AQO Review Working Group Road Transportation Sub-group

Roadside Air Quality and the Vehicle Emission Control Measures

PURPOSE

This paper briefs Members on the roadside air quality and the relevant vehicles emission control measures to facilitate Members brainstorming on new air quality improvement measures.

BACKGROUND

Major Air Pollution Source

2. Road transport, navigation and public electricity generation are three major air pollution sources in Hong Kong. In 2014¹, they accounted for 97%, 85%, 67% and 69% of our emissions of sulphur dioxide (SO₂), nitrogen oxides (NOx), respirable suspended particulates (RSP) and fine suspended particulates (FSP) respectively. Road transport sector is one of the important sources of NOx, RSP and FSP emissions (except SO₂), accounting for 19%, 14% and 17% of the total emissions respectively. The breakdown of Hong Kong emission inventory in 2014 is shown in **Annex A**.

Roadside Air Quality

3. Traffic conditions affect vehicular emissions, traffic congestions slow down travel speed, which in turn generate higher pollutants emissions. The number of vehicles in Hong Kong has grown significantly (i.e. 37 %) from 2004 to 2015 and reached 728 000 as at end 2015. During the same period, the number of private cars has jumped by 51 % to 522 000. The increasing number of vehicles may exacerbate the traffic congestion and worsen the roadside air quality.

¹ The 2014 Hong Kong emission inventory is the latest available version.

- 4. Diesel commercial vehicles (DCVs) and buses are the main sources of roadside air pollution as diesel engines emit more RSP and NOx (both of which are the major roadside air pollutants). In 2014, emissions from diesel vehicles (including goods vehicles, buses and light buses) constituted about 97 % and 78% respectively of Hong Kong's total vehicular RSP and NOx emissions.
- 5. To improve roadside air quality, Environmental Protection Department (EPD) has implemented a host of air improvement measures targeting vehicle emissions and observed encouraging signs of improvement. From 2011 to 2015, the roadside concentrations of RSP, FSP, NO₂ and SO₂ reduced by 26%, 21%, 19% and 33% respectively (in **Annex B**). Only ozone exhibited a rising trend due to the strong influence of regional pollution. The status of compliance with the AQO in 2015 is set out in **Annex C**.

MEASURE TO IMPROVE ROADSIDE AIR QUALITY

Vehicle Emission Control Measures

- 6. Tailpipe emissions are the key source of air pollution at the roadside though regional background ozone and particulates levels also have a bearing. To improve roadside air quality, we have introduced a host of vehicle emission control measures in recent years and the key measures are as follows:
- Launched an incentive-cum-regulatory scheme on 1 March 2014 to progressively phase out some 82 000 pre-Euro IV DCVs by the end of 2019, and limited the service life of DCVs newly registered on or after 1 February 2014 to 15 years.
- Completed a subsidy scheme in April 2014 to help about 17,000 LPG and petrol taxi and light bus owners replacing their catalytic converters and oxygen sensors.
- Starting from September 2014, strengthened emission control of LPG and petrol vehicles by using mobile roadside remote sensing equipment to detect vehicles with excessive emissions.
- Set up a \$300 million Pilot Green Transport Fund in March 2011, encouraging transport operators to try out innovative green and low carbon transport technologies.

- Promoting the wider use of hybrid and electric vehicles by waiving First Registration Tax and expanding the charging network.
- Retrofitting Euro II and III franchised buses with selective catalytic reduction devices to upgrade their emission performance.
- Subsidising the purchase of 6 double-deck hybrid buses and 36 single-deck electric buses for trial runs to assess their operational performance under the local conditions.
- Set up franchised bus low emission zones in three busy corridors in Causeway Bay, Central and Mong Kok in end 2015.
- Preparing to tighten the vehicle emission standards to Euro VI for newly registered vehicles.

Transport Management and Urban Planning

7. Furthermore, Bureaux and Departments have been collaborating to reduce roadside air emission through implementing transport management (like rationalizing franchised bus routes) and urban planning measures (such as expanding rail network and developing cycle tracks in new development areas).

ADVICE SOUGHT

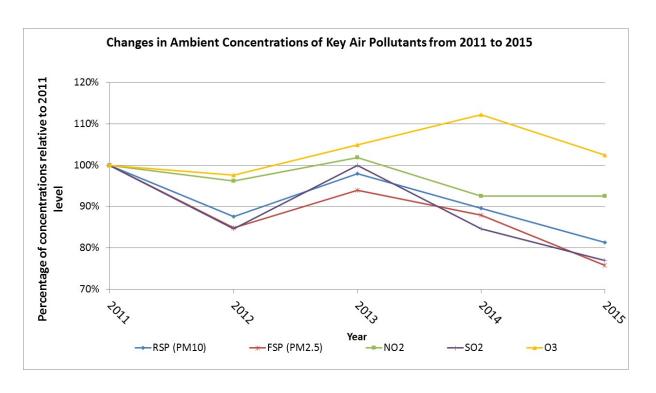
8. Members are invited to note the contents of this paper.

