DEPARTMENT OF COMMUNITY MEDICINE

 THE UNIVERSITY OF HONG KONGFINAL REPORT

FOR

THE PROVISION OF SERVICE FOR STUDY OF

SHORT TERM HEALTH IMPACT AND COSTS

DUE TO ROAD TRAFFIC-RELATED AIR POLLUTION

ENVIRONMENTAL PROTECTION DEPARTMENT

TENDER REF. AS 00-378

Submitted by Dr CM Wong on behalf of Hong Kong Air Pollution and Health Joint Research Group of the University of Hong Kong and Chinese University of Hong Kong; and Health Services Research Group, and Biostatistics and Computing Research Group of the Department of Community Medicine, the University of Hong Kong

Principal project director: Dr CM Wong ${ }^{1}$

Principal Investigators: Dr CM Wong ${ }^{1}$, Dr SM McGhee ${ }^{1}$, Dr RYT Yeung ${ }^{1}$, Dr TQ Thach, ${ }^{1}$ Professor TW Wong ${ }^{2}$, Professor AJ Hedley ${ }^{1}$

Membership of working group:

Medical	: Professor AJ Hedley ${ }^{1}$, Professor TH Lam ${ }^{1}$ Professor TW Wong ${ }^{2}$, Professor TS Yu ${ }^{2}$
Statistical	Dr CM Wong ${ }^{1}$, Dr TQ Thach ${ }^{1}$ Mr WS Tam ${ }^{2}$, Dr TS Lau ${ }^{3}$
Economic	Dr SM McGhee ${ }^{1}$ Dr RYT Yeung ${ }^{1}$
Data analysis	Ms P YK Chau ${ }^{1}$ Ms J Chau ${ }^{1}$ Ms LC Wong ${ }^{1}$

1 Department of Community Medicine, The University of Hong Kong
2 Department of Community and Family Medicine, The Chinese University of Hong Kong
3 Department of Statistics, The Chinese University of Hong Kong

Acknowledgement:
Mrs. Edwina Shung of the Hospital Authority for advice on using health service data; and Ms Marie Chi of the Department of Community Medicine, The University of Hong Kong for secretarial support.

CONTENTS

Page No
Executive Summary 1

1. Background 3
2. Objectives 3
3. Data and methods 4
3.1 Health impact of air pollution
3.2 Health cost of air pollution
4. Findings 12
4.1 Health impact of air pollution
4.2 Cost of health service utilization due to traffic-related air pollution
4.3 Perceptions of air pollution: general population and roadside workers
5. Sensitivity analysis 14
5.1 Health impact of air pollution
5.2 Direct cost of illness due to traffic-related air pollution
6. Discussion 15
6.1 Strengths of this study
6.2 Limitations of the study
6.3 Comparison with similar studies
6.4 Summary
Tables
Table 3.1 Air pollutant concentration data available from the EPD 21
Table 3.2 Correlations between data measured by the usual Point Analyzer instrument and by the Opsis instrument 22
Table 3.3 Percentage of valid measures of air pollutants in each monitoring stations 23
Table 3.4 Correlations between stations for daily concentrations of pollutant 24
Table 3.5 Summary statistics of daily concentrations of pollutants $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$ 28
Table 3.6 Daily means of relative humidity and temperature for 1995-2000 30
Table 3.7 Number of deaths (known deaths) - all ages 30
Table 3.8 Number of hospital admissions extracted from 12 major HA hospitals 31
Table 4.1 Comparison of relative risks (RR) and 95% confidence intervals (CI) of the best single lagged-day effects by linear extrapolation for a $10^{\text {th }}-90^{\text {th }}$ percentile change in pollutant concentration - for mortality at all ages 32
Table 4.2 Excess risks (ER) (\%) and 95% confidence interval (CI) for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for the best single lag day for each category of mortality from 1995 to 2000 33
Table 4.3 Comparison of excess risk (ER) (\%) and 95\% confidence interval (CI) of the best single lagged-day effects for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for hospital admissions 34
Table 4.4 Excess risks (ER) (\%) and 95% confidence interval (CI) for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for the best single lag day for each category of hospital admissions from 1995-2000 35
Table 4.5 Excess risks (ER) (\%) and 95% confidence interval (CI) for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for mortality and hospital admission due to respiratory and cardiovascular diseases 36
Table 4.6 Estimated number of deaths and number of admissions (95% confidence interval) for respiratory and cardiovascular diseases due to a change in pollutant concentration in total air pollution, and in the fraction related to road traffic 37
Table 4.7 Estimates of unit cost, frequency of health service utilization in year 2000, and total direct health care cost per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in each air pollutant 38
Table 4.8 Productivity loss (PL) due to air pollution per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in each air pollutant 41
Table 4.9 Estimates of willingness to pay (WTP) to avoid death, serious morbidity and minor morbidity for Hong Kong population in year 2000 and the value associated with $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in each air pollutant for the fraction related to traffic 44
Table 4.10 Economic valuation (in HK\$ million) for health effects of air pollution, for a change in pollutant concentration in total air pollution, and for the fraction related to road traffic 45
Table 5.1 Sensitivity analysis - Comparison of excess risk (ER) and 95\% confidence interval (CI) of the best single lagged-day effects for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for mortality in 1995-2000: Overall population and roadside population 46
Table 5.2 Sensitivity analysis - Comparison of excess risk (ER) and 95% confidence interval (CI) of the best single lagged-day effects for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for hospital admissions in 1995-2000: Overall population and roadside population 47
Table 5.3 Sensitivity analysis - Direct costs of illness due to traffic-related air pollution (TRAP) 48
References 49-52
Appendix 1 Roadside workers' perceptions of air pollution 10
Appendix 2 Validation of value of life 2
Appendix 3 Residuals and autocorrelation plots 2
Appendix 4 Predicted (solid line) according to core model and observed (dotted line) plots from 1995-2000 2
Appendix 5 Difference between expected number of hospital admissions according to 1995-2000 model and observed number of hospital admissions by different pollutants from 1 January 2001 to 31 March 2001 2
Appendix 6 Preliminary analysis of carbon monoxide (CO) and fine suspended particulates (FSP) recorded during 1998-2000 in Tsuen Wan station 2
Annex $1 \quad$ Valuation of health impact of air pollution in Hong Kong: Household survey. Department of Community Medicine, The University of Hong Kong Working Paper No. AP 02-02-001 12
Annex 2 Valuation of the avoidance of respiratory symptoms in Hong Kong. Department of Community Medicine, The University of Hong Kong Working Paper No. AP 02-02-002 6
Annex $3 \quad$ Value of avoiding cardiovascular or respiratory illness in Hong Kong. Department of Community Medicine, The University of Hong Kong Working Paper No. AP 02-02-003 9

Study of short term health impact and costs due to road traffic-related air pollution

