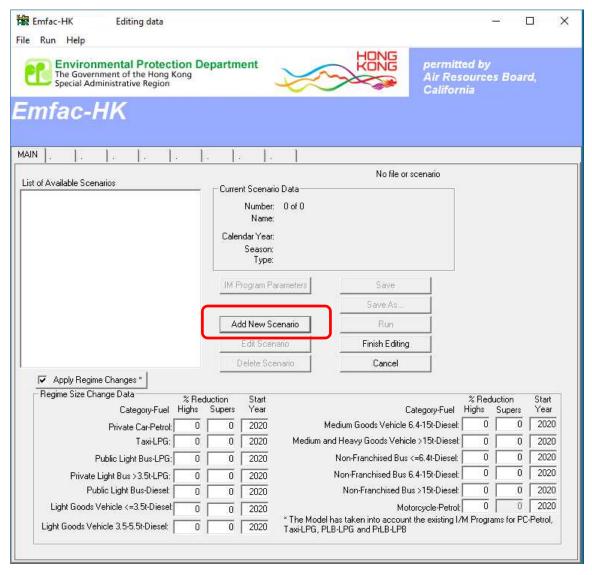
Save input file as: HK_2030_Burden.inp

Exercise #1: Scenario input data

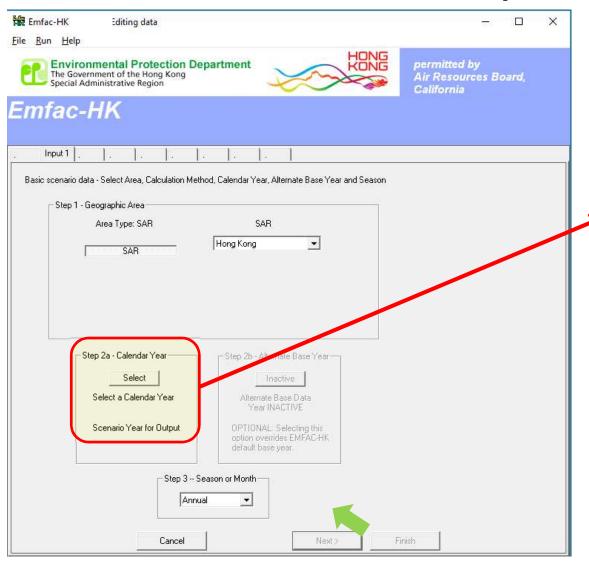
- Geographic Area: Hong Kong SAR (default)
- Calendar Years: 2030
- Alternate Baseline Year: Inactive (default)
- Season: Annual (default)
- Scenario Title for Reports: Default Title
- Model Years: All (default)
- Vehicle Classes: Modify (default)

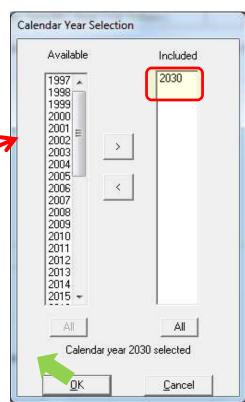
Exercise #1: Scenario input data

– Scenario Type:

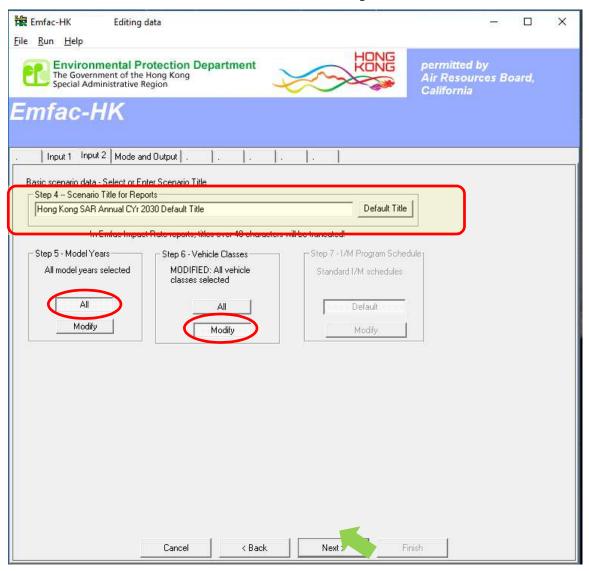

BURDEN – Area Emission Estimates

- Files and Reports:
- 1) Detailed Planning Inventory (CSV) (default)
- 2) Detailed Outputs (BDN)
 - check Model Yrs & Tech Groups
- Output Frequency: Day (default)
- Output Particulate: PM₁₀ PM₂₅(default)
- Output Hydrocarbons: VOC (default)

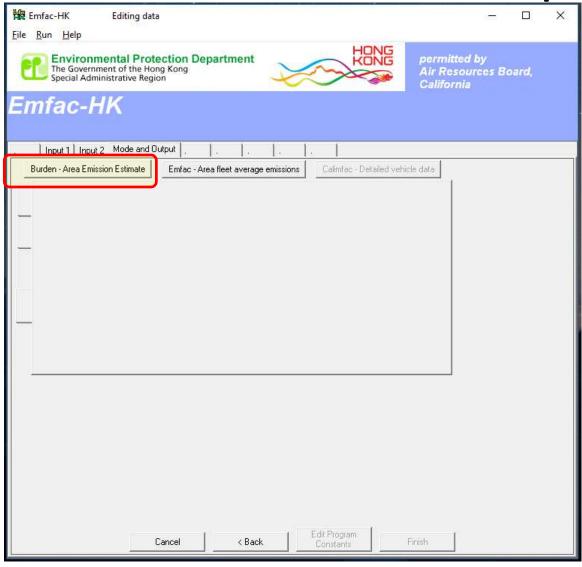

Exercise #1: New File

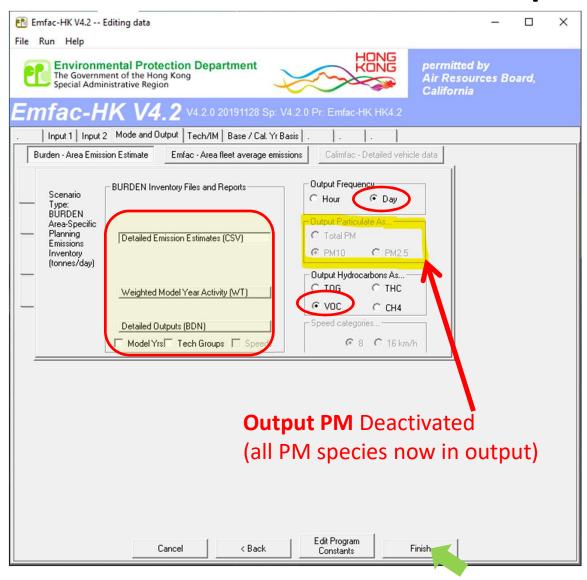


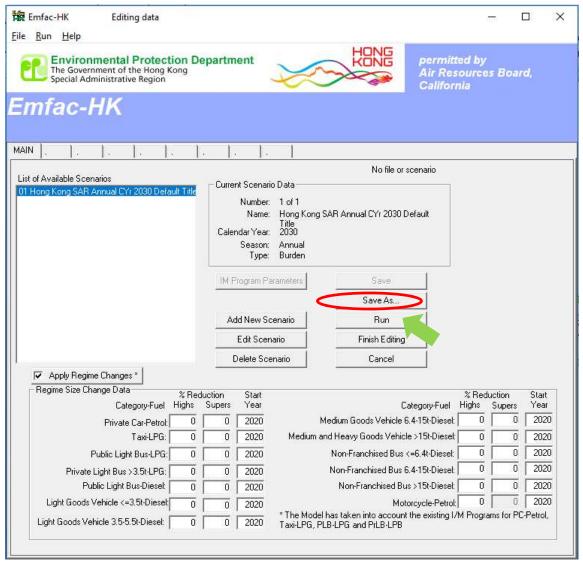
Exercise #1: Add New Scenario



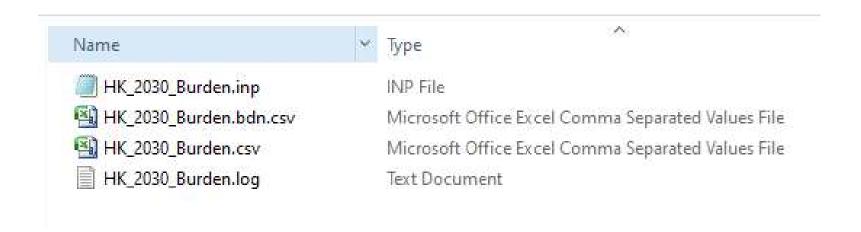
Exercise #1: Input 1 Tab




Exercise #1: Input 2 Tab

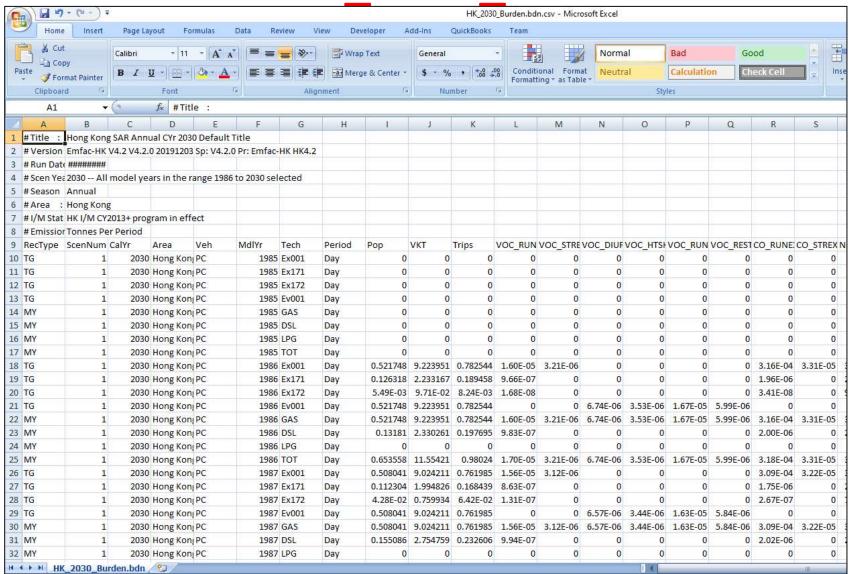

Exercise #1: Mode and Output Tab

Exercise #1: Mode and Output Tab



Exercise #1: Main Screen

Save input file as: HK_2030_Burden.inp and Run


Exercise #1: Output in Folder

Exercise #1: HK_2030_Burden.csv

Exercise #1: HK 2030 Burden.bdn.csv

Exercise #1a: Determine total NOx exhaust emissions from CSV output

- Hints:
 - Open CSV output file by Excel
 - Locate row "Run Exh" and "Start Ex" under "Oxides of Nitrogen Emissions"
 - Locate column "ALL-TOT"