Environment Bureau / Environmental Protection Department June 2016

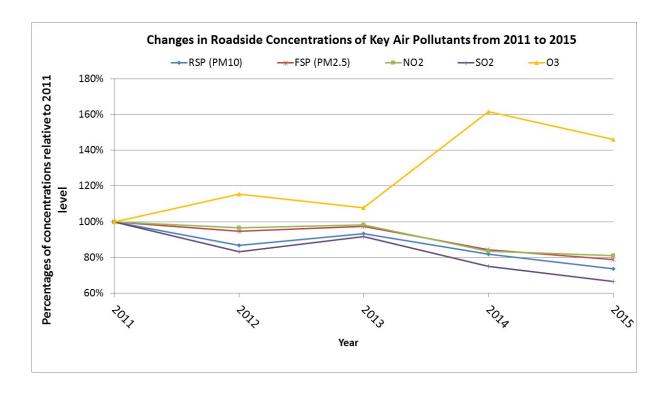
Hong Kong Emission Inventory in 2014

	Emissions of Major Air Pollutants in 2014 (Tonne							
	Sulphur Nitrogen		Respirable	Fine				
Pollution Sources	dioxide	oxides	suspended	suspended				
	(SO_2)	(NOx)	particulates	particulates				
			(RSP)	(FSP)				
Public Electricity Generation	16,880	36,210	980	450				
	(53%)	(33%)	(17%)	(10%)				
Road Transport	40	21,200	830	760				
	(<1%)	(19%)	(14%)	(17%)				
Navigation	14,000	36,200	2,100	1,940				
	(44%)	(33%)	(36%)	(42%)				
Civil Aviation	510	5,500	60	60				
	(2%)	(5%)	(<1%)	(1%)				
Other Fuel Combustion	280	10,440	820	750				
(major contributing sources	(1%)	(10%)	(14%)	(16%)				
include non-road mobile								
machineries operating in								
construction sites and								
container terminals.)								
Non-combustion (sources	N/A	N/A	910	470				
include paved road dust,			(15%)	(10%)				
cooking fume, paints and								
associated solvents, and								
printing etc)								
Biomass (emissions from	0	20	210	170				
biomass burning, e.g. hill	(<1%)	(<1%)	(4%)	(4%)				
fires)								
Total	31,710	109,570	5,900	4,600				

Notes:


- Figures in parentheses indicate the percentage shares of the air pollutants in different source categories.
- Emission figures are rounded to the nearest ten.
- There may be slight discrepancies between the sums of individual items and the total emissions shown in the table because of rounding.

Annex B


Annual Average Concentration of Key Air Pollutants from 2011 to 2015 (in μg/m³)

Air Quality Monitoring Station		2011	2012	2013	2014	2015	Change between 2011 and 2015
RSP (PM ₁₀)	General	48	42	47	43	39	-19%
	Roadside	61	53	57	50	45	-26%
FSP (PM _{2.5})	General	33	28	31	29	25	-24%
	Roadside	38	36	37	32	30	-21%
NO_2	General	53	51	54	49	49	-8%
	Roadside	122	118	120	102	99	-19%
SO_2	General	13	11	13	11	10	-23%
	Roadside	12	10	11	9	8	-33%
O ₃	General	41	40	43	46	42	2%
	Roadside	13	15	14	21	19	46%

Air Quality Trend at General Stations

Air Quality Trend at Roadside Stations

Annex C

Compliance Status of Air Quality Objectives in 2015

		Air Quality Objectives		Compliance Status ⁽¹⁾		
Pollutants	Averaging time	Concentratio n Limit Value (µg/m³)	Number of Exceedances Allowed	General Station ⁽³⁾	Roadside Station	
Sulphur	10-min	500	3	Yes	Yes	
Dioxide	24-hour	125	3	Yes	Yes	
Respirable Suspended Particulates	24-hour	100	9	No (maximum number of exceedance up to 18)	No (maximum number of exceedance up to 11)	
(RSP/PM ₁₀	Annual	50	Not Applicable	Yes	No (maximum level up to 55µg/m³)	
Fine Suspended Particulates	24-hour	75	9	No (maximum number of exceedance up to 11)	No (maximum number of exceedance up to 10)	
(FSP/PM _{2.5}	Annual	35	Not Applicable	Yes	No (maximum level up to $37\mu g/m^3$)	
Nitrogen Dioxide	1-hour	200	18	No (maximum number of exceedance up to 67)	No (maximum number of exceedance up to 460)	
	Annual	40	Not Applicable	No (maximum level up to 64µg/m³)	No (maximum level up to 106μg/m³)	
Ozone	8-hour	160	9	No (maximum number of exceedance up to 24)	Yes ⁽²⁾	
Carbon	1-hour	30,000	0	Yes	Yes	
Monoxide	8-hour	10,000	0	Yes	Yes	
Lead	Annual	0.5	Not Applicable	Yes	Yes	

Note:-

- (1) An AQO is not in compliance with if any of the general or roadside stations fails to meet that AQO.
- (2) Roadside ozone level is usually low due to its rapid reaction with nitrogen oxides emitted from vehicles
- (3) Tap Mun station was temporary closed down in Dec. 2015 due to roof maintenance works.