Executive Summary

1. Background: In Hong Kong a large proportion of ambient air pollution is attributable to air pollutant emissions from road traffic. Methods for assessing the proportion of air pollution attributable to road traffic have already been established and from these data an assessment of the health impact and economic cost of traffic-related air pollution can be estimated for use by policy makers.
2. Methods: Using study methods in line with those of Air Pollution and Health: a European Approach (APHEA) and Poisson regression on daily time-series data for years 1995-2000, we estimated the health effects for each of four criteria pollutants, nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, sulphur dioxide $\left(\mathrm{SO}_{2}\right)$, respirable suspended particulates (RSP), and ozone $\left(\mathrm{O}_{3}\right)$.
3. The health outcomes were: (i) all causes (non-accidental) daily mortality, and mortality due to all respiratory diseases, chronic obstructive pulmonary diseases, all cardiovascular, cardiac and ischaemic heart diseases, for all ages; and (ii) hospital admissions, due to respiratory disease for 65+ and for all ages; asthma for 15-64; all cardiovascular, cardiac and ischaemic heart diseases for all ages.
4. Economic valuation was carried out by calculating cost of illness (direct cost of health service utilization and productivity losses) and estimating the full economic value using willingness to pay value estimates for the avoidance of mortality and morbidity. Willingness to pay was estimated using contingent valuation and conjoint analysis on data obtained through telephone interviewing. Effects of fine suspended particulates (partially accounted for by its correlation with respirable suspended particulates) and carbon monoxide, with data available only from one monitoring station and for three years, were also assessed, but these results were not included in the economic valuation.
5. Results: The estimates of excess daily mortality risks, in all ages, show that an increase of 10 $\mu \mathrm{g} / \mathrm{m}^{3}$ concentration of pollutants was associated with a 0.6% to 2.1% increase across all disease categories for $\mathrm{NO}_{2} ; 1.4 \%$ to 3.9% increase across all disease categories for $\mathrm{SO}_{2} ; 0.2 \%$ increase in all non-accidental causes and 0.9% increase in chronic obstructive pulmonary disease for RSP and with 0.6% increase in respiratory disease for O_{3}.
6. The results for hospital admissions show that, except for asthma, all the criteria pollutants under study were associated with increased admissions across all the disease categories. For an increase of $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ concentration, there was a 0.5% to 1.9% increase for $\mathrm{NO}_{2} ; 0.5 \%$ to 2.4% increase for $\mathrm{SO}_{2} ; 0.4 \%$ to 1.0% increase for RSP; and 0.2% to 0.6% increase for O_{3}.
7. According to the excess risk of each pollutant estimated from the database for the period 1995-2000, the number of cardiorespiratory deaths attributable to a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in concentration of the pollutant which produced the greatest effect, would be 243 deaths a year (based on SO_{2}) and that for the fraction due to traffic-related air pollution would be 83 deaths a year (based on NO_{2}). The corresponding numbers of cardiorespiratory admissions would be 1917 (based on SO_{2}) and 821 (based on NO_{2}) respectively. When mean concentrations for the year 2000 were used (i.e. $\mathrm{NO}_{2} 58.3, \mathrm{SO}_{2} 17.8$, RSP 50.4 and $\mathrm{O}_{3} 34.3 \mu \mathrm{~g} / \mathrm{m}^{3}$), the corresponding numbers attributable to a single pollutant would be 783 and 485 deaths (based
on NO_{2}); and 7737 and 4789 admissions (based on NO_{2}) a year. The 95% confidence upper bound estimates would be 1244 and 770 deaths; and 10911 and 6753 admissions correspondingly.
8. Based on the results for respiratory and cardiovascular diseases in this analysis, and using results of another EPD study on the effects of air pollution on general practitioner visits we estimate that the direct cost of illness, in the year 2000, would be at least $\$ 227.3$ million for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration in total air pollution and $\$ 289.7$ million with productivity losses included; and at least $\$ 140.7$ million and 179.3 million respectively for the fraction due to traffic-related air pollution.
9. The most complete estimation using the willingness to pay estimates for the monetary value of morbidity and mortality and including the cost of public hospital care, in the year 2000, would be at least $\$ 2.8$ billion for a change of $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ concentration in the total air pollution; and at least $\$ 1.2$ billion for the fraction due to traffic-related air pollution.
10. Conclusions: When mean concentrations in the year 2000 were used, an estimate of the monetary value of the effects of air pollution on cardiorespiratory diseases in Hong Kong would be at least $\$ 11.1$ billion for total air pollution; and at least $\$ 6.9$ billion for the fraction due to traffic-related air pollution; and for direct cost of illness would be at least 1.3 billion and 0.8 billion respectively.

Economic valuation (in HK\$ billion) for health effects of air pollution in year 2000
\(\left.$$
\begin{array}{ccc}\hline & \text { Billion } \mathrm{HK} \$ & \text { Remarks } \\
\hline \begin{array}{c}\text { Direct cost of illness } \\
\text { a. } 10 \mu \mathrm{~g} / \mathrm{m}^{3} \text { change in pollutant concentration } \\
\text { i. total air pollution }\end{array} & 0.2 & \begin{array}{c}\text { Based on } \mathrm{NO}_{2} \text { only } \\
\text { Based on } \mathrm{NO}_{2} \text { only } \\
\text { (includes productivity loss) } \\
\text { Based on } \mathrm{NO}_{2} \text { only } \\
\text { Based on } \mathrm{NO}_{2} \text { only }\end{array}
$$

ii. fraction due to traffic-related air pollution \& 0.3 \& 0.1\end{array} $$
\begin{array}{c}\text { (includes productivity loss) }\end{array}
$$\right]\)| b. mean pollutant concentration in year 2000 |
| :---: |
| i. total air pollution |

Monetary value to avoid mortality/morbidity
a. $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration
i. total air pollution
2.8
Based on SO_{2} only
ii. fraction due to traffic-related air pollution
1.2
Based on NO_{2} only
b. mean pollutant concentration in year 2000 i. total air pollution $\quad 11.1 \quad$ Based on NO_{2} only
ii. fraction due to traffic-related air pollution 6.9

Based on NO_{2} only

1. Background

Recently, three European countries, namely Austria, France and Switzerland, co-operated in a tri-lateral project which aimed to quantify the road-traffic-related health cost due to respirable suspended particulate matters i.e. $\mathrm{PM}_{10} .^{1}$ The research project was based on an interdisciplinary co-operation in the fields of air pollution, epidemiology and economics, and provide input to the World Health Organization (WHO) Ministerial Conference in June 1999. A similar study for Hong Kong is deemed necessary to help assess the effectiveness of air pollution control policies.

The Hong Kong Environmental Protection Department (EPD) has commissioned a number of studies ${ }^{2-6}$ on the short-term health effects of air pollutants on daily hospital admissions and daily mortality due to cardiorespiratory diseases and in the current year, another study ${ }^{7}$ on the effects of air pollution on daily general practitioner visits for cardiorespiratory problems. Results from these studies would allow the quantification of the exposure-response effects of ambient air pollution on general practitioner visits, hospital admissions and mortality, and serve as a basis for calculation of the associated direct and indirect costs and also the costs which individuals are willing to pay to prevent a certain level of the health effects.

In Hong Kong, a large proportion of ambient air pollution may be attributable to air pollutant emissions from road traffic. ${ }^{8}$ Parameters other than respirable suspended particulates should also be considered. Methods for assessing the proportion of road traffic-related air pollution have already been established. With such information, the avoidable health costs due to road traffic-related air pollution could be estimated for use by policy makers in the assessment of the benefits which would be gained by the implementation of clean air policies.

2. Objectives

In order to investigate the short-term effects of air pollution on morbidity and total mortality, as well as to assess the direct and indirect costs, together with the costs which individuals are willing to pay to prevent health effects of air pollution, the following will be evaluated:
2.1 the exposure-response relationship between air pollution and health outcomes, and the road traffic-related exposure, based on the estimated proportions of ambient and roadside air pollution and the exposed population,
2.2 the total health impact, the road traffic-related health impact of air pollution and their monetary value

3. Data and methods

3.1 Health impact of air pollution

Air pollutant data: Hourly concentration records of air pollutants including Nitrogen Dioxide $\left(\mathrm{NO}_{2}\right)$, Sulphur Dioxide (SO_{2}), Respirable Suspended Particulates (RSP), Ozone $\left(\mathrm{O}_{3}\right)$, Fine Suspended Particulates (FSP) and Carbon Monoxide (CO) were extracted for the years 1995 to 2000 for each of eight monitoring stations. The stations included Central and Western (CW), Kwai Chung (KC), Tai Po (TP), Kwun Tong (KT), Shamshuipo (SSP), Sha Tin (ST), Tsuen Wan (TW) and Yuen Long (YL). The data for Tung Chung and Hong Kong Eastern were not included in the study because these two stations started to operate only recently and have data for only 2-3 years. Those stations with data during the study period chosen are indicated by an asterisk (*) in Table 3.1.

For gaseous pollutants the Opsis instrument was used to measure the concentrations, in addition to or in replacement of the usual Point Analyzer instrument, in some stations as indicated by \# in the Table 3.1. For stations CW 1995-97 and KC 1995-96 both Opsis and Point Analyzer methods were used. The correlations between the two methods were high (0.84 - 0.97) (Table 3.2). From March 1999 onwards concentrations for $\mathrm{NO}_{2}, \mathrm{SO}_{2}$ and O_{3} were measured by the Opsis instrument in TP and YL stations. Thus the concentrations measured by Opsis have been used for the analysis for these pollutants in the two stations.

Hourly data were summarized into 8-hour (9:00-17:00 hours) daily means for O_{3} and into 24-hour daily means for the other pollutants. The daily data were regarded as valid if there were more than 6 hourly data for O_{3} and more than 18 hourly data for the other pollutants. Only valid data were used to summarize the set into daily data. The percentages of valid data are indicated in Table 3.3. Only those stations with more than three quarters of their data valid in each year were included for further analysis.

In checking for validity, the daily concentrations were summarized into monthly means and were compared with those published in the EPD Air Quality in Hong Kong reports for $1995,1996,1997,1998,1999$ and 2000. The monthly data which deviated more than $2 \mu \mathrm{~g} / \mathrm{m}^{3}$ from those published were checked to determine whether the deviations were due to mistakes in data manipulation or in extraction of data. After correction for mistakes, the original daily data were accepted for data analysis. Correlations between stations were high (Table 3.4). For each pollutant in each year, daily data for all stations, subject to the above restriction, were pooled up.

