

12/1/2024 Briefing



# Why applying AERMOD for modelling vehicular emissions

- Not nationally or internationally accepted (e.g. GB or USEPA)
- ② Height limit on elevated sources in CALINE: Hilly terrain and conservative results are not favourable for new road projects have many elevated roads
- ③ **Complex land use**: AERMOD can cater to variable land use for different wind direction vs CALINE has a single roughness length
- ④ Better Science (AERMOD: state-of-thescience vs CALINE developed in 1970-80's)



**Elevated** roads

Varying land use



Urban land use

### Performance of the Two Models

- USEPA has done numerous studies on comparison of CALINE and AERMOD
- Passive tracer measurement campaigns in the US
- AERMOD outperforms CALINE4 according to these overseas field studies



#### Best performance: Closest to the 1:1 line for the highest concentrations CALINE performed the worst while AERMOD performed the best.

Figure 1 - QQ plot of Model Performance for Idaho Falls Study, based on (Heist, et al., 2013).

Figure 3 - QQ plot of Model Performance for CALTRANS 99 Study, based (Heist, et al., 2013).

#### Ref:

USEPA's Technical Support Document (TSD) for Replacement of CALINE<sub>3</sub> with AERMOD for Transportation Related Air Quality Analyses, 2016

Heist, et al. (2013). Estimating nearroad pollutant dispersion: A model inter-comparison. Trans. Res. Part D, 93-105.

Perry, et al. (2005). AERMOD: A Dispersion Model for Industrial Source Applications. Part II: Model Performance against 17 Field Study Databases. J. App. Meterol., 694-708.

### Inhouse Modelling Comparisons

- Model the open road emissions using AERMOD for NINE EIA projects in HK (different scale)
  - Compared the results from AERMOD and CALINE4
  - Compared over 20 different model setting scenarios
- Good correlations with AERMOD and CALINE predictions on both shortterm and long term average
- AERMOD gives better performance among gaussian dispersion model and it represents better science



4

# Recommended Model Settings for Open Road Parameters in AERMOD



### Parameters to be defined in AERMOD

#### • Settings under **SOURCE PATHWAY**

- ① LOCATION card (define the location of the pollution source)
  - Source type
  - Location
- ② SRCPARAM card (define the source parameters)
  - Emission rate
  - Source release height
  - Road width
  - Initial vertical dimension coefficient
- ③ EMISFACT card (define the emission rate and profile)

# LOCATION card in AERMOD

- LINE source type
- Source Location
  - The coordinates of road segment should be the ends of the centreline of the road ( in HK1980 Grid in meters) (X1,Y1, X2,Y2)
  - Base elevation of the ground (in mPD) (Zs) \*\*\*For elevated roads, Zs should be the level of ground elevation but <u>NOT the road surface</u> height





# SRCPARAM card in AERMOD (1)

#### **Source Parameters ( Lnemis Relhgt Width Szinit)**

#### ① "Lnemis" -- The emission rate per unit area (mass per unit area per unit time)

#### Step 1 Emission Calculation (Same as CALINE4)

- To compute the vehicular emission factors for the 18 vehicle classes by using the latest version of EMFAC-HK
- To estimate the traffic flow characteristics of the road segment
- Need to take into account both running and starting emissions

#### Step 2 Emission rate input for each road segment

- Define the "Emission rate per unit area (g/s-m<sup>2</sup>) for the LINE source
- For each hour in a day, running emissions =

 $\sum_{Vehicle Type} \frac{Number of vehicle * Running Emission Factor (\frac{g}{km} per vehicle)}{Road Width(m) * 1000 * 3600}$ 

• If starting emissions are to be included for specific road segment, for each hour in a day, starting emissions =

 $\sum_{Vehicle Type} \frac{Number of vehicle * Start Factor (g/trip) * Total trip}{Road Width(m) * 1000 * 3600 * Total VKT * Proportion of local and rural road}$ 

\*Model assumes that emissions are uniformly distributed across the dimensions of the LINE source, and the total emission of the LINE segment should be related to the total traffic flow through the segment in the day

\*\*EMISFACT card should be input for hourly varied emissions

# SRCPARAM card in AERMOD (2)

**Source Parameters ( Lnemis Relhgt Width Szinit)** 

① "Lnemis" -- The emission rate per unit area (mass per unit area per unit time)