Exercise #1a: Solution

A	BO	BP	BQ	BR	BS	BT	BU	BV	BW	BX	BY	BZ	CA	CB	CC	CD
Title : Hong Kong SAR Annual CYr 2030 Default Title																
Version: Emfac-HK V4.2 V4.2.0 20191203 Sp: V4.2.0 Pr: Emfac-HK HK4.2																
Run Date: 2019/12/18 12:43:19																
Scen Year: 2030 All model years in the range 1986 to 2030 selected																
Season : Annual																
Area : Hong Kong SAR																
I/M Stat : HK I/M CY2013+ program in effect																
Emissions: Tonnes Per Day																
***************************************	r:															
	FBSD-N	CA FBSD-CA	T FBSD-DSL	FBSD-LPG	FBSD-TOT	FBDD-NCA	FBDD-CAT	FBDD-DSL	FBDD-LPG	FBDD-TOT	MC-NCAT	MC-CAT	MC-DSL	MC-LPG	MC-TOT	ALL-TOT
Run Exh		0	0 0.00375	0	0.00375	0	0	0.09196	0	0.09196	0.17944	0.18185	0	0	0.36129	1.3826
Start Ex		0	0 0	0	0	0	0	0	0	0	0.0781	0.07791	. 0	0	0.15602	0.2645
7																
3																
Diurnal		0	0 0	0	0	0	0	0	0	0	0.1782	0.16872	. 0	0	0.34692	0.6865
Hot Soak		0	0 0	0	0	0	0	0	0	0	0.40951	0.12769	0	0	0.5372	0.720
Running		0	0 0	0	0	0	0	0	0	0	2.27056	0.35402	. 0	0	2.62458	2.9087
2 Resting		0	0 0	0	0	0	0	0	0	0	0.18742	0.13119	0	0	0.31862	0.7390
3																
4 Carbon Monoxide Emissions																
5 Run Exh		0	0 0.09102		0.09102	0	0	2.72045	0	2.72045	1.21411	1.0667	0	0	2.2808	43.3407
5 Start Ex		0	0 0	0	0	0	0	0	0	0	0.36366	0.57143	0	0	0.93509	3.1121
7																
Oxides of Nitrogen Emissions	-															
Run Exh		0	0 0.055	0	0.055	0	0	3.30052	0	3.30052	0.0607	0.08764	. 0	0	0.14834	13.8850
Start Ex		0	0 0.00725			0	0	0.47836	0	0.47836	0.01933	0.01635	0	0		
2 Nitrogen Dioxide Emissions																
Run Exh		0	0 0.00704		0.00704	0	0	0.16545	0	0.16545	0.00303	0.00438	0	0	0.00742	1.8174
4 Start Ex			0 0.00128			0				0.0373	0.00097	0.00082				
5		Ť														
5 Carbon Dioxide Emissions (000)																
→ H HK_2030_Burden	1							14								

Exercise #1b:

Determine Fleet-Average NOx Emissions Factor (grams/km) for PC

- Hints:
 - Use CSV output
 - Summation of total VKT and NOx (running exhaust)
 - Divide total NOx by total VKT
 - Convert units to obtain grams/km

Exercise #1b: Solution

Oxides of Nitrogen Emissions	ALL-TOT	VKT			
Run Exh	13.88506	43801416	0.3170	g/km	

Exercise #2: EMFAC Mode

 This exercise will generate fleet-average emission factors (grams/hour or grams/km) for temperature 25°C and relative humidity 40% at calendar year 2030.

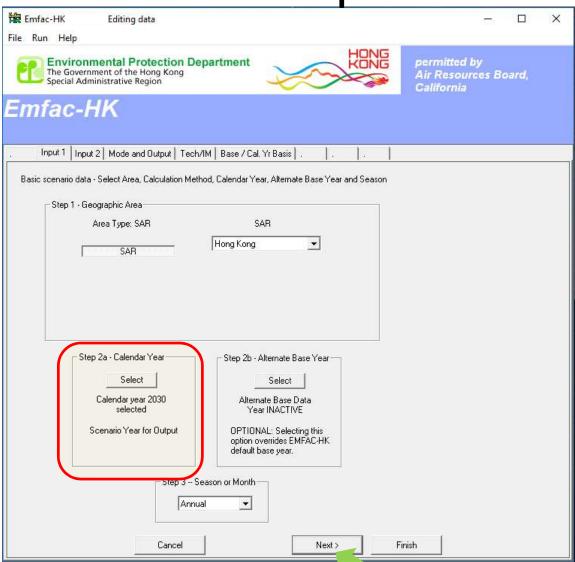
• Temperature, relative humidity and average speed combination as specified by the user.

Exercise #2: Scenario input data

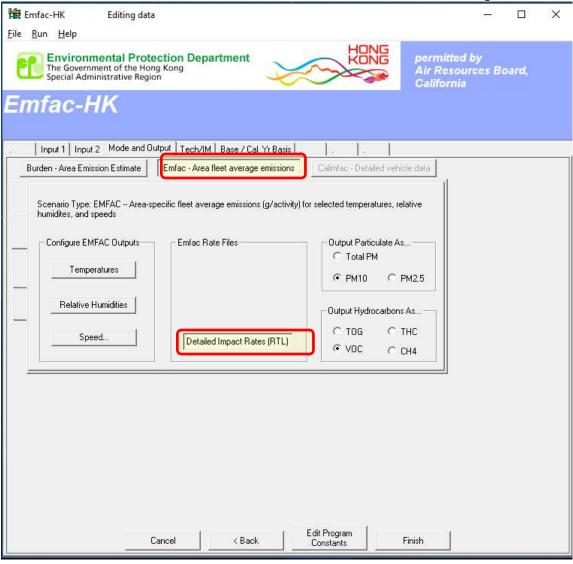
- Geographic Area: Hong Kong SAR (default)
- Calendar Years: 2030
- Alternate Baseline Year: Inactive (default)
- Season: Annual (default)
- Scenario Title for Reports: Default Title
- Model Years: All (default)
- Vehicle Classes: Modify (default)

Exercise #2: Scenario input data

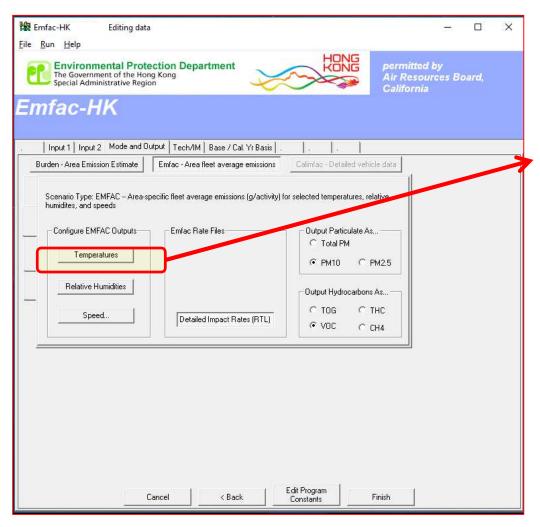
– Scenario Type:


EMFAC – Area fleet average emissions

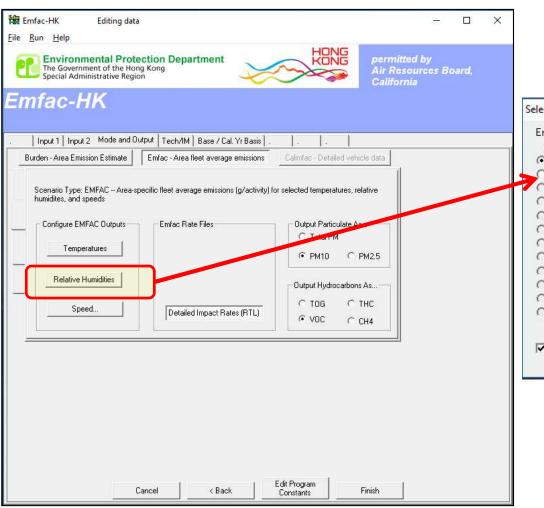
– Files and Reports:


Detailed Impact Rates (RTL) (default)

- Output Particulate: PM₁₀ PM₂₅(default)
- Output Hydrocarbons: VOC (default)
- Temperatures: 25°C
- Relative Humidity: 40%