The procedures for summarizing all available stations into daily data were set according to studies ${ }^{9-10}$ using the Air Pollution and Health: a European Approach (APHEA) Phase II guidelines as outlined in Box 1 below:

Box 1

1. Estimate the annual mean concentration of each pollutant in each monitoring station.
2. Subtract this annual mean from the daily concentrations of the corresponding station and year. The resulting series is regarded as centered.
3. Take the arithmetic mean over all monitoring stations of these centered series day by day.
4. Finally add the annual mean of all stations to the series obtained from step 3. The series for each health outcome is used for the analysis.

The distributions and summary statistics for each of the pollutants are presented in Table 3.5 .

Meteorological data: Daily means of relative humidity and temperature for 1995-2000 were obtained from the Hong Kong Observatory. Their distributions are summarized in Table 3.6.

Mortality data: Daily mortality data for the years 1995-2000 were available from the Census \& Statistics Department. The total numbers of deaths in each disease category under study for the years 1995-2000 are shown in Table 3.7. They were summarized into daily counts for the analysis.

Hospital admission data: Hospital records for patients discharged between 1.1.1995 and 30.06.2001 were retrieved from the data provided from the Hospital Authority (HA) via the EPD. The data were checked and discrepancies between years were identified. Corrections were made after receiving advice from the HA Information Technology Department.

Daily hospital admissions for health outcomes from 1.1.1995 to 31.12.2000 were derived. The data were extracted from 12 major HA hospitals, which include Kwong Wah Hospital, Our Lady of Mary Knoll Hospital, Pok Oi Hospital, Princess Margaret Hospital, Prince of Wales Hospital, Pamela Youde Nethersole Eastern Hospital, Queen Elizabeth Hospital, Queen Mary Hospital, Ruttonjee Hospital, Tuen Mun Hospital, United Christian Hospital and Yan Chai Hospital. A summary of total numbers for some health outcomes is presented in Table 3.8.

Statistical methods: We used Poisson regression modeling to develop core models with daily counts of mortality and hospital admissions as the outcome variable ${ }^{11}$. The explanatory variables included were nonparametric smoothing (Loess function) ${ }^{12}$ terms for trend on days, seasonality, temperature, relative humidity, and dummy variables for days of the week, holidays, and influenza epidemics defined as the weeks with number of hospital admissions due to influenza being in the upper quartile in each year. Residuals (i.e. observed minus expected counts) of each core model were examined to check whether there were discernible patterns (indication of confounding effects by unobserved variables) and autocorrelation (due to effects of uncontrolled variables which might have affected variations in successive days) by means of residual plots and partial autocorrelation
function (PACF) plots. When there were overdispersions and autocorrelations in the residuals, they were adjusted for in the model.

We then added the daily pollutant concentration of each current day up to the previous three days for a pollutant, into the core model as an independent variable. Relative risks were then estimated. An estimate which was associated with the most significant result within 0-3 lag days was adopted. The estimates obtained in this study were compared with similar estimates from other Hong Kong studies ${ }^{9-10}$ for the period 1995-97 for validity and reliability checking.

All effect estimates were converted to excess risks per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ increase in pollutant concentration which is assumed to be linearly related to the risk estimate. An excess risk is the proportional increase in risk for those exposed to $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ concentration higher relative to those exposed to the lower level. Excess risk is derived from the corresponding relative risk minus one.

For comparison with previous studies, relative risks for a change of pollutant concentrations from $10^{\text {th }}$ percentile to $90^{\text {th }}$ percentile, i.e. risk ratio at the upper 90% of the concentration relative to that at the lower 10%, were also used on some occasions.

Number of deaths and hospital admissions which would be attributed to air pollution were estimated by multiplying the total numbers in the year 2000 with the corresponding excess risks.

3.2 Health cost of air pollution

Cost of illness: A range of health services, due to respiratory and cardiovascular diseases were included in the analysis. Admission to hospital; visits to accident and emergency departments, specialty and general outpatient clinics and private general practitioners were used for the calculation of direct health care costs. The average bed-day costs obtained from the Hospital Authority included investigations, procedures and drug costs. The computation methods and the assumptions used are specified in Box 2 below.

Box 2: Computation and assumptions

(I) Cost per episode/visit (Refer to column A of Table 4.7)
(a) HA hospital admissions: Mean lengths of stay (LOS) in number of bed-days for an episode of stay, for admission due to respiratory and cardiovascular diseases in acute general ($\mathrm{n}=15$), chronic infirmary ($\mathrm{n}=19$) and coronary care unit ($\mathrm{n}=3$) hospitals for females and males were obtained from the HA Inpatient database for the year 2000. Each mean value was computed after truncating the 10% highest values of LOS to avoid distortion of the mean by the extremely high values which were skewed from a normal distribution. Average costs for each bed-day were analyzed separately for acute general (\$3132), chronic infirmary (\$2735) and coronary care unit (\$5188) hospitals, but were assumed to be the same for both genders and for both diseases, and were obtained from HA ${ }^{13}$. Cost per episode was obtained by multiplying cost per bed-day with LOS.
(b) Private hospital admissions: The mean LOS in private hospitals were assumed to be the same as for HA acute general hospitals for respiratory and cardiovascular diseases. Cost per bed-day was taken to be that of HA acute general hospitals.
(c) Accident \& Emergency $(A \& E)$ visits: Average cost per visit (\$571), obtained from HA^{13}, was used for all categories of diseases and both genders.
(d) Specialty Outpatient Clinic (SOPC) visits: Average cost per visit (\$660) was obtained from HA^{13} and was applied to all visits in Medicine and Surgery SOPCs. The cost was assumed to be the same for all categories of diseases and for both genders.
(e) General Outpatient Clinic (GOPC) visits: The cost per visit was obtained from HA $(\$ 302)^{13}$ and Department of Health (\$219) ${ }^{14}$. It was assumed to be the same for all categories of diseases and for both genders.
(f) Private General Practitioners (GP): The mean consultation fee for a visit to a private doctor was obtained from a Household Survey carried out in $1998{ }^{15}$ adjusted for deflation in 2000 and assumed to be the same for all reasons for consultation.
(II) Frequency of episodes/visits per year (Refer to column B of Table 4.7)
(a) HA hospital admissions: The annual numbers of episodes in the year 2000, for respiratory and cardiovascular diseases, in females and males, and in each of acute general, chronic infirmary hospitals and coronary care unit (CCU), were derived from HA inpatient databases.
(b) Private hospital admissions: The total number of hospital admissions for respiratory and cardiovascular diagnoses in the past 12 months in HA and private hospitals were estimated from the Annual Digest of Statistics (2000) ${ }^{16}$ (respiratory 151,330; cardiovascular 110,877)

Total numbers from HA hospitals were derived from HA inpatient databases (respiratory 120,018; cardiovascular 93,629); and the numbers from private hospitals were obtained by taking the difference between the two sets of two numbers.
(c) $A \& E$ visits: The total number of visits in the year 2000 was obtained from HA^{13}. The proportions due to respiratory and cardiovascular diseases were assumed to be the same as for HA inpatient admissions (acute general and chronic infirmary hospitals).
(d) SOPC visits: The total numbers of visits in Departments of Medicine and Surgery of all SOPCs under the HA, were obtained from HA ${ }^{13}$. The proportions due to respiratory and cardiovascular diseases were assumed to be the same as for HA inpatient admissions (acute general and chronic infirmary hospitals).
(e) GOPC visits: The total numbers of visits to GOPCs under Department of Health were obtained ${ }^{13}$. The proportions due to respiratory and cardiovascular diseases were taken to be the same as for HA inpatient admissions (acute general and chronic infirmary hospitals).
(f) Private GP visits: In Wong (2001) ${ }^{17}$, the average numbers of visits per GP for respiratory and cardiovascular complaints were estimated to be 6203 and 395 respectively, for 11 GPs in the study (data for 7 GPs for the whole year 2000 and for 4 GPs for first nine months of the year, adjusted to yearly data, were used). In Wong (2001) ${ }^{17}$, it was estimated that there was a total of 4202 GPs (range 3173-5231) in practice in Hong Kong. The total numbers of GP visits for the two categories of complaint were then estimated by multiplication between total number of GPs and average number of visits per GP.
(III) Direct medical cost due to traffic-related air pollutants
(Refer to columns C and D of Table 4.7)
(a)-(d) Excess risks for respiratory and cardiovascular diseases per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in each pollutant $\left(\mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{RSP}\right.$ and $\left.\mathrm{O}_{3}\right)$ were derived from daily time-series analysis of HA hospital admission data 1995-2000. The proportions of traffic-related pollutants in the ambient air were estimated to be 61.9% for $\mathrm{NO}_{2}, 9.0 \%$ for SO_{2} and 38.8% for RSP according to statistics from emission inventories for each pollutant ${ }^{18}$. As O_{3} is not directly emitted from vehicles, the proportion could not be estimated. Multiplying each of these proportions to the excess risks due to pollutants in the ambient air gives estimates of excess risks due to traffic-related air pollutants. Multiplying each of them to the cost per episode/visit and number of episodes/visits per year gave costs due to trafficrelated air pollution per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change, for each air pollutant, for the utilization of each health service.
(e)-(f): Excess risks for private GP consultations for respiratory problems were obtained from Wong (2001) ${ }^{17}$. They were 2.98% for $\mathrm{NO}_{2}, 1.55 \%$ for $\mathrm{SO}_{2}, 1.42 \%$ for RSP and 2.4% for O_{3}. As described above, we multiplied each of them to the traffic-related proportions to obtain excess risks due to $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in traffic-related air pollutants, assuming the same in both respiratory and cardiovascular diseases. The health cost for the traffic-related air pollutants was estimated in a similar way as for III (a)-(d) above.
(IV) Indirect cost of morbidity and mortality