The formula for converting emission rate from CALINE4 to AERMOD

E\_AER = E\_Cal \* TF /1609.34 / 3600 / Rdwidth

where

- E\_AER: emission factor in grams per second per square meter (g/s-m<sup>2</sup>)
- E\_Cal: emission factor in grams per mile per vehicle (g/mil-veh) per hour
- TF: traffic flow for the road link in number of vehicles per hour
- Rdwidth: modelled width of the road link in meters. Add 3 meters to both sides of the travelling lanes.
- Conversion from miles to meters: 1 mile = 1609.34 meter
- Conversion from hour to seconds: 1 hour = 3600 seconds

# SRCPARAM card in AERMOD (3)

#### **Source Parameters ( Lnemis Relhgt Width Szinit)**

② "Relhgt" -- The source release height (m) above ground

#### At-grade roads

Release Height [m]: Release height above the ground

- [Top of Plume Height] \* 0.5 + [Road surface height]
- Road surface height = o

#### Elevated roads / Flyovers

Release Height [m]: Release height above the ground

- [Top of Plume Height] \* 0.5 + [Road surface height]
- Road surface height = the height of the elevated road (in mAG)



# **Top of Plume Height** = 1.7 X average vehicle height

**Release height** = 0.5 x Top of Plume Height

# SRCPARAM card in AERMOD (4)

#### **Source Parameters ( Lnemis Relhgt Width Szinit)**

③ "Width" -- The width of source (m)

- To estimate the width of the source (same assumption as CALINE)
  - Road width + 6 meters (i.e. 3 m at both sides)

If a physical obstacle/barrier is on the side of the road, no need to extend 3 m on that side of the road.



### SRCPARAM card in AERMOD (5)

#### **Source Parameters ( Lnemis Relhgt Width Szinit)**

④ "Szinit" -- Initial vertical dimension of plume (m)



## Calculation of Average Vehicle Height

#### <u>Traffic volume-weighted</u> average vehicle height for a road link =

 $\frac{\sum_{Vehicle \ Class} Number \ of \ vechicle \ * Vehicle \ Height}{\sum_{Vehicle \ Class} Number \ of \ vechicle}$ 

**Top of plume** = 1.7 × vehicle height

where Number of vehicle = total daily traffic volume for each vehicle class

**Release height** = 0.5 x top of plume height



Table 1. Suggested Average Vehicle Heights for Each Vehicle Class

| Index | <b>VehicleClassDescription</b> | Notation | Vehicle Height (m) |
|-------|--------------------------------|----------|--------------------|
| 1     | PrivateCars                    | PC       | 1.6                |
| 2     | Taxi                           | TAXI     | 1.4                |
| 3     | LightGoodsVehicles (<=2.5t)    | LGV3     | 1.98               |
| 4     | LightGoodsVehicles (2.5-3.5t)  | LGV4     | 2                  |
| 5     | LightGoodsVehicles (3.5-5.5t)  | LGV6     | 3                  |
| 6     | MediumGoodsVehicles (5.5-15t)  | HGV7     | 3.6                |
| 7     | MediumGoodsVehicles (15-24t)   | HGV8     | 3.8                |
| 8     | PublicLightBuses               | PLB      | 3                  |
| 9     | PrivateLightBuses (<=3.5t)     | PV4      | 3                  |
| 10    | PrivateLightBuses (>3.5t)      | PV5      | 3                  |
| 11    | Non-franchisedBuses (<6.4t)    | NFB6     | 3.8                |
| 12    | Non-franchisedBuses (6.4-15t)  | NFB7     | 3.8                |
| 13    | Non-franchisedBuses (15-24t)   | NFB8     | 3.8                |
| 14    | SingleDeckFranchisedBuses      | FBSD     | 3.4                |
| 15    | DoubleDeckFranchisedBuses      | FBDD     | 4.4                |
| 16    | MotorCycles                    | MC       | 0.65               |
| 17    | HeavyGoodsVehicles (>24t)      | HGV9     | 3.89               |
| 18    | Non-franchisedBuses (>24t)     | NFB9     | 3.8                |

Open Road Source Characterization

# Sample Calculations for Traffic Volume-weighted Average Vehicle Height

| % traffic | Vehicle Class                   | Vehicle<br>Height (m) |
|-----------|---------------------------------|-----------------------|
| 70        | Private Cars                    | 1.6                   |
| 30        | Double deck Franchised<br>Buses | 4.4                   |