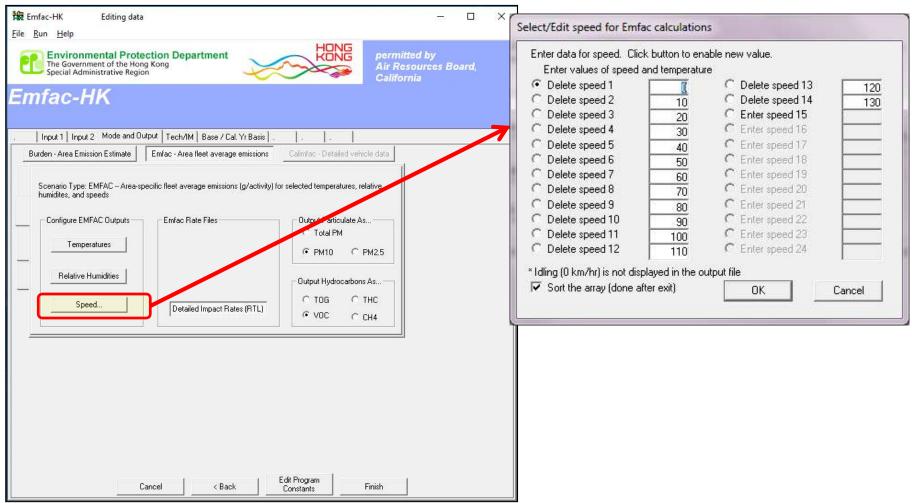

Exercise #2: Input 1 Tab

Exercise #2: Mode and Output Tab

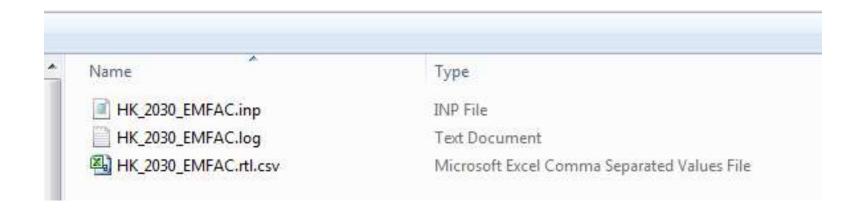


Exercise #2: Select/Edit Temperature (delete until just 1. set to 25°C)

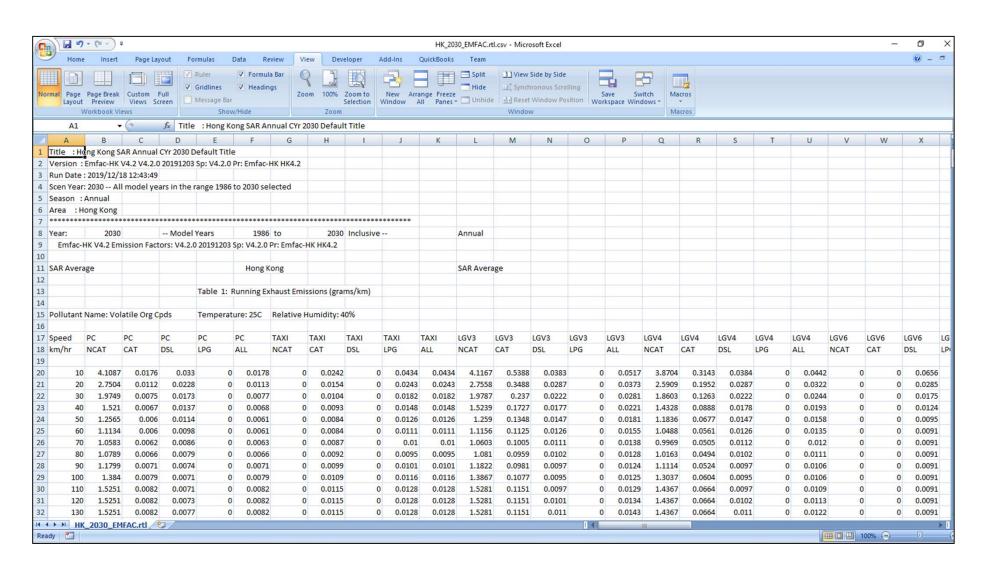
nter data for temperature. Click Enter values of speed and tem	
~	25 C Enter temperature 13
Enter temperature 2	C Enter temperature 14
Enter temperature 3	C Enter temperature 15
Enter temperature 4	C Enter temperature 16
Enter temperature 5	C Enter temperature 17
Enter temperature 6	C Enter temperature 18
Enter temperature 7	C Enter temperature 19
Enter temperature 8	C Enter temperature 20
Enter temperature 9	C Enter temperature 21
Enter temperature 10	C Enter temperature 22
Enter temperature 11	C Enter temperature 23
Enter temperature 12	C Enter temperature 24


Exercise #2: Select/Edit RH (delete until just 1. set to 40%)

nd temperatur	re	
40	C Enter rel hum 13	
	C Enter rel hum 14	
	C Enter rel hum 15	
	C Enter rel hum 16	
	C Enter rel hum 17	
	C Enter rel hum 18	
	C Enter rel hum 19	
	C Enter rel hum 20	
	C Enter rel hum 21	
	C Enter rel hum 22	
	C Enter rel hum 23	
	C Enter rel hum 24	
		C Enter rel hum 14 C Enter rel hum 15 C Enter rel hum 16 C Enter rel hum 17 C Enter rel hum 18 C Enter rel hum 19 C Enter rel hum 20 C Enter rel hum 21 C Enter rel hum 22 C Enter rel hum 23


Exercise #2: Select/Edit Speed

(default)



Save input file as: HK_2030_Emfac.inp and Run

Exercise #2: Output Generated

Exercise #2: HK_2030_EMFAC.rtl.csv

Exercise #3: Changing Technology Group Fractions

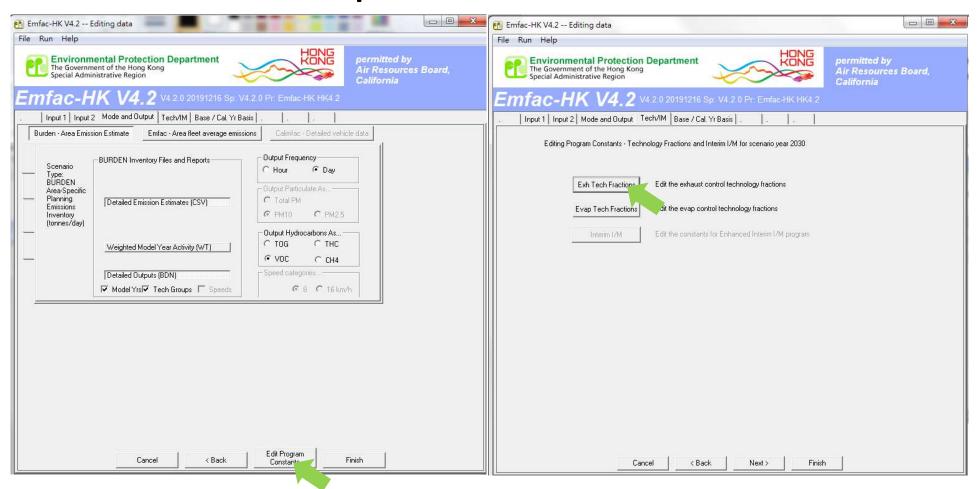
 This exercise evaluates emission changes in 2030 if the Gov't introduces a tax incentive program by implementing Euro VI in 1.1.2019 for Non-Franchised Buses < 6.4 tonnes (i.e. NFB6).

Hints:

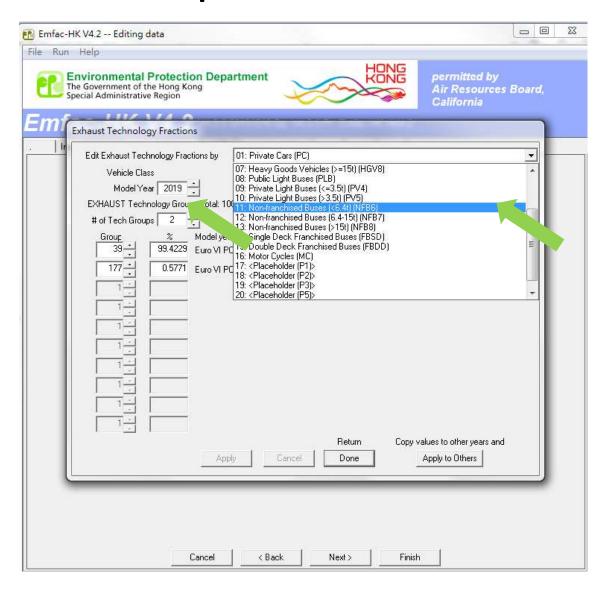
– Changes % of Euro V/VI from model year 2019 to 2020 for NFB6

Exercise #3: Changing TG Fractions

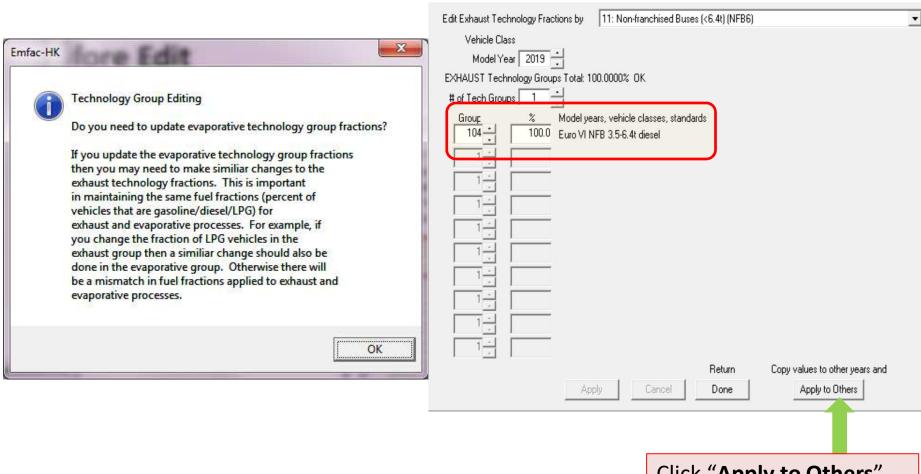
- Base Case (similar to Ex1):
 - Calendar Years: 2030
 - Scenario Type: BURDEN
 - Output File types: BDN
 - Pollutants: VOC