Productivity loss: (Refer to Table 4.8)
(a) Productivity loss due to admissions: Because admission to hospital and premature death have effects on productivity, these can be considered a cost of the illness associated with air pollution. The loss in productivity applies only to people aged from 15 to 64 years old. This productivity loss is calculated from the multiplication of mean lengths of stay, and number of episodes for patients aged from 15 to 64 and the median monthly income in Hong Kong. ${ }^{19}$ The number of episodes was multiplied by the labour force rate and the employment rate in the year 2000 from Census and Statistics Department ${ }^{16}$. The cost due to admission to hospital is separated into two parts: public hospitals and private hospitals. The mean lengths of stay and numbers of episodes for public hospitals were obtained from the HA inpatient database while the data for private hospitals were estimated by the same methods as stated in II (a-b).
(b) Productivity loss due to private GP consultations: Doctor consultations for respiratory and cardiovascular disease in the primary care sector might have been accompanied by time off work and therefore productivity loss would have been incurred. Data on sick leave was taken from a study based on twelve local general practitioners performed in 2001^{20}. Productivity loss resulting from sick leave granted for each disease
attributable to a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ increase in concentrations of each pollutant was calculated as follows:

The corresponding excess risk x mean number of sick leave days per consultation x total annual consultations for the disease in 2000 x labour force rate x employment rate x median income per day.

The relative risk for each pollutant (all air pollution and traffic-related air pollution) and the total annual number of consultations in Hong Kong were the same as those used previously in the calculations of direct private doctor consultation costs ${ }^{19}$. The mean number of days of sick leave granted by the sample of twelve GPs was 0.17 per consultation for all diseases (range is 0.06 to 0.24) and was applied to both consultations for respiratory and cardiovascular diseases in the calculation. According to the Census and Statistics Department, the labour force and unemployment rates were 61.4% and 4.9% in 2000 respectively ${ }^{16}$. The median income per day of $\$ 328.77$ ($10,000 \times 12 / 365$) was derived by translating the median monthly income to a daily rate ${ }^{19}$.

The waiting time for each consultation with a private GP was taken as the average waiting time found in the 1998 Household Survey ${ }^{15}$. Similarly, the travel time per consultation was taken as the average travel time found in that survey. These times were then valued in the same way as the sick leave days.
(c) The productivity loss due to premature deaths: The productivity loss value was obtained by multiplying person-years of life lost for those died at 15-64 years of age with median annual incomes for males and females respectively. Person-years of life lost were obtained by subtracting age at death from 65 for each death.

In summary, calculations on productivity loss were based on those incurred from hospital admissions, private doctor consultations, and premature death. It was assumed that people attending the GOPC, SOPC and A\&E were mainly elderly people and thus productivity loss was not calculated for these calculations.

These costs for productivity loss, time and travel can be added to the direct costs of illness to produce a further estimate of cost of illness which takes the reduction in productivity into account.

Mild symptoms: A questionnaire was designed ${ }^{21}$ to enquire whether respondents have experienced cough, sinus congestion, congested throat, itching and smarting eyes, shortness of breath and fever in the past 12 months and how much they are willing to pay to avoid one day of such symptoms. The method of enquiry is known as contingent valuation ${ }^{22}$. Telephone interviews were carried out on a population sample. Data on possible confounding factors and perceptions of air pollution was collected. The survey methods and findings on perceptions of air pollution are in Annex 1^{23}. When asking a value of their willingness to pay (WTP) to avoid each symptom, closed-end questions (i.e. fixed amounts) were used. If a respondent had accepted an amount, a higher value was next asked. But if he/she refused, a lower value was asked. Both single bid and double
bid (i.e. one level and two levels higher or lower) were asked. Log-linear statistical methods were used in the estimation. Eventually, the symptom of cough was taken as the representative symptom since it is a common symptom of upper respiratory tract infection (URTI) and the WTP to avoid a day of cough was intermediate between WTP values for other symptoms. The WTP value for avoidance of a day's cough (i.e. \$183.67) multiplied by 4 (which is slightly less than an a priori estimate of 5 days for duration of an URTI episode) was used to give an estimate of value for avoiding an episode of cough. The frequency of URTI episodes per year in the whole of Hong Kong was estimated to be the number of new GP visits for URTI inflated by 20% to take into account those who did not visit a GP even with URTI symptoms. Excess risks for URTI per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ of a pollutant were taken from Wong (2001) ${ }^{17}$.

The calculation of the value of avoiding mild respiratory symptoms was

Value to avoid 1 day's cough	4 days	x	Estimated no. of URTI visits in Hong Kong		120% for inflation		Excess risk of URTI visit $/ 10 \mu \mathrm{~g} / \mathrm{m}^{3}$ of pollutants

Serious morbidity: A sample of subjects was recruited from the previously mentioned telephone survey for participation in a choice set experiment ${ }^{21}$. The choice set contained two scenarios for the subjects to choose between. Each scenario has four items: 1/ probability to contract a disease; $2 /$ convenience between commuting; $3 /$ time spent on commuting; and 4/ additional expenses to be spent for transport/fuel. The first scenario represented the current situation of the respondent which did not require additional expenses for transport/fuel; and the other option represented a reduction in the probability of contracting a disease together with some additional expenses for transport/fuel which would be associated with a reduction in air pollution. Focus group meetings were carried out to obtain the information for designing the choice sets. The willingness to pay to avoid a day of serious morbidity was calculated from the responses to the choice sets. There was a total of 9 or 10 choice sets in each questionnaire sent to two groups of respondents with differing probabilities to contract cardiovascular and respiratory diseases. These probabilities were taken from the risk of admission to hospital due to air pollution. Within two to three weeks of receiving the mailed questionnaires, the respondents were called for telephone interview to answer the choice set questions.

As detailed in Working Paper AP02-02-003 ${ }^{24}$ (Annex 3), the value obtained for the avoidance of an admission to hospital and other associated impacts of having serious disease was $\$ 4,100$ for cardiovascular disease and $\$ 4,900$ for respiratory disease. These values were then multiplied by the relevant risks of admission to obtain the monetary value of avoiding these serious cases of disease.

Another sample of road-side workers, including those who work in petroleum-filling stations and news kiosks, were recruited and interviewed face-to-face to obtain their perceptions of roadside pollution. This survey is described in more detail in Appendix 1.

Mortality: The value of each avoided death is taken as that used in the WHO report on the impact assessment project of Austria, France and Switzerland. This estimate is 1.4 million Euros ${ }^{1}$ (HK $\$ 10,000,000$ at $\mathrm{HK} \$ 7.00$ per Euro) at 1999 prices and has not yet been
updated to 2000 values. This figure was chosen as being a reasonable value for this valuation, according to most international evidence to date, being a middle estimate, not the lowest and not the highest. The excess risks for mortality are taken from Table 4.5. Using these and the numbers of respiratory and cardiovascular deaths in 2000, we calculate the potential number of deaths avoidable per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ reduction in the individual pollutants. This calculation is carried out for all air pollution and traffic-related pollution fractions.

The value of a whole life has been used rather than costing number of life years lost. This is the current approach in other countries and has some justification in that a premature death has value even if the person is relatively old. An age-related valuation or one based on life years lost may be preferable but the data to allow this is not yet available. The final calculation for the value of deaths avoided by reducing air pollution is

$$
\mathrm{f}_{\text {resp }} \times \mathrm{ER}_{\text {resp }} \times \mathrm{HK} \$ 10,000,000+\mathrm{f}_{\text {cardio }} \times \mathrm{ER}_{\text {cardio }} \times \operatorname{HK} \$ 10,000,000
$$

where, $f_{\text {resp }}$ and $f_{\text {cardio }}$ are the number of deaths due to respiratory and cardiovascular diseases, respectively in the year $2000 ; \mathrm{ER}_{\text {resp }}$ and $\mathrm{ER}_{\text {cardio }}$ are the excess risks of death per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ of a specific pollutant, respectively for respiratory and cardiovascular, due to all air pollution or traffic-related air pollution.