Average vehicle height =  $70\% \times 1.6 m + 30\% \times 4.4 m = 2.44 m$ 

<u>Volume-weighted method</u>: vehicles with zero emissions are also included to account for the traffic generated turbulence

### EMISFACT card in AERMOD

#### **Specifying variable emission factors**

Emission file syntax - EMISFACT

| SO  | EMISFACT  | STK1 | MHRDOW | enter  | 24 hour  | rly scal | lars for | c each d | of the t | welve | e months | s, first | for Weekdays                 |
|-----|-----------|------|--------|--------|----------|----------|----------|----------|----------|-------|----------|----------|------------------------------|
|     |           |      |        | (Monda | ay-Frida | ay), the | en for S | Saturday | ys, and  | fina  | lly for  | Sundays  | , e.g.,                      |
| * * | Weekdays  |      |        | JAN    | FEB      | MAR      | APR      | MAY      | JUN .    |       | NOV      | DEC      |                              |
| SO  | EMISFACT  | STK1 | MHRDOW | 24*1.0 | 24*0.8   | 24*0.6   | 24*0.8   | 24*1.0   | 24*0.8   |       | 24*0.6   | 24*0.8   | la construction              |
| * * | Saturdays | :    |        |        |          |          |          |          |          |       |          |          | 24 nours *                   |
| SO  | EMISFACT  | STK1 | MHRDOW | 24*1.0 | 24*0.8   | 24*0.6   | 24*0.8   | 24*1.0   | 24*0.8   |       | 24*0.6   | 24*0.8   | 12 months*                   |
| * * | Sundays:  |      |        |        |          |          |          |          |          |       |          |          | 2 days -867 values           |
| SO  | EMISFACT  | STK1 | MHRDOW | 24*1.0 | 24*0.8   | 24*0.6   | 24*0.8   | 24*1.0   | 24*0.8   |       | 24*0.6   | 24*0.8   | 3 days = 004 values          |
|     |           |      |        |        |          |          |          |          |          |       |          |          | See AFRMODUser's Guide no-11 |

Emission file syntax - HOUREMIS Release **Emission** rate height Szinit SO HOUREMIS 15 1 1 1 253\_02 1.925122441984859e-07 2.125 1.9767 SO HOUREMIS 15 1 1 1 253 03 1.925122441984859e-07 2.125 1.9767 emission rate SO HOUREMIS 15 1 1 1 254 01 1.5565705705763123e-06 2.125 1.9767 SO HOUREMIS 15 1 1 1 255 01 1.2088421552860391e-06 2.125 1.9767 release heights SO HOUREMIS 15 1 1 2 001 01 1.1775802404258793e-06 2.125 1.9767 SO HOUREMIS 15 1 1 2 002 01 2.4466551505586144e-06 2.125 1.9767 ۲ SO HOUREMIS 15 1 1 2 002 02 2.4466551505586144e-06 2.125 1.9767 SO HOUREMIS 15 1 1 2 003\_01 1.2014981592572406e-06 2.125 1.9767 SO HOUREMIS 15 1 1 2 003 02 1.2014981592572406e-06 2.125 1.9767

These parameters can be varied on an hourly basis:

initial dispersion coefficients

### Adjustment to the model input for Road Barriers – tall barriers A) If original plume height ≤ barrier height

#### With barrier (Vertical / Cantilevered)



Original

0.5 \* Top of Plume

Height

Physical width + 6

Top of Plume Height

/2.15

Adjustment

Adjust to the height

of vertical barrier

Physical width + 3

zero

Release height (Relhgt)

Initial vertical dimension of

Road Width (Width)

plume (Szinit)

Road width: no adding 3m to the side with barrier

### Adjustment to the model input for Road Barriers

#### B) If original plume height > barrier height

#### With barrier (Vertical / Cantilevered)



Adjustment

 $\Delta h/2$  + Height of

barrier

Physical width + 3

 $\Delta h / 2.15$ 

Release height (Relhgt)

Initial vertical dimension of

Road Width (Width)

plume (Szinit)