 Create a new case with same scenario data and edit TG fraction on NFB6

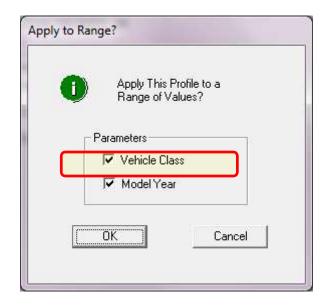
Exercise #3: Update TG fraction on NFB6


Conn	Madal Vasu	TG 103	TG 104	Total Fraction
Case	Model Year	Euro V	Euro VI	Total Fraction
_	2019-2020	100%	0%	100%
Base	2021	16.667%	83.333%	100%
New	2019-2021	0%	100%	100%

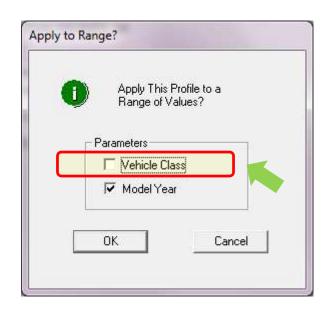
- Move 100% from TG103 to TG 104 for model year 2019
- Apply same fraction to 2020 and 2021.


Exercise #3: Update TG fraction on NFB6

Exercise #3: Update TG fraction on NFB6

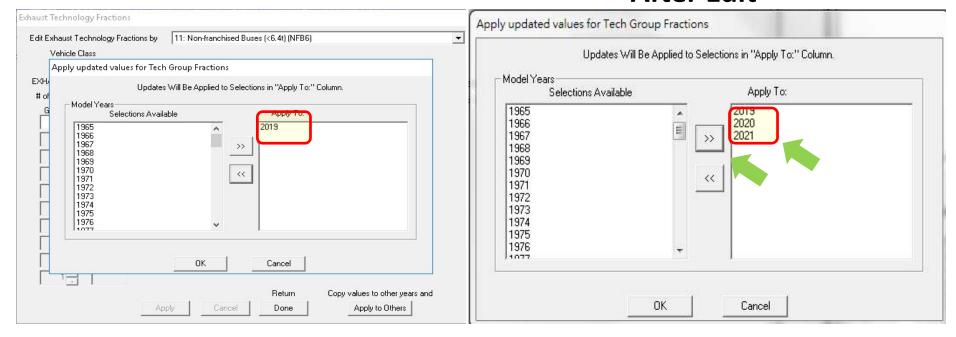


Exhaust Technology Fractions

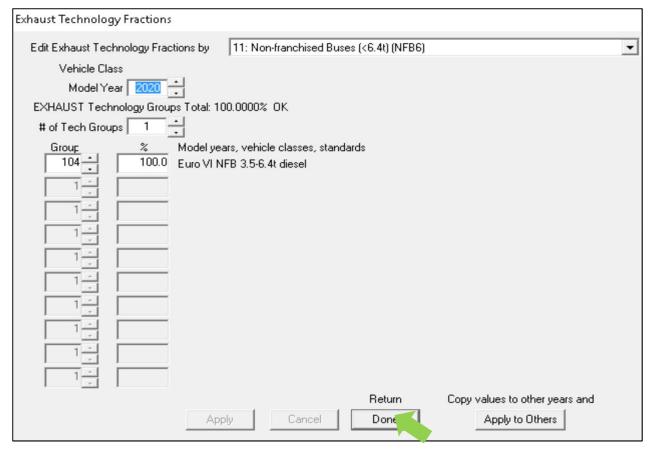


Click "Apply to Others"

Before Edit


After Edit

"Apply to Others – Model Year Only"


Before Edit

After Edit

2019 TG fraction same as 2020/2021

Verify that the TG fraction is changed correctly.

Save input file as: HK_2030_NFB6.inp and Run

Exercise #3: Solution

1	A	В	C	D	Е	F	G	Н	I	J	K	L	М	N	0	P
1	# Title :	Hong Kong	SAR Annual C	Yr 2030 Default Titl	е											
2	# Version	Emfac-HK	V4.2 V4.2.0 20	191128 Sp: V4.2.0 P	r: Emfac-F	K HK4.2										
3	# Run Dat	te <i>#######</i>														
4	# Scen Ye	ea 2030 All	model years in	the range 1986 to 20	30 selected											
5	# Season	Annual														
б	# Area	:Hong Kong														
7	7 # I/M Stat HK I/M CY2013+ program in effect															
8	# Emissio	n Tonnes Per	Period													
9	Rec Туре	ScenNum	CalYr	Area	Veh	MdlYr	Tech	Period	Pop	VKT	Trips	NOx_RUNEX	NOx_STREX	NO2_RUNEX	NO2_STREX	Case
10	Vh	1	2030	Hong Kong SAR	NFB6	AllMYr	DSL	Day	2736	322208.8	10945.09	1.98E-01	5.30E-03	5.55E-02	1.48E-03	Base
11	Vh	1	2030	Hong Kong SAR	NFB6	AllMYr	DSL	Day	2736	322208.8	10945.09	1.67E-01	5.72E-03	4.66E-02	1.60E-03	Euro VI
12																

Exercise #4: Changing Vehicle Kilometer Travelled (VKT)

- This exercise estimates emissions for an area with known VKT of specific vehicle class.
- Two approaches to change VKT:
 - adjust the population to match desired VKT (conformity adjustment: model will alter VKT and Trips)
 - 2) directly alter the VKT

Exercise #4: Changing VKT

 At year 2030, petrol private cars (Vehicle Class 1) has forecasted VKT of 1,609,000 km/day.

- This Exercise will be conducted in three phases:
 - 4 : base case
 - 4a: conformity adjustment
 - 4b: direct VKT adjustment

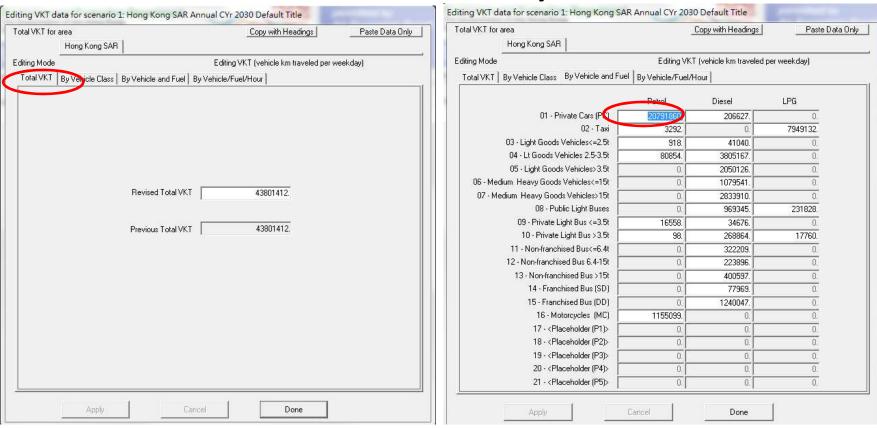
Exercise # 4: Base Case

- Scenario data:
 - Calendar Years: 2030
 - Scenario Type: BURDEN
 - Output File types: Detailed Estimates (CSV)
 - Output Frequency: Day
 - Pollutants: PM10, PM₂₅,VOC

Exercise # 4a: Conformity Adjustment

Create a new case with same scenario data as base case

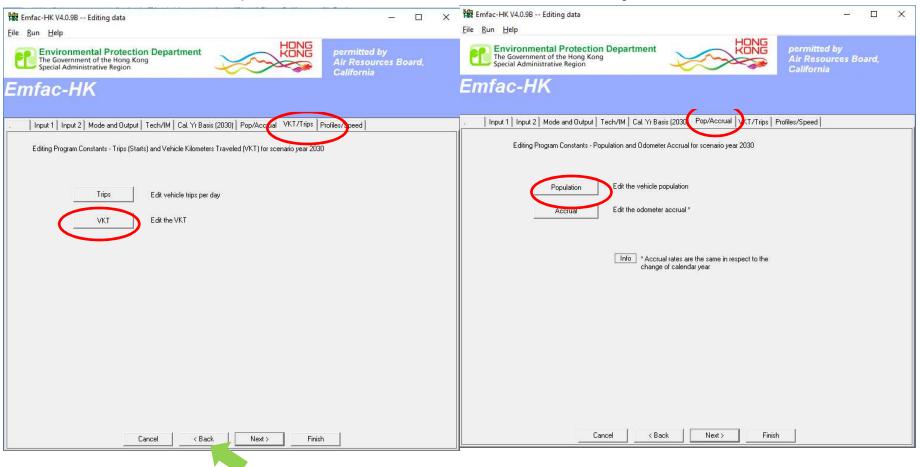
Determine VKT adjustment factor


Multiply population by above factor

Click Next until VKT/Trips tab

Total VKT tab

By Vehicle and Fuel tab

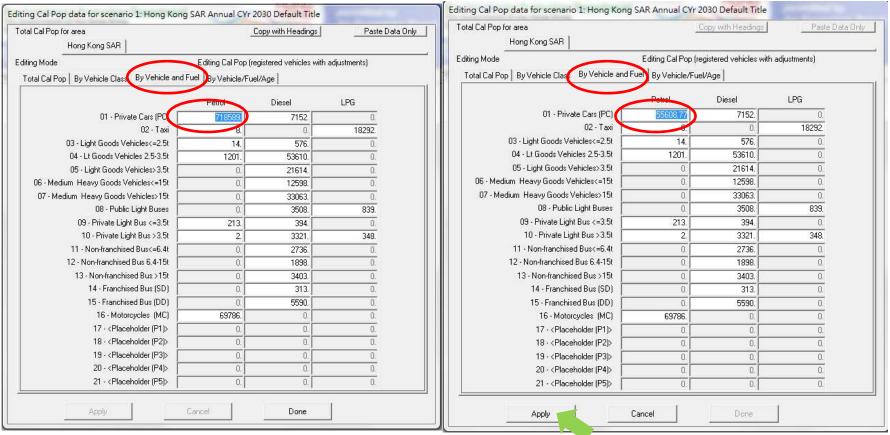


VKT adjustment factor is :