To validate this estimate in Hong Kong, we carried out a contingent valuation study using bid levels based on the value of HK $\$ 10$ million. The bid was designed so that, if the respondent answered 'yes' to the bid, he or she would be valuing a statistical life at HK $\$ 10$ million. A random population sample was used for the telephone interview asking for responses to the bid levels. This survey is described in Appendix 2.

Economic evaluation of health effects of air pollution: The cost of illness and the complete estimation for monetary value of morbidity and mortality, including WTP estimation and cost of public hospital care, were estimated for each of the criteria pollutants under study. The maximum value among the pollutants was used as an 'at least' estimate as in the WHO study. ${ }^{1}$

Sensitivity analysis: The validity and reliability of the estimates of the health effects of each air pollutant were assessed by varying the effect estimates for the overall population and roadside population with pollutant concentrations from general level monitoring stations. The sensitivity analyses for cost of illness were carried out by using different values in some selected variables relating to ratios of respiratory and cardiovascular diseases, GP consultations and fraction of air pollution related to traffic.

4. Findings

4.1 Health impact of air pollution

Mortality: The residual plots show that there were no discernible patterns in the core model (Appendix 3). Autocorrelations between successive mortality counts after fitting the core model were small with coefficients all within ± 0.1 (Appendix 3). In all the three outcomes under study, the excess risk estimates were comparable to those obtained from a previous study ${ }^{9}$ for 1995-97 (Table 4.1).

Table 4.2 shows that NO_{2} and SO_{2} were associated with all of the causes of mortality under study. The excess risks per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ increase in concentration were, in general, higher for SO_{2} than NO_{2}. Those for RSP were smaller, and were significant for chronic obstructive pulmonary disease (COPD) and for all non-accidental causes, but only marginally significant for cardiovascular and respiratory diseases. O_{3} shows a significant association only with respiratory disease.

Hospital admissions: The residual plots show that there were no discernible patterns for all the outcomes under study for (Appendix 3). Some autocorrelations with coefficients ranging from 0.1-0.3 were found between successive hospital admission counts after fitting the core model but were eventually adjusted for (Appendix 3). A small degree of auto-regression for respiratory diseases is allowed in order to avoid over fitting of the model and the subsequent divergence of estimates. The predicted numbers from the core models and the observed numbers for years 1995-2000 were close to each other (Appendix 4). The discrepancies between the observed number in January - March 2001 and those predicted from 1995-2000 model are shown in Appendix 5.

Table 4.3 shows that the effects on hospital admissions estimated from this study were comparable with those from a previous study ${ }^{10}$, in that both studies did not show any effects for asthma (age 15-64), and also showed significant effects, with 95% confidence intervals overlapping in the two studies, for respiratory (65+), cardiac (all ages) and ischaemic heart diseases (IHD) (all ages).

Table 4.4 shows that, except for asthma, $\mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{RSP}$ and O_{3} were associated with all the outcomes under study. The excess risks for admissions were in general the highest for association with SO_{2} in all the outcomes under study, except for IHD where NO_{2} showed the highest effect.

FSP and CO preliminary study: The estimated effects of FSP and CO based on data only from one station in Tsuen Wan and for a shorter period of three years, were not reliable (Appendix 6). Further analysis should be performed on more complete data when available.

Excess risks due to ambient air pollution for general levels and in relation to road traffic: Table 4.5(a) shows the excess risks, for respiratory and cardiovascular mortality as well as hospital admissions, per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in each of the pollutants under study. Except for O_{3}, all the excess risks were significant and were comparatively higher in the 65 and older age group than all ages group.

The fractions of the pollutant concentrations due to road traffic were $\mathrm{NO}_{2} 61.9 \%, \mathrm{SO}_{2}$ 9.0% and RSP 38.8%. The excess risks due to traffic-related air pollution were the greatest for NO_{2}, smaller for RSP and the smallest for SO_{2}, for all health outcomes under study (Table 4.5 (b)).

Number of deaths and hospital admissions due to air pollution: Based on the excess risk estimates, the number of deaths and hospital admissions due to total pollutants and due to traffic related pollutants are derived and the results are shown in Table 4.6. The minimum number of cardiorespiratory deaths attributable to a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration, would be 243 deaths (95% confidence interval/upper limit 369) a year and that for the fraction due to traffic-related air pollution would be 83 (133) deaths a year. The corresponding minimum numbers of cardiorespiratory admissions would be 1917 (2755) and 821 (1159) respectively.

For the effects due to mean pollutant concentrations in the year $2000\left(\mathrm{NO}_{2} 58.3, \mathrm{SO}_{2} 17.8\right.$, RSP 50.4 and $\mathrm{O}_{3} 34.3 \mu \mathrm{~g} / \mathrm{m}^{3}$), the corresponding minimum numbers of deaths from cardiorespiratory disease were $783(1,244)$ and $485(770)$; and those for hospital admissions were 7737 (10911) and 4789 (6753) respectively.

4.2 Cost of health service utilization due to traffic-related air pollution

Cost of illness due to traffic-related air pollution:

(a) Direct costs: The annual costs of illness and frequencies in utilizing each category of health services are shown in Table 4.7 columns A and B respectively. The corresponding annual cost, due to all pollution and traffic-related air pollution, for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in each air pollutant, are shown, respectively, in columns C and D of Table 4.7. The total cost associated with $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in the pollutant $\left(\mathrm{NO}_{2}\right)$ related to traffic amounted to $\$ 141$ million, with contribution from private GP visits of $\$ 118$ million, hospital admissions $\$ 14$ million, general outpatient clinic visits $\$ 6.3$ million, and specialty outpatient clinic visits and accident and emergency visits each about $\$ 1$ million.
(b) Productivity loss: The costs of lost productivity due to all pollution and traffic-related air pollution are shown in Table 4.8. The costs of lost productivity due to trafficrelated pollutants were $\$ 38.7$ million for $\mathrm{NO}_{2}, \$ 5.8$ million for SO_{2} and $\$ 11.0$ million for RSP. These productivity losses can be added to the direct costs to produce two estimates of cost of illness, excluding and including productivity losses. For example, for NO_{2} these costs are 227.3 million (excluding productivity loss) and 289.7 million (including productivity loss).

Willingness to pay to avoid death, and serious and minor morbidity:Table 4.9 shows the willingness to pay (WTP) to avoid death or episode of serious or minor illness and number of deaths or morbidity episodes in a year, in columns A and B respectively. A value of statistical life (VSL) of HK $\$ 10$ million was adopted. The survey to validate the estimate of VSL used, obtained 108 responses with 59% response rate and showed that 81% of respondents would estimate a VSL of, at least, $\mathrm{HK} \$ 10$ million (Appendix 2). Hence this is considered a conservative value for the local population. Column D shows
the monetary values in a year in association with traffic-related pollution for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration.

Economic valuation of health effects of air pollution: The monetary value for the health effect of air pollution for a change of $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ pollutant concentration would amount to at least (a) for total air pollution, $\$ 2.8$ billion; and (b) for the part related to road traffic, $\$ 1.2$ billion (Table 4.10). When the annual mean pollutant concentrations were used as an overall estimate for Hong Kong in the year 2000, the corresponding estimates for economic valuation were at least (a) for total air pollution, $\$ 11.1$ billion; (b) for the part related to road traffic, $\$ 6.9$ billion, and for the direct cost of illness the estimates were at least $\$ 1.3$ billion and $\$ 0.8$ billion respectively.

The corresponding estimates per one million population are shown in the last column of Table 4.10, which allows extrapolation of the monetary valuation to other years with different populations and different mean pollutant concentrations.

4.3 Perceptions of air pollution: general population and roadside workers

Working paper AP 02-02-001 in Annex 1^{23} gives the full report on the general population survey of perceptions of air pollution and Appendix 1 gives the findings for the roadside workers. The roadside workers are a different socio-economic and demographic group from the population sample. They will also be a survivor group, the most severely affected by the pollution probably having moved into other occupations. In both groups, more than half think they suffer from health problems due to air pollution (58\% of roadside workers, 69% of general population). These problems are principally breathing and throat problems. The roadside workers estimate they spend an average of 40 hours a week near busy roads, while the general population spends 12 hours a week. Regarding the air quality in their own district, 88% and 57% of the roadside workers and the general population respectively consider the air quality as only fair or poor. It was found that those whose home was nearer ground level in Kowloon, were more likely to rate the air quality as poor. (Annex 1)

5. Sensitivity analysis

5.1 Health impact of air pollution

Mortality: Table 5.1 compares effects of air pollution on respiratory and cardiovascular mortality for the whole of Hong Kong with those for the sub-population residing in roadside areas most exposed to traffic-related air pollution (TRAP). The estimates for the two populations were consistent with each other when pollutant concentrations were derived from all monitoring stations.