Original

Original

0.5 \* Top of Plume

Height

Physical width + 6

Top of Plume Height

2.15

**Top of Plume** 

Road width: no adding 3m to the side with barrier

# Adjustment to the modelled centerline for Noise Barrier



# Adjustment to the centerline for **Cantilevered Barrier**



# Modelling for **Noise Enclosure**

- No open road emission modelled for that part of road link
- The emission is modelled as Portal Emissions from Full Enclosure using volume sources



### Elevated Roads: Illustration of Plumes

#### In Elevated Mode in AERMOD

- Setting A:
  - Base elevation: Road height in mPD
  - Release height: 0.5 \* plume height



#### • Setting B:

- Base elevation: ground level elevation in mPD
- Release height: road height + 0.5 \* plume height

#### Example Modelled Results Setting B Setting A

|      |       |          |        | eccurgr  |        |  |
|------|-------|----------|--------|----------|--------|--|
|      | Zflag | Max 1-hr | Annual | Max 1-hr | Annual |  |
| ASR1 | 1.5   | 0.61     | 0.00   | 364.9    | 91.7   |  |
|      | 10    | 0.80     | 0.01   | 174.8    | 41.0   |  |
|      | 20    | 1.06     | 0.01   | 122.0    | 31.1   |  |
| ASR2 | 1.5   | 0.92     | 0.01   | 331.1    | 69.4   |  |
|      | 10    | 1.12     | 0.01   | 167.6    | 30.3   |  |
|      | 20    | 1.48     | 0.02   | 113.9    | 23.5   |  |



### **Elevated Roads**

- Elevated flyovers:
  - Base elevation should be the actual base elevation (mPD)
  - Road surface height (mAG) added onto the release height
  - Do NOT put the road surface height into the base elevation





# Example of CALINE vs AERMOD

|                                         | del files to EPD | > D. Air Quality Model Files > | 3. Discrete ASRs → CALINE | 4 → NO |  |
|-----------------------------------------|------------------|--------------------------------|---------------------------|--------|--|
| CALINE files                            | Name             | Date modified                  | Туре                      | Туре   |  |
| odel files to EPD > D. Air Quality Mode | el Fi 📙 L_M1     | 12/6/2023 3:38 PM              | File folder               |        |  |
| Name                                    | 📕 L_M2           | 21/2/2023 4:59 PM              | File folder               |        |  |
|                                         | 📜 L_M3           | 21/2/2023 5:00 PM              | File folder               |        |  |
| CE11_L_NO_1940_M1_D_1Hr.lst             | 📕 S_M1           | 21/2/2023 5:01 PM              | File folder               |        |  |
| CE11_L_NO_1940_M1_D_2Hr.lst             | S_M2             | 21/2/2023 5:01 PM              | File folder               |        |  |
| CE11_L_NO_1940_M1_D_3Hr.lst             | S M3             | 21/2/2023 5:02 PM              | File folder               |        |  |
| CE11_L_NO_1940_M1_D_4Hr.lst             | -                |                                |                           |        |  |
| CE11_L_NO_1940_M1_D_5Hr.lst             | 15/2/2023 11:1   | 4 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_6Hr.lst             | 15/2/2023 11:1   | 5 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_7Hr.lst             | 15/2/2023 11:1   | 5 PM LST File                  | 89,085 KB                 | Cali   |  |
| CE11_L_NO_1940_M1_D_8Hr.lst             | 15/2/2023 11:1   | 5 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_9Hr.lst             | 15/2/2023 11:1   | 5 PM LST File                  | 89,085 KB                 | Na     |  |
| CE11_L_NO_1940_M1_D_10Hr.lst            | 15/2/2023 11:0   | 8 PM LST File                  | 89,085 KB                 | -      |  |
| CE11_L_NO_1940_M1_D_11Hr.lst            | 15/2/2023 11:0   | 9 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_12Hr.lst            | 15/2/2023 11:0   | 9 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_13Hr.lst            | 15/2/2023 11:0   | 9 PM LST File                  | 84,694 KB                 |        |  |
| CE11_L_NO_1940_M1_D_14Hr.lst            | 15/2/2023 11:0   | 9 PM LST File                  | 89,085 KB                 | -      |  |
| CE11_L_NO_1940_M1_D_15Hr.lst            | 15/2/2023 11:0   | 9 PM LST File                  | 89,085 KB                 | -      |  |
| CE11_L_NO_1940_M1_D_16Hr.lst            | 15/2/2023 11:0   | 9 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_17Hr.lst            | 15/2/2023 11:0   | 9 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_18Hr.lst            | 15/2/2023 11:1   | 1 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_19Hr.lst            | 15/2/2023 11:1   | 2 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_20Hr.lst            | 15/2/2023 11:1   | 2 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_21Hr.lst            | 15/2/2023 11:1   | 2 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_22Hr.lst            | 15/2/2023 11:1   | 2 PM LST File                  | 89,085 KB                 |        |  |
| CE11_L_NO_1940_M1_D_23Hr.lst            | 15/2/2023 11:1   | 2 PM LST File                  | 89,085 KB                 | -      |  |
| CE11_L_NO_1940_M1_D_24Hr.lst            | 15/2/2023 11:1   | 2 PM LST File                  | 88,841 KB                 |        |  |
| CE11_L_NO_1941_M1_D_1Hr.lst             | 15/2/2023 11:4   | 7 PM LST File                  | 377,036 KB                |        |  |