 $1,609,000 \div 20,791,860 = 0.077386$

VKT/Trips tab

Pop/Accural tab



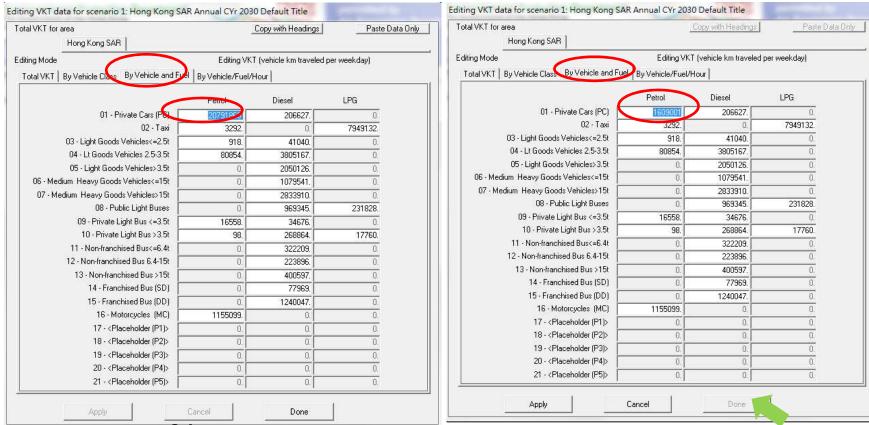
Back to Population → By Vehicle and Fuel tab

2030 Population (Base Case)

2030 Population

(Edited for VKT Match)

Multiply population by factor:


718,589 * 0.077386 = 55,608.77

Exercise # 4a: Verify VKT Adjustment

2030 VKT (Base Case)

2030 VKT

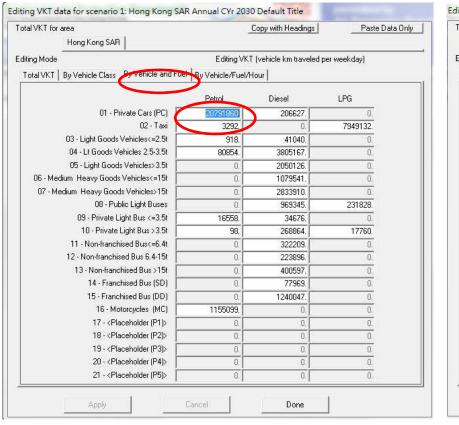
(After Pop Edit)

Save input file as

HK_2030_Burden_by_Hour_edit VKT (conformity).inp and Run

Exercise # 4b: Direct VKT adjustment

 Create a new case with same scenario data as base case


 Direct entry of new VKT for petrol private cars as 1,609,000 km/day

Exercise # 4b: Editing VKT Screen

2030 VKT (Base Case)

2030 VKT

(After VKT Edit)

Editing VKT data for scenario 1: Hong Kong SAR Annual CYr 2030 Default Title Total VKT for area Hong Kong SAR Editina Mode Editing VKT (vehicle km traveled per weekday) Total VKT | By Vehicle Class | By V hicle/Fuel/Hour Petrol Diesel LPG 01 - Private Cars (PC) 206627 3292. 7949132 03 - Light Goods Vehicles<=2.5t 918. 41040 04 - Lt Goods Vehicles 2.5-3.5t 3805167 80854 0. 05 - Light Goods Vehicles> 3.5t 2050126 0. 06 - Medium Heavy Goods Vehicles<=15t 1079541 0. 0. 07 - Medium Heavy Goods Vehicles>15t 0. 2833910 08 - Public Light Buses 969345. 231828 0. 09 - Private Light Bus <=3.5t 16558. 34676 10 - Private Light Bus > 3.5t 98. 17760. 11 - Non-franchised Bus<=6.4t 322209 12 - Non-franchised Bus 6.4-15t 223896 13 - Non-franchised Bus > 15t 0. 400597 14 - Franchised Bus (SD) 77969 15 - Franchised Bus (DD) 1240047 0. 16 - Motorcycles (MC) 1155099. 0: 17 - < Placeholder (P1)> 0. 0. 18 - < Placeholder (P2)> 0. 0. 8. 19 - < Placeholder (P3)> 0. 0. 20 - < Placeholder (P4)> 0. 0. 21 - < Placeholder (P5)> 0. Cancel

Save input file as

HK_2030_Burden_by_Hour_edit VKT (directly).inp and Run

Exercise # 4: Solution

PC-NCAT & PC-CAT	Base	#4a: Pop- adjusted VKT	#4b: VKT direct	
Population	718,589	55,609	718,589	
VKT	20,791,861	1,609,001	1,608,999	
Trips	1,077,770	83,405	1,077,770	
NOx Run Exhaust (tonne/day)	0.1825	0.0141	0.01412	
NOx Start Exhaust (tonne/day)	0.0720	0.0056	0.0720	

Notes:

Results show how the model adjusted trips in Exercise #4a, thus, starting exhaust as well. Running exhaust emissions do not differ.

Exercise #4b shows it is possible to directly input VKT into EMFAC-HK; however, it is generally not recommended to do this independent of vehicle population because of the desire to properly estimate start and evaporative emissions tied to the size of the vehicle fleet.

Exercise #5: Changing Trips

- This exercise estimates the emission reduction when reduces trips for petrol Private Cars in 2030 to 250,000 trips per day.
- There are two potential methods:
 - 1) Ex 5a: Adjust the population to match desired Trips (i.e., "conformity" approach)
 - 2) Ex 5b: Directly alter the Trips

Exercise # 5a: Conformity Adjustment

Base Case (2030, Burden, CSV outputs)

New case with same scenario data as base case

Determine Trips adjustment factor

Multiply population by above factor

Exercise # 5a: Trips adjustment factor

2030 Trips by Vehicle and Fuel of petrol PC


Factor = $250,000 \div 1,077,775 = 0.231959$

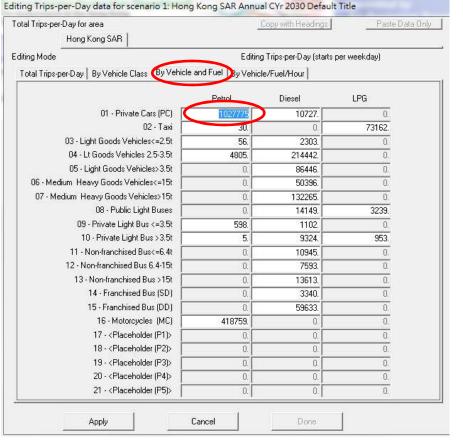
Exercise # 5a: Population Edits

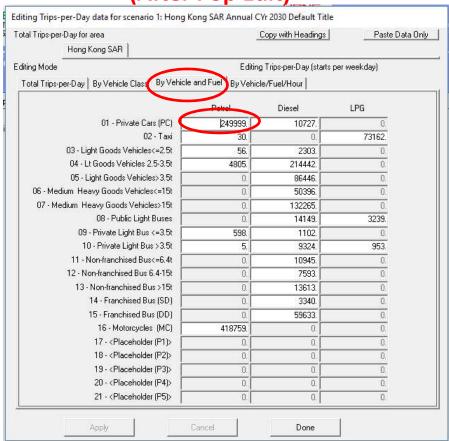
2030 Population (Base Case)

2030 Population

(Edited for Trips Match)

Multiply population by factor:


718,589 * 0.231959 = 166,683 vehicles


Exercise # 5a: Verify Trips Adjustment

2030 Trips (Base Case)

2030 Trips

(After Pop Edit)

Save input files as

HK_2030_Burden_edit Trips (conformity).inp and Run

Exercise # 5b: Changing Trips (Directly)