Hospital admissions: Table 5.2 compares the effects of air pollution, on respiratory and cardiovascular admissions, for the whole of Hong Kong with those for the sub-population residing in roadside areas most exposed to TRAP. The estimates were consistent with each other, for the two populations.

5.2 Direct cost of illness due to traffic-related air pollution

Table 5.3 shows the sensitivity of using different values in some selected variables on the direct cost of illness due to traffic-related air pollution. For the effects of NO_{2} (the one with the strongest effect among all pollutants), the greatest variations were from variables relating to GP consultation, in that the deviation in the cost may be up to 30% of the original estimate. For the other variables the deviations were limited to about 10%.

Part (E) in table 5.3 is an assessment of an estimate of number of consultations with private GPs in Hong Kong in one year. We calculated this variable using a totally different data set (McGhee et al 1998) ${ }^{15}$ and came up with a figure which is very close to that originally estimated using Wong (2001) ${ }^{17}$. We are therefore satisfied that total numbers of consultations in Hong Kong using data from Wong (2001) ${ }^{17}$ is probably valid. Furthermore, in part (F) we used proportional differences between roadside and general levels of air pollutants as fractions of traffic-related air pollutant to obtain the cost estimates, and compared with those based on emission proportions. The results are also close to each other, suggesting that the use of emission proportion is also probably valid.

6. Discussion

6.1 Strengths of this study

Considering $\mathrm{NO}_{2}, \mathrm{SO}_{2}, \mathrm{RSP}$ and O_{3} together: Most studies of economic evaluation of the health effects of air pollution used, in an a priori approach, only a single indicator of air pollution, namely, RSP. In this study, we assessed four pollutants and used a conservative "at least" approach, in that the one pollutant which produced the largest value was selected for an "at least" estimate. For total air pollution level the pollutant which produced the biggest economic value per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change of the concentration was SO_{2}, and for traffic related pollution NO_{2}. A similar approach has been used by the WHO European study, ${ }^{1}$ for which the single pollutant, RSP, was chosen a priori.

Using local estimates for effects of air pollution: All the health effect estimates were derived from local studies performed by the principal investigators of this report. Most of the health outcomes, including mortality, ${ }^{9}$ hospital admissions ${ }^{10}$ and GP visits, ${ }^{25}$ have been published in peer reviewed international journals.

Using local valuations of value of avoiding health effects: All of the estimates used to put a monetary value on avoiding health effects were derived or, in the case of mortality, validated, locally. Most studies overseas transfer values from elsewhere with little validation being possible. These local studies were rigorous and had adequate power to produce fairly precise estimates.

Using multiple approaches in data collection: In this study, several methods of data collection were used. We used telephone interviews to acquire willingness to pay (WTP) values; a conjoint analysis using choice set experiments in obtaining the WTP values for serious morbidity from a sub-sample of the consenting respondents to the telephone survey and focus group meetings to obtain information for the design of the choice set options of the experiment.

The largest local study of health effects of air pollution: The examination of health effects of air pollution carried out in this study is the largest study of its kind in the Asia Pacific region. It used six years of data while the other studies used about three years data. Thus the estimates obtained from this study are likely to be highly reliable.

6.2 Limitations of this study

Effects due to short term exposure: The health effects estimated in this study can only be regarded as those due to short term exposure of daily air pollution. The study does not estimate long term exposure effects. But short term exposure may produce long term effects. In order to estimate long term exposure effects, much more organisationally difficult and expensive longer term prospective studies are required. Another potential drawback of short term daily time-series studies for mortality arises from the possibility of mortality displacement or "harvesting". That is the phenomenon due to elimination of susceptible subjects after the exposure, so that persistent effects cannot be observed even though high levels of air pollution continue. However recent studies have shown, that after correction for the effects due to harvesting, continuing effects could be observed and that the advancement of deaths could extend over a period of many months or may be longer. ${ }^{26,27}$

Unavailability of private hospital data: There are about 7\% of hospital inpatients utilizing private hospitals. Private hospital clients belong to higher socioeconomic groups of the community. Our use of estimates of health effects and health care costs based on public hospitals may be subject to some bias because of this selection factor. But the biases, if there are any, should be small.

Crude estimates of GP visits in Hong Kong: The total number of GPs in Hong Kong, estimated to be around 4000, was based on a recent local study ${ }^{17}$. The effects on GP visits were obtained from a small study of 11 GPs only. Thus the number of GP visits in Hong Kong, derived from these two estimates, could be subject to biases. However, the validation of the number of visits to private GP as shown in Table 5.3, shows that the estimate of visits is probably valid.

Lack of more precise cost data for health service utilization: Due to a lack of this type of data, the cost estimates of health service utilization are not very detailed. For example, unit costs for different age groups, between public and private hospitals and for different disease categories, were assigned the same values.

Using proxy estimates of morbidity: Again due to a lack of data, episodes and risk estimates of minor and serious morbidity were based on proxy estimates of health service utilization effects. For example, numbers and effects of GP visits and hospital admissions were used for morbidity prevalence and effect estimates, in the economic evaluation of this study.

Small data sets for FSP and CO: The pollutant concentration data for FSP and CO were only derived from one monitoring station in three years. Results for these two pollutants should be interpreted cautiously and should be validated when more data are available. Thus, the health effects of these two pollutants were not considered in the economic
evaluation of this study. However, FSP is highly correlated with RSP and, a major part of its effect should have been taken account of by RSP.

Effect on asthma admissions: From the literature, the role of air pollution in the causation of asthma is unclear. For example, it was frequently found that asthma was insensitive to episodes of air pollution, e.g. the lack of effect on asthmatics in the famous London smog (Fry 1953) ${ }^{28}$, European smog (Wichmann 1989) ${ }^{29}$ and high levels of NO_{2} in London in 1991. ${ }^{30}$ Some epidemics of asthma in Barcelona, Spain, were apparently related to NO_{2} but the real cause was due to soy-bean allergens which were trapped by weather conditions in the atmosphere when ships were unloading their cargoes in the harbour (Ussetti 1983). ${ }^{31}$

In Hong Kong, SO_{2} was related to a potential patho-physiological precursor of asthma in children, bronchial hyperresponsiveness ${ }^{32}$. But bronchial hyperresponsiveness in children was associated with NO_{2} only when they also had atopy and/or a high concentration of $\operatorname{IgE} .{ }^{33}$ In a recent prospective cohort study, it was shown for the first time that ozone may be a cause of increased incidence of asthma in children, but only when they also increased their ventilatory rate by participating in high activity sports. ${ }^{34}$ Thus the relationships between air pollution and asthma are not clear and may be related to complex interactions with other social and environmental factors in different regions. In addition, there may be important differences in the pollutant mixtures between these different geographical settings. In this Hong Kong daily time-series study, no relationships between air pollution and asthmatic admissions were found and no associated costs were therefore included. Further studies are warranted.

Effects on road-side workers: In the survey of roadside workers, this sample is not directly comparable with the population sample because of differing socio-demographic characteristics. However, the results are shown side by side in section 5 of Appendix 1 for information. Roadside workers spend about twice as much time outdoors and over three times as much time near busy roads than the general population. It appears that roadside workers consider their health to be poorer, with more respiratory and heart problems. Fewer apparently consider that they have health problems related to air pollution and, for those who do, fewer reported breathing problems. Signs of good air quality are similar in both groups.

6.3 Comparison with similar studies

Health impact on mortality: For mortality outcomes, we found relatively stronger associations and a greater magnitude of effect for SO_{2} (its correlations with others were the lowest when compared with other pollutants) and NO_{2} than for RSP. In the studies of 20 US cities for relationships between air pollution and mortality, the focus was on RSP (Samet 2000). ${ }^{35}$ However, the analysis for the wider grouping of 90 cities showed that effects of SO_{2} and NO_{2} were strong. ${ }^{36}$ For studies in Europe (combining 5 western and 4 central European countries) ${ }^{37}$ and Asia Pacific regions, ${ }^{38-42}$ strong effects for gaseous pollutants were also found. Thus independent effects of gaseous pollutants should be further investigated with control for effects of particulates and other pollutants.

Health impact on hospital admissions: For hospital admissions we found significant effects on all categories of diseases under study except asthma, for all the four criteria pollutants. The results are in line with many other studies. ${ }^{43}$ As in the case of mortality, SO_{2} and NO_{2} exhibited the strongest effects per unit of pollutant concentration in both cardiovascular and respiratory admissions.