#### AERMOD files

| Caline2Aermod > Mod | dified_Ht_Urban > 1940 | ✓ <sup>™</sup> Searce | :h 1940   |
|---------------------|------------------------|-----------------------|-----------|
| Name                | Date modified          | Туре                  | Size      |
| 19_40.PFL           | 14/3/2023 4:43 PM      | PFL File              | 565 KB    |
| 19_40.SFC           | 14/3/2023 4:43 PM      | SFC File              | 1,489 KB  |
| aermod.exe          | 22/6/2022 11:13 AM     | Application           | 3,342 KB  |
| ALL_NO.PLT          | 28/8/2023 4:45 PM      | PLT File              | 19,583 KB |
| ALL_NO2.PLT         | 28/8/2023 3:50 PM      | PLT File              | 19,583 KB |
| NO.txt              | 16/3/2023 2:20 PM      | Text Document         | 7,655 KB  |
| NO2.txt             | 16/3/2023 3:29 PM      | Text Document         | 7,655 KB  |
| TMRd_NO.inp         | 28/8/2023 2:27 PM      | INP File              | 61 KB     |
| TMRd_NO.out         | 28/8/2023 4:45 PM      | OUT File              | 11,656 KB |
| TMRd_NO2.inp        | 28/8/2023 2:27 PM      | INP File              | 61 KB     |
| TMRd_NO2.out        | 28/8/2023 3:50 PM      | OUT File              | 11,656 KB |

### Example of CALINE vs AERMOD – Input Files

#### **Example of At-grade Road**



SO EMISFACT 001\_01 MHRDOW 1.72400e-03 1.17750e-03 0.01025e-04 0.39920e-04 5.21003e-04 1.29370e-03 3.02975e-03 5. SO EMISFACT 001\_01 MHRDOW 6.71908e-03 6.41518e-03 5.94013e-03 5.75893e-03 7.36735e-03 7.06444e-03 7.28196e-03 7.73516e-03 SO EMISFACT 001\_01 MHRDOW 8.08116e-03 8.85515e-03 9.29971e-03 8.74039e-03 7.09135e-03 5.96478e-03 5.65737e-03 4.86564e-03

> Converted from Hr8, traffic 640, Caline ER: 700.964 g/mil-veh; width 14m

YKK Build (Phase

### Example of CALINE vs AERMOD – Input Files

#### **Example of Elevated Road**



#### AERMOD Emission file: SO INCLUDED NO.txt

SO EMISFACT 011\_01 MHRDOW 4.03284e-03 3.03010e-03 1.98860e-03 1.49296e-03 1.27445e-03 2.19901e-03 5.17683e-03 1.1622e-02

Converted from Hr8, traffic 1385, Caline ER: 583.37 g/mil-veh; width 18 m

### Weather Data for Vehicular Emissions

- Temperature and relative humidity <u>from PATH meteorological output files</u>
- Use of other meteorological data (e.g. HKO) require justification
- a. **Short-term**: Use the daily profile of <u>lowest</u> temperature and relative humidity data in each hour for each month (i.e. 24 hours data in each month and for 12 months) to calculate the vehicular emission factors in the corresponding period on an hourly basis.
- b. **Long-term** (i.e. annual): Use the daily profile of <u>averaged</u> temperature and relative humidity data in each hour for each month (i.e. 24 hours data in each month and for 12 months) to calculate the vehicular emission factors in the corresponding period on an hourly basis.