Create new case with scenario data same as base case
 2030 Trips

(Base Case) (After Trips Edit) Editing Trips-per-Day data for scenario 1: Hong Kong SAR Annual CYr 2030 Default Title Editing Trips-per-Day data for scenario 1: Hong Kong SAR Annual CYr 2030 Default Title Total Trips-per-Day for area Paste Data Only Copy with Headings Total Trips-per-Day for area Copy with Headings Paste Data Only Hong Kong SAR Hona Kona SAR Editina Mode Editing Trips-per-Day (starts per weekday) Editing Mode Editing Trips-per-Day (starts per weekday) Total Trips-per-Day By Vehicle Class Vehicle and Fuel By Vehicle/Fuel/Hour Total Trips-per-Day By Vehicle Class By Vehicle and Fuel Dy Vehicle/Fuel/Hour Diesel LPG Diesel LPG 01 - Private Cars (PC) 01 - Private Cars (PC) 250000 10727. 0. 1077775. 10727. 0. 02 - Taxi 73162. 73162. 03 - Light Goods Vehicles<=2.5t 56. 2303. 03 - Light Goods Vehicles<=2.5t n 56. 2303. 0. 04 - Lt Goods Vehicles 2.5-3.5t 214442 04 - Lt Goods Vehicles 2.5-3.5t 0. 4805. 214442. 0. 05 - Light Goods Vehicles>3.5t 86446 0. 05 - Light Goods Vehicles>3.5t 86446. 0. 06 - Medium Heavy Goods Vehicles<=15t 50396 06 - Medium Heavy Goods Vehicles<=15t 50396. 0. 07 - Medium Heavy Goods Vehicles>15t 132265 0. 07 - Medium _Heavy Goods Vehicles>15t 0. 132265. 0. 08 - Public Light Buses 08 - Public Light Buses 3239. 14149. 3239. 14149. 0. 09 - Private Light Bus <=3.5t 09 - Private Light Bus <=3.5t 598. 1102 598. 1102. 0. 10 - Private Light Bus > 3.5t 5. 9324. 953. 10 - Private Light Bus > 3.5t 5. 9324. 953. 11 - Non-franchised Busk=6 4t 10945 11 - Non-franchised Bus<=6.4t 10945. 0. 12 - Non-franchised Bus 6.4-15t 7593. 12 - Non-franchised Bus 6.4-15t 7593 0. 0. 13 - Non-franchised Bus >15t 13613. 13 - Non-franchised Bus > 15t 13613. 0. 14 - Franchised Bus (SD) 14 - Franchised Bus (SD) 3340. 3340. 0. 0. 15 - Franchised Bus (DD) 59633. 15 - Franchised Bus (DD) 59633. 0. 0. 0. 16 - Motorcycles (MC) 418759. 0. 16 - Motorcycles (MC) 418759. 0. 17 - < Placeholder (P1)> 17 - < Placeholder (P1)> 0. 0. 0. 0. 18 - < Placeholder (P2)> 0. 18 - < Placeholder (P2)> 0. 19 - < Placeholder (P3)> 0. 0. 0. 19 - < Placeholder (P3)> 0. 0. 0. 20 - < Placeholder (P4)> 0. 20 - < Placeholder (P4)> 0. 0. 0. 0. 21 - < Placeholder (P5)> 21 - < Placeholder (P5)> Apply Cancel Done

Save input files as

HK_2030_Burden_edit Trips (directly).inp and Run

Exercise # 5c: Solution

PC-NCAT & PC-CAT	Base	#5a: Pop-adjusted	#5b: Directly alter the Trips
Population	718,589	166,683	718,589
VKT	20,791,860	4,822,856	20,791,861
Trips	1,077,775	249,999	250,000
NOx Run Exhaust (tonne/day)	0.1820	0.0423	0.1820
NOx Start Exhaust (tonne/day)	0.0720	0.0167	0.0167

Notes:

Results show how altering trips via population (#5a) also alters VKT; thus, running exhaust is altered, as well. Exercise #5b shows altering trips only reduces starting exhaust.

Exercise #6: Speed Distributions

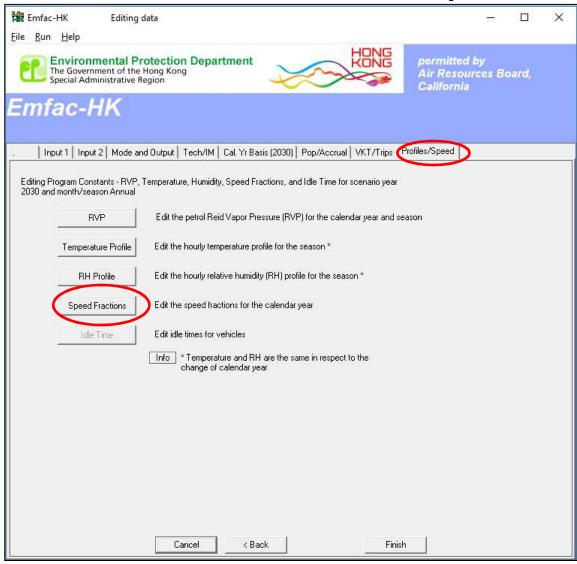
 This exercise estimates NOx running exhaust emissions change when average speed of specific vehicle class at different time zone is altered.

- A new policy propose medium and heavy goods vehicles (HGV7 & HGV8) only travel at specific time zone and speed profile.
- 2 periods:
 - from midnight to 8 a.m.; and
 - from 10 p.m. to midnight

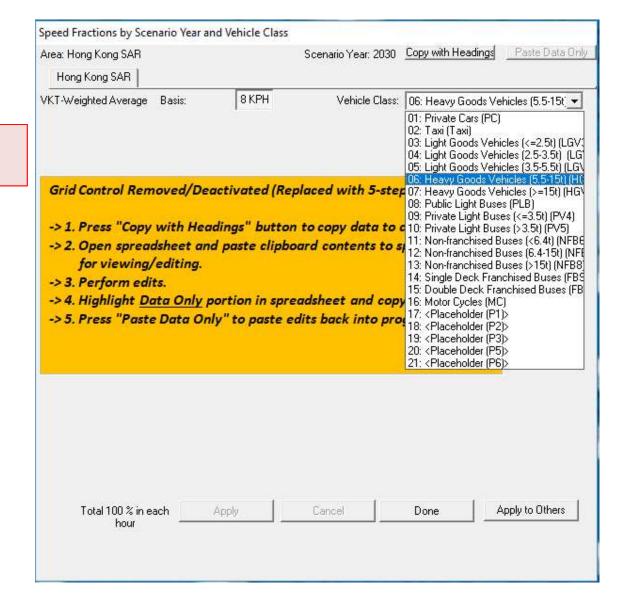
Exercise #6: Speed Distributions

- limited speed distribution:
 - 5% of the VKT occurs at average speed 1-8 km/hr (Speed Bin #1);
 - 25% at 24-32 km/hr (Speed Bin #4);
 - 20% at 48-56 km/hr (Speed Bin #7);
 - 25% at 56-64 km/hr (Speed Bin #8) and
 - 25% at 64-72 km/hr (Speed Bin #9).

Exercise # 6: Speed Distributions

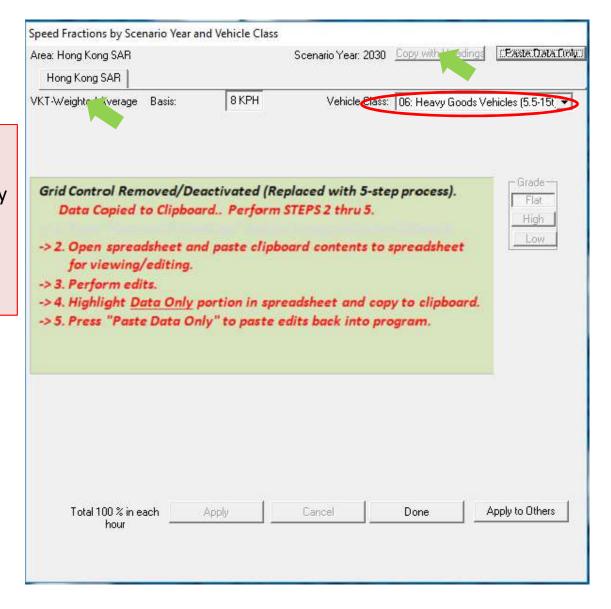

Base Case (2030, Burden, CSV outputs)

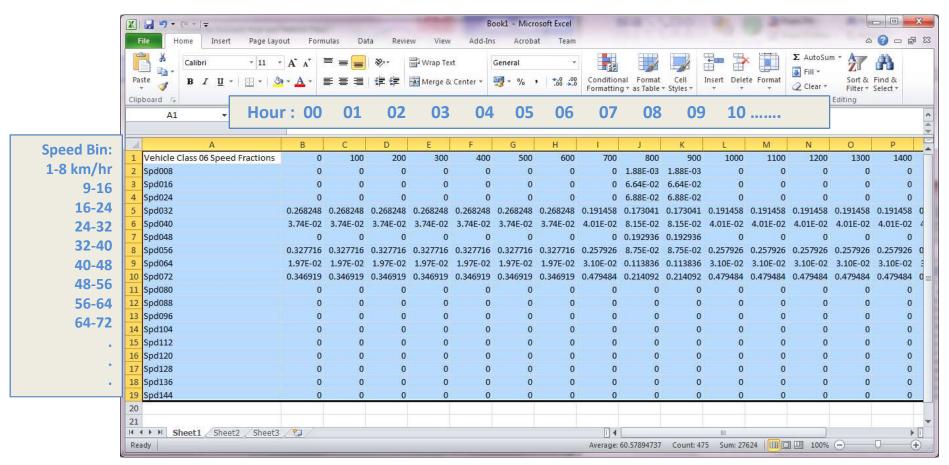
New case with same scenario data as base case