Direct cost for health service utilization: The approach used in this study included only those costs which were spent directly on utilization of health services and an estimate of costs of productivity loss due to admissions and for premature deaths. These approaches have been used in other studies. Intangible costs were not included, and this approach is known to provide an under-estimate of the total cost of illness. However, an estimate including loss in productivity, for duration of stay in hospital due to respiratory and cardiovascular diseases for the 15-64 age groups, showed that the cost was relatively small.

Economic valuation of morbidity: In this study willingness to pay (WTP) costs for avoidance of minor morbidity were assessed by contingent valuation; and for avoidance of serious morbidity by conjoint analysis using choice sets. In Hong Kong most people utilize public hospital services for treatment of serious morbidity. They usually could not locate a reference dollar value in hypothetical contingent valuation while a choice-set survey provides the respondents a discrete choice format, mimicking the decision-making process in the real life situation and was considered more suitable for valuation of serious morbidity in Hong Kong. In most other similar studies, costs of morbidity were assessed by the direct costs of health service utilization and productivity loss plus another part for avoidance of specific pain and suffering derived by a survey method. ${ }^{1,5,44,45}$

Economic valuation of mortality: In this study, the value of avoiding of mortality was first estimated by adopting a value (1.4 million Euro or $\mathrm{HK} \$ 10$ million) for preventing a statistical fatality which was based on a sophisticated study design ${ }^{46}$ and validating this value locally. This value is the one used in the WHO European study as a middle and feasible estimate according to international evidence to date. We further validated this estimate in Hong Kong using the contingent-valuation survey method already adopted in this study. Our validation exercise showed that this estimate is a conservative value for Hong Kong.

Comparison of our results with other local studies: There are two principal, previous studies to compare with this one - the Friends of the Earth report ${ }^{44}$ (FOE) and that by EHS Consultants Ltd. ${ }^{5}$ The value used by EHS for the VSL was HK $\$ 5$ million, based on a very small sample and the median of an open-ended question, which is not an accepted method for deriving such a value. We used a value of $\mathrm{HK} \$ 10$ million and have justified and validated this estimate for use in Hong Kong. The EHS report estimated that the cost of illness due to air pollution was $\mathrm{HK} \$ 170$ million for each $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in NO_{2}. We find a cost of illness of $\mathrm{HK} \$ 227$ million for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in NO_{2}. It is well known that cost of illness studies often under-estimate the true value of health impact since they only include direct costs of health care and lost productivity due to serious illness. The FOE study says that they used data reported in a 1995 report in the U^{47} and states that the value of ill health associated with air pollution in the Hong Kong population could be HK $\$ 208$ million per unit of RSP. They also discuss the quantification of other costs to
business, tourism and personal and vegetation costs. We have not tried to quantify these latter costs. Our estimate for the health costs is based on local data and is a little higher than their estimate but of a similar magnitude.

For the sake of comparison, using the most complete valuation per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in a pollutant per one million population, the monetary cost estimate was 397.8 million by FOE, 157.7 million by EHS and 423.7 million by this study. Thus our estimate lies much closer to the FOE value and can be regarded as valid and reliable.

Variations in number of deaths/admissions due to air pollution: Using the "at least" approach, the estimate only represents the effect of a single pollutant which was found to produce the greatest effect among the four pollutants under study. When the effects of the four pollutants are assumed to be independent of each other, we can obtain a figure for health effect using the total sum of the effects of the four pollutants as an indicator. Another source of variation arises from using different periods of the database and different assumptions based on the mean or the upper bound of the confidence interval in estimating the excess risk. The following box summarizes these possible variations

Box 3: Variations in number of deaths and hospital admissions due to air pollution

6.4 Summary

Pollution and health: This further analysis consolidates the Hong Kong evidence on the adverse health effects of all of the four criteria pollutants. It demonstrates that radical interventions are needed to reduce the ambient levels of pollutants, resulting from the combustion of fossil fuels, to a point well below the present Air Quality Objectives.

Economic: Polluted air is costly. It causes premature death, serious illness, an epidemic of more minor health problems and impairment of quality of life. Everyone is exposed. Individuals have few or no means of protecting themselves against this hazard. For these reasons, the current air pollution levels in Hong Kong are a serious economic problem as reflected in the mean value of $\$ 11.1$ billion which is the Hong Kong population's willingness to pay to eliminate the health impacts.

Even in terms only of the direct medical costs, the amount spent on dealing with the excess health problems due to the annual average air pollution level amounts to $\$ 1.3$ billion spending on health care in the year 2000. Eliminating this pollution would save much or all of this cost and the re-allocation of these scarce health care resources would allow them to be put to better use in improving and maintaining the population's health.

Tables
Table 3.1: Air pollutant concentration data available from the EPD

		Rooftop stations								Roadside stations		
		CW	KC	KT	SSP	ST	TP	TW	YL	CL	CB	MK
NO_{2}	1995	*\#	*\#	*	*	*	*	*	*	-	-	*
	1996	*\#	*\#	*	*	*	*	*	*	-	-	*
	1997	*\#	*	*	*	*	*	*	*	-	-	*
	1998	*	*	*	*	*	*	*	*	-	*	*
	1999	*	*	*	*	*	(*)\#	*	(*)\#	*	*	*
	2000	*	*	*	*	*	\#	*	\#	*	*	[*]
SO_{2}	1995	*\#	*\#	*	*	*	-	*	*	-	-	*
	1996	*\#	*\#	*	*	*	-	*	*	-	-	*
	1997	*\#	*	*	*	*	*	*	*	-	-	*
	1998	*	*	*	*	*	*	*	*	-	*	*
	1999	*	*	*	*	*	(*)\#	*	(*)\#	*	*	*
	2000	*	*	*	*	*	\#	*	\#	*	*	[*]
O_{3}	1995	*\#	*\#	-	-	-	-	-	*	-	-	-
	1996	*\#	*\#	-	-	-	-	-	*	-	-	-
	1997	*\#	*	*	-	*	*	*	*	-	-	-
	1998	*	*	*	*	*	*	*	*	-	-	-
	1999	*	*	*	*	*	(*)\#	*	(*)\#	-	-	-
	2000	*	*	*	*	*	\#	*	\#	-	-	-
RSP	1995	*	*	*	-	*	-	*	*	-	-	-
	1996	*	*	*	-	*	-	*	*	-	-	*
	1997	*	*	*	*	,	*	*	*	-	-	*
	1998	*	*	*	*	*	*	*	*	-	*	*
	1999	*	*	*	*	*	*		*	*	*	*
	2000	*	*	*	*	*	*	*	*	*	*	[*]
FSP	1995	-	-	-	-	-	-	-	-	-	-	-
	1996	-	-	-	-	-	-	-	-	-	-	-
	1997	-	-	-	-	-	-	*	-	-	-	-
	1998	-	-	-	-	-	-	*	-	-	*	-
	1999	-	-	-	-	-	-	*	-	*	-	-
	2000	-	-	-	-	-	-	*	-	-	-	-
CO	1995	-	-	-	-	-	-	-	-	-	-	*
	1996	-	*	-	-	-	-	-	-	-	-	*
	1997	-	*	-	-	-	-	*	-	-	-	*
	1998	-	-	-	-	-	-	*	-	-	*	*
	1999	-	-	-	-	-	-		-	*	*	*
	2000	-	-	-	-	-	-	*	-	*	*	[*]

() Recorded only in January - February;

* : data recorded by usual Point Analyzer instrument;
\# : data recorded by Opsis instrument;
- : no data;
[] : data recorded January - September.

Table 3.2: Correlations between data measured by the usual Point Analyzer instrument and by the Opsis instrument

NO_{2}	1995	CW	0.93
		KC	0.96
	1996	CW	0.95
		KC	0.91
	1997	CW	0.89
SO_{2}	1995	CW	0.94
		KC	0.92
	1996	CW	0.85
		KC	0.97
	1997	CW	0.97
O_{3}	1995	CW	0.84
		KC	0.88
	1996	CW	0.95
		KC	0.97
	1997	CW	0.88

Table 3.3: Percentage of valid measures of air pollutants in each monitoring stations
Note: Valid data less than 75% were excluded, except those for roadside station.