Edit Speed Fractions for HGV7

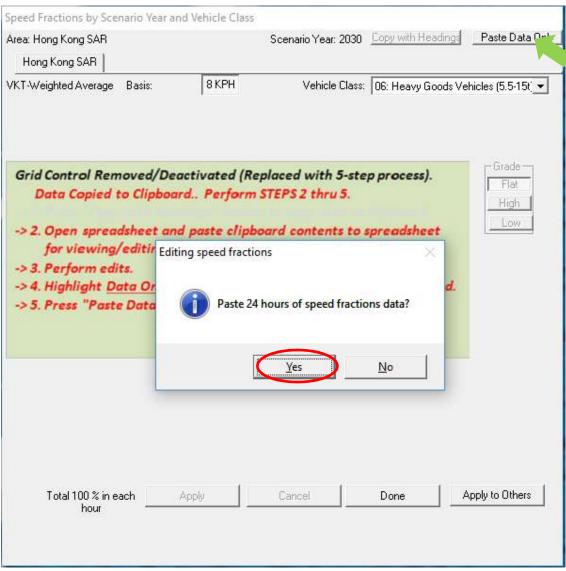
Apply same Speed Fraction for HGV8

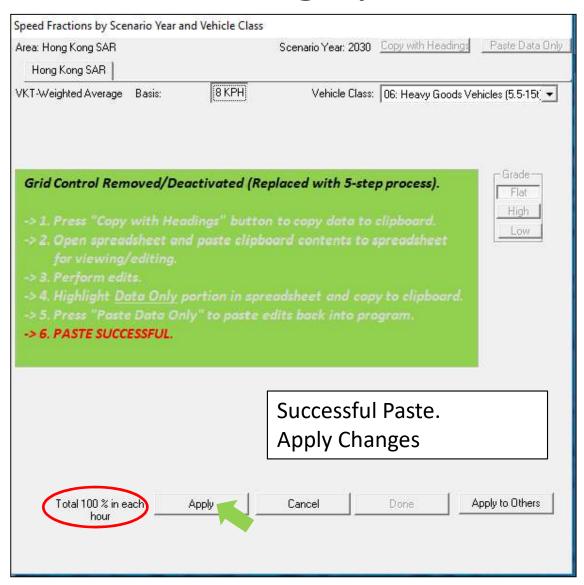
Exercise # 6: Profiles/Speed Tab



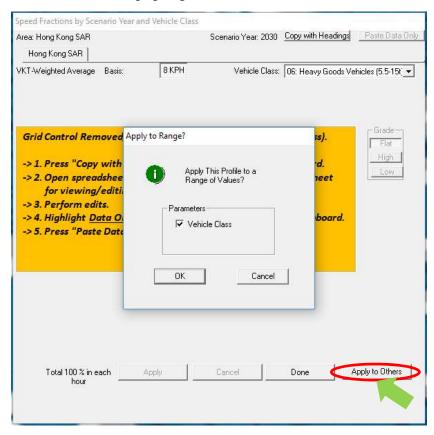

 Select Vehicle Class;

Select Vehicle
 Class;
 Click button "Copy
 with Headings".


Open Excel worksheet and paste values



- From hour 00 to 07 (midnight to 8 a.m.) and hour 22 to 23 (10 p.m. to midnight)
- Speed Fractions:


```
5% at Spd008 (1-8 km/hr); 25% at Spd032 (24-32 km/hr); 20% at Spd056 (48-56 km/hr); 25% at Spd064 (56-64 km/hr) and 25% at Spd072 (64-72 km/hr).
```




Exercise # 6: Apply Speed Fraction Edits to Other Vehicle Class

Apply to Others

Apply Edit to HGV8

Exercise # 6: Solution

Vehicle	Run Exhaust	Base	#6
	NOx	0.796	0.812
HGV7	PM	0.030	0.031
110) (0	NOx	2.523	2.604
HGV8	PM	0.171	0.173

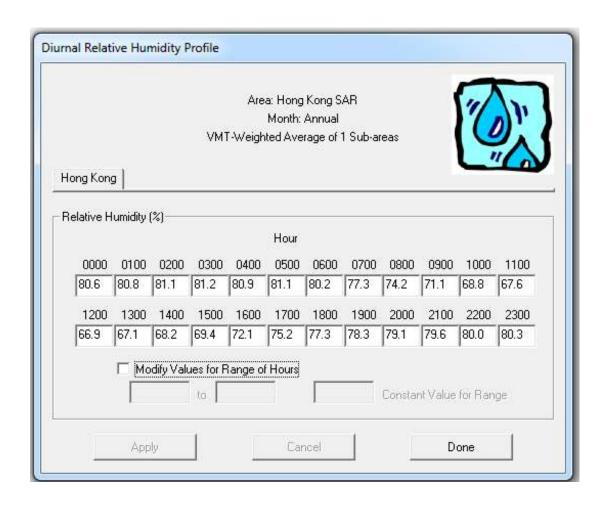
Exercise #7: Changing Relative Humidity (RH)

 This exercise shows how to change the annual RH for individual month by editing the input file (INP).

 Monthly average RH of each hour is provided on RH.XLS.

- Create a new case
 - Calendar Years: 2015
 - Scenario Type: BURDEN
 - Output File types: Detailed Emission Estimates (CSV)
 - Pollutants: PM10, VOC
- Alter one of the RH hour value in GUI and save as "HK_2015_Burden_edit RH.INP"
- Update RH for each month in INP

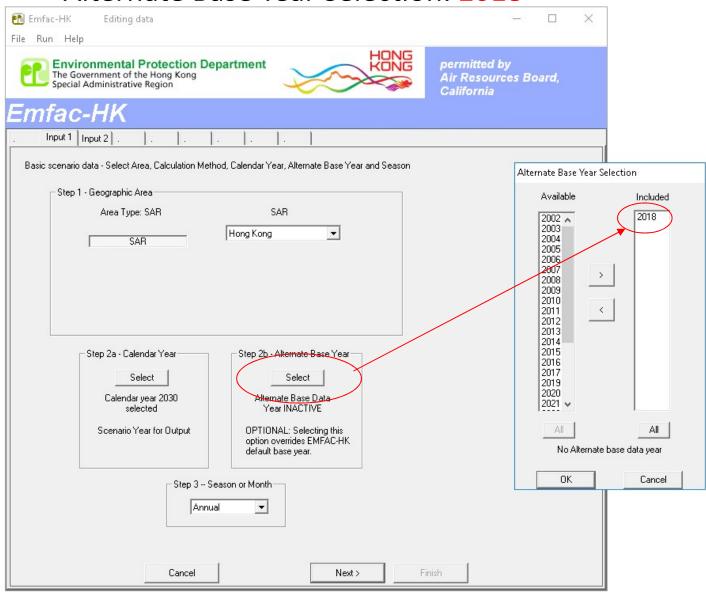
urnal Relat	tive Hui	midity I	Profile								
			VK1		a: Hong Month: ited Ave	Annual		reas		7	
Hong Kon	g SAR										
Relative H	lumidity ((%)					Сор	y with H	eadings	Paste	Data Or
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Hour						
0000	0100	0200	0300	0400	0500	0600	0700	0800	0900	1000	1100
84.4	84.6	85.4	86.1	85.8	86,2	85.9	85.4	83.0	79.0	75.5	73.7
1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
71.8	72.5	72.0	72.7	73.8	75.6	78.6	80.4	81.9	83.2	83.4	83.9
	Г Мо	dify Val	ues for F	Range o	f Hours —			Consta	nt Value	for Ran	ge
	Арр	ly	1		Car	ncel		Ī	D	one	

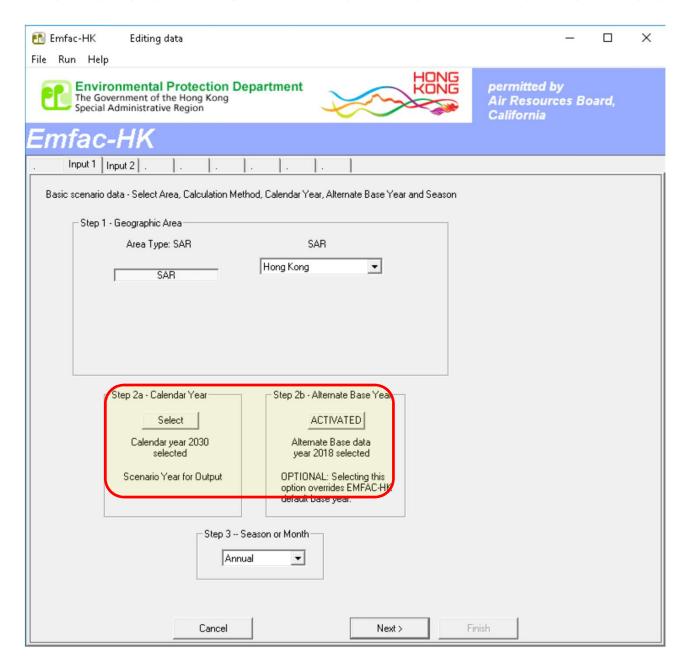

Alter RH to 90% at hour 0000

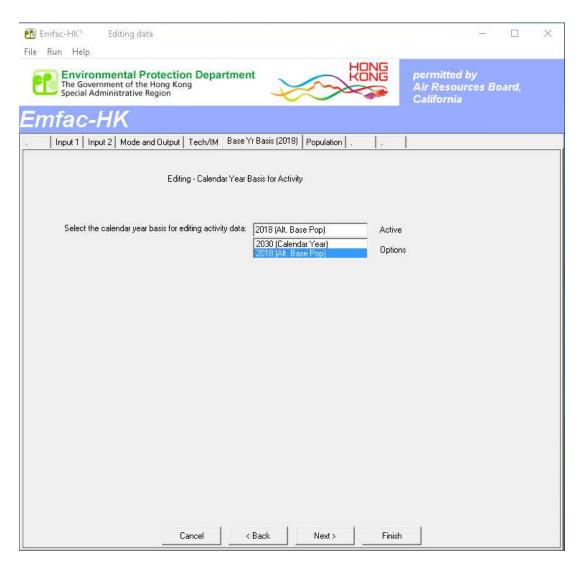
```
mp.inp - Notepad
File Edit Format View Help
EmfacHK41-Header
   Version 4 1 0 0
    HK-IM Y 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020
    HKUNITS Y
End-Header
Begin-Scenario 1
    Title Hong Kong SAR Annual CYr 2015 Default Title
    Program-Mode Burden
    Area-Method One-County
    Area-Type SAR
    Area-Number 38 [Hong Kong SAR]
    HC-Mode VOC
    PM-Mode PM10
   CYr 2015
    BYr -1
    MYr All
    Vehicles PC TAXI LGV3 LGV4 LGV6 HGV7 HGV8 PLB PV4 PV5 NFB6 NFB7 NFB8 FB5D FBDD MC
    Season Annual
    Burden-Reports CSV Standard Detail ModelYear Detail TechGroup
    Burden-Daily
   Burden-Speeds 5
End-Scenario
Begin-Scenario-ProgData 12
        DataType 3 RelativeHumidity
        Applies-To Season January
        Applies-To Area-Method One-County
        Applies-To Area-Type SAR
        Applies-To Area-Number 38 [Hong Kong SAR]
        Begin-Real-Array
           Dims 24 1 1 1
            87.25001 81.40001 82.99999 84.2 82.00001 85.1 82.5 83.9 83.89999 82.49999 78.5 77.3 73.8 76.1 74. 75.1 75.09999 78.3 82.1 81. 81.10001 83.
        End-Real-Array
    End-Data-Item
    Begin-Data-Item
        DataType 3 RelativeHumidity
        Applies-To Season February
        Applies-To Area-Method One-County
        Applies-To Area-Type SAR
        Applies-To Area-Number 38 [Hong Kong SAR]
        Begin-Real-Array
            Dims 24 1 1 1
            82.75001 74.2 77.5 78.2 76.80001 75.80001 76.4 73.6 76.09999 69.6 64.8 63.7 63.4 61.5 61.5 62.3 64. 65.99999 70.5 71.6 73.5 74.5 74. 74.1
        End-Real-Array
   End-Data-Item
```

Update data row for each month from RH.XLS

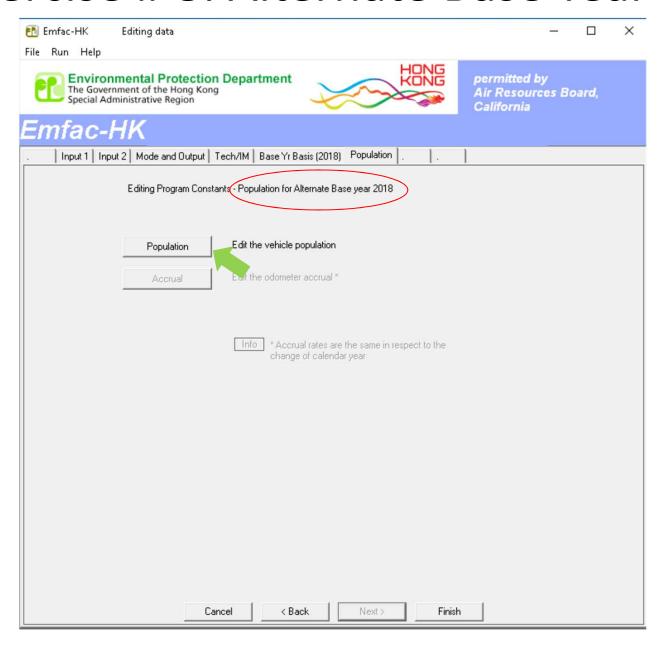
```
File Edit Format View Help
EmfacHK41-Header
    Version 4 1 0 0
    Scenario-Count 1
    HK-IM Y 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020 0 0 2020
    HKHINTTS V
End-Header
Begin-Scenario 1
    Title Hong Kong SAR Annual CYr 2015 Default Title
    Program-Mode Burden
    Area-Method One-County
    Area-Type SAR
    Area-Number 38 [Hong Kong SAR]
    HC-Mode VOC
    PM-Mode PM10
    CYr 2015
    BYr -1
    MYr All
    Vehicles PC TAXI LGV3 LGV4 LGV6 HGV7 HGV8 PLB PV4 PV5 NFB6 NFB7 NFB8 FBSD FBDD MC
    Season Annual
    Burden-Reports CSV_Standard
   Burden-Daily
   Burden-Speeds 5
End-Scenario
Begin-Scenario-ProgData 12
   Begin-Data-Item
       DataType 3 RelativeHumidity
        Applies-To Season January
       Applies-To Area-Method One-County
       Applies-To Area-Type SAR
       Applies-To Area-Number 38 [Hong Kong SAR]
       Begin-Real-Array
           Dims 24 1 1 1
            80.2 80.3 80.8 80.4 79.9 81. 80.5 78.2 75.4 72.9 70.1 68.6 67.4 67. 67.5 68.6 72.6 76.3 77.6 78.4 79.1 79.3 79.5 80.
       End-Real-Array
    End-Data-Item
    Begin-Data-Item
       DataType 3 RelativeHumidity
       Applies-To Season February
        Applies-To Area-Method One-County
       Applies-To Area-Type SAR
        Applies-To Area-Number 38 [Hong Kong SAR]
       Begin-Real-Array
           Dims 24 1 1 1
            81.6 82.1 82. 82.1 83.2 83.5 83. 81.1 77.4 71.5 68.2 66.2 64.7 66.6 67.6 68. 70.5 75.2 77.8 78.1 79.6 81. 80.4 81.2
       End-Real-Array
```

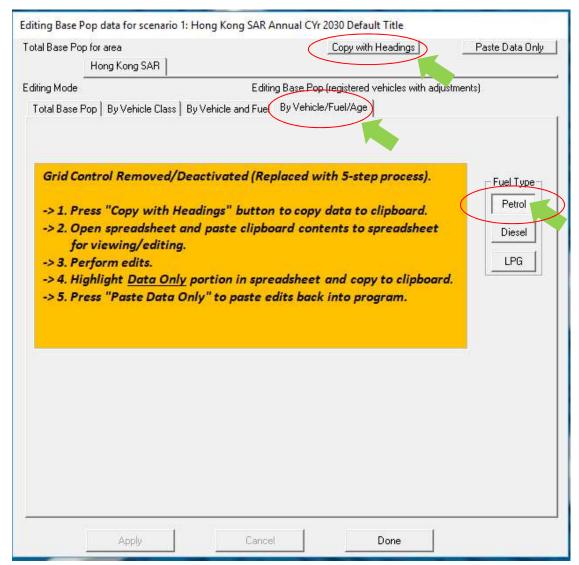

- Copy each RH values for each month from Excel and paste into INP file accordingly
- Save the INP and run

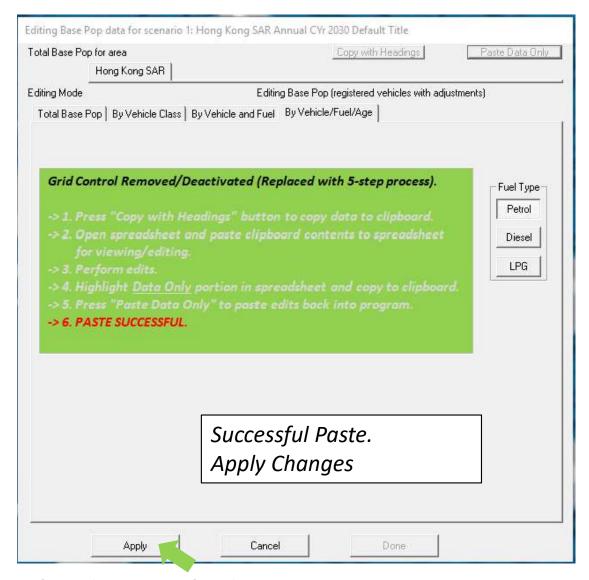



Advance Exercises

- This exercise shows how to change the alternate base year with new population; then, perform a forecast of these data.
- Scenario data:
 - Calendar year: 2030
 - Alternate base year: 2018
 - Burden; CSV output; Day; PM₁₀; VOC;
- Alter alternate base year population by 2018_Pop.XLS


Alternate Base Year Selection: 2018





Select "2018 (Alt. Base Pop)"

- Select Fuel Type, Click "Copy with Headings"
- Paste value from 2018_Pop.XLS by individual fuel type

- Repeat for the rest fuel type
- Save as HK_2030_AltBYr_2018_Burden_edit Pop.inp and run

Exercise #9: Buses Retirement

- This exercise evaluates emission changes franchised double-deck buses older than 15 years are retired from the fleet and replaced with newer buses.
- Two policies to replace retired buses:
 - 1. All buses older than 15 years old are replaced with brand new
 - 2. All buses older than 15 years old replaced with 1-5 yr-old buses

Exercise #9: Buses Retirement

- Base Cases (2035, Burden, CSV outputs)
- Copy out FBDD populations by fuel/age from GUI to worksheet and calculate the bus no. for replacement
- 2 New cases with same scenario data as base cases
- Implement different policies

Exercise #10: Link Example

- This exercise compile NOx running exhaust emission for a road using EMFAC mode.
- Create a Base case at 2030 using EMFAC mode
 - Output File types: RTL
 - Temperature: 20°C
 - Relative Humidity: 70%

Exercise #10: Link Example

- Given the link information obtained for two links:
 - Compile NOx running exhaust emission factor for each vehicle class at target speed bin from RTL output;
 - Calculate the emission in gram;

Note that in this example, only running exhaust emission is calculated for simplicity. In similar fashion, other types of emissions e.g. start emissions and evaporative emissions can also be calculated with the emission factors in RTL output.

Thank you