		Rooftop stations								Roadside stations		
		CW	KC	KT	SSPO	ST	TP	TW	YL	CL	CB	MK
NO_{2}	1995	93	92	96	89	97	97	95	-	-	-	86
	1996	93	96	96	90	96	95	93	96	-	-	92
	1997	91	90	87	98	93	89	85	84	-	-	79
	1998	98	97	84	91	98	98	97	97	-	93	94
	1999	98	98	93	96	98	(81)	98	(83)	98	97	93
	2000	96	98	76	98	99	(83)	98	(90)	97	97	[72]
SO_{2}	1995	98	97	97	93	99	-	95	-	-	-	94
	1996	98	95	98	89	99	-	98	96	-	-	97
	1997	92	93	93	97	94	-	82	85	-	-	74
	1998	95	98	84	91	98	99	96	97	-	96	95
	1999	98	99	95	97	98	(81)	99	(83)	96	98	93
	2000	95	99	76	98	99	(83)	99	(90)	95	98	[71]
O_{3}	1995	94	93	-	-	-	-	-	-	-	-	-
	1996	92	95	-	-	-	-	-	91	-	-	-
	1997	87	90	-	-	-	-	-	80	-	-	-
	1998	94	95	81	88	94	95	93	91	-	-	-
	1999	93	90	90	91	92	(77)	93	(79)	-	-	-
	2000	92	97	-	94	96	(81)	93	(86)	-	-	-
RSP	1995	85	95	79	-	87	-	94	-	-	-	-
	1996	99	98	92	-	87	-	86	89	-	-	42
	1997	90	92	85	-	91	-	90	88	-	-	81
	1998	99	96	81	91	97	99	95	96	-	96	96
	1999	98	97	96	98	99	94	98	97	96	97	94
	2000	99	100	96	100	99	85	100	96	95	95	[73]
FSP	1998	-	-	-	-	-	-	97	-	-	94	-
	1999	-	-	-	-	-	-	99	-	94	-	-
	2000	-	-	-	-	-	-	100	-	-	-	-
CO	1995	-	-	-	-	-	-	-	-	-	-	94
	1996	-	-	-	-	-	-	-	-	-	-	97
	1997	-	-	-	-	-	-	-	-	-	-	78
	1998	-	-	-	-	-	-	96	-	-	95	94
	1999	-	-	-	-	-	-	99	-	96	97	91
	2000	-	-	-	-	-	-	99	-	96	98	[71]

() Measured by Point Analyzer method in January 1999 and by Opsis instrument afterwards.
[] Data documented in January - September.

Table 3.4: Correlations between stations for daily concentrations of pollutant

			KC	KT	SSP	ST	TP	TW	YL
NO_{2}	1995	CW	0.70	0.89	0.83	0.78	0.82	0.87	0.76
		KC	-	0.61	0.70	0.78	0.70	0.72	0.76
		KT		-	0.83	0.72	0.84	0.85	0.74
		SSP			-	0.71	0.80	0.85	0.70
		ST				-	0.84	0.75	0.76
		TP					-	0.81	0.77
		TW						-	0.68
	1996	CW	0.69	0.85	0.83	0.74	0.76	0.81	0.82
		KC	-	0.75	0.75	0.86	0.81	0.77	0.70
		KT		-	0.90	0.78	0.82	0.87	0.78
		SSP			-	0.79	0.83	0.93	0.83
		ST				-	0.89	0.76	0.73
		TP					-	0.81	0.79
		TW						-	0.76
	1997	CW	0.67	0.83	0.88	0.76	0.68	0.82	0.87
		KC	-	0.68	0.63	0.82	0.70	0.70	0.72
		KT		-	0.90	0.78	0.74	0.88	0.76
		SSP			-	0.74	0.74	0.92	0.83
		ST				-	0.84	0.75	0.74
		TP					-	0.69	0.69
		TW						-	0.83
	1998	CW	0.67	0.82	0.84	0.77	0.77	0.78	0.84
		KC	-	0.53	0.63	0.77	0.64	0.67	0.68
		KT		-	0.92	0.72	0.80	0.88	0.85
		SSP			-	0.77	0.78	0.94	0.90
		ST				-	0.87	0.77	0.82
		TP					-	0.75	0.83
		TW						-	0.89
	1999	CW	0.80	0.85	0.87	0.84	0.80	0.81	0.85
		KC	-	0.79	0.78	0.81	0.76	0.82	0.81
		KT		-	0.92	0.78	0.76	0.89	0.84
		SSP			-	0.78	0.75	0.93	0.87
		ST				-	0.89	0.78	0.85
		TP					-	0.75	0.84
		TW						-	0.89
	2000	CW	0.76	0.82	0.83	0.75	0.73	0.79	0.86
		KC	-	0.74	0.76	0.80	0.78	0.76	0.76
		KT		-	0.91	0.66	0.73	0.90	0.81
		SSP			-	0.65	0.64	0.88	0.85
		ST				-	0.82	0.68	0.77
		TP					-	0.72	0.77
		TW						-	0.85

			KC	KT	SSP	ST	TP	TW	YL
SO_{2}	1995	CW	0.69	0.49	0.66	0.77	-	0.51	0.60
		KC	-	0.37	0.61	0.76	-	0.73	0.63
		KT		-	0.51	0.60	-	0.26	0.49
		SSP			-	0.74	-	0.64	0.63
		ST				-	-	0.58	0.62
		TP					-	-	-
		TW						-	0.63
	1996	CW	0.49	0.62	0.73	0.65	-	0.42	0.56
		KC	-	0.60	0.74	0.75	-	0.85	0.46
		KT		-	0.74	0.69	-	0.45	0.56
		SSP			-	0.84	-	0.69	0.61
		ST				-	-	0.70	0.60
		TP					-	-	-
		TW						-	0.50
	1997	CW	0.70	0.69	0.79	0.75	0.73	0.59	0.63
		KC	-	0.69	0.77	0.81	0.70	0.87	0.57
		KT		-	0.74	0.79	0.85	0.65	0.52
		SSP			-	0.83	0.75	0.75	0.65
		ST				-	0.86	0.74	0.54
		TP					-	0.66	0.65
		TW						-	0.55
	1998	CW	0.60	0.65	0.75	0.72	0.65	0.60	0.43
		KC	-	0.61	0.84	0.80	0.54	0.78	0.31
		KT		-	0.65	0.68	0.66	0.53	0.42
		SSP			-	0.88	0.66	0.74	0.41
		ST				-	0.78	0.70	0.47
		TP					-	0.61	0.64
		TW						-	0.52
	1999	CW	0.56	0.62	0.79	0.59	0.36	0.51	0.54
		KC	-	0.47	0.79	0.70	0.33	0.84	0.29
		KT		-	0.58	0.48	0.23	0.39	0.40
		SSP			-	0.74	0.38	0.75	0.45
		ST				-	0.30	0.65	0.34
		TP					-	0.31	0.60
		TW						-	0.37
	2000	CW	0.60	0.61	0.70	0.49	0.54	0.63	0.51
		KC	-	0.61	0.84	0.68	0.54	0.76	0.37
		KT		-	0.67	0.58	0.56	0.65	0.56
		SSP			-	0.65	0.55	0.83	0.38
		ST				-	0.52	0.51	0.28
		TP					-	0.60	0.58
		TW						-	0.55

			KC	KT	SSP	ST	TP	TW	YL
O_{3}	1995	CW	0.82	-	-	-	-	-	0.59
		KC	-	-	-	-	-	-	0.50
		KT		-	-	-	-	-	-
		SSP			-	-	-	-	-
		ST				-	-	-	-
		TP					-	-	-
		TW						-	-
	1996	CW	0.79	-	-	-	-	-	0.71
		KC	-	-	-	-	-	-	0.69
		KT		-	-	-	-	-	-
		SSP			-	-	-	-	-
		ST				-	-	-	-
		TP					-	-	-
		TW						-	-
	1997	CW	0.79	0.75	-	0.77	0.84	0.86	0.86
		KC	-	0.80	-	0.85	0.83	0.90	0.79
		KT		-	-	0.75	0.84	0.80	0.76
		SSP			-	-	-	-	-
		ST				-	0.93	0.79	0.73
		TP					-	0.76	0.86
		TW						-	0.84
	1998	CW	0.80	0.80	0.86	0.86	0.84	0.82	0.85
		KC	-	0.84	0.87	0.89	0.83	0.89	0.80
		KT		-	0.86	0.86	0.84	0.79	0.83
		SSP			-	0.89	0.85	0.90	0.86
		ST				-	0.93	0.87	0.88
		TP					-	0.83	0.89
		TW						-	0.88
	1999	CW	0.84	0.83	0.86	0.86	0.64	0.81	0.69
		KC	-	0.81	0.84	0.84	0.60	0.85	0.57
		KT		-	0.83	0.87	0.79	0.84	0.72
		SSP			-	0.83	0.67	0.88	0.73
		ST				-	0.86	0.82	0.79
		TP					-	0.70	0.85
		TW						-	0.71
	2000	CW	0.84	0.83	0.87	0.87	0.82	0.85	0.73
		KC	-	0.83	0.86	0.86	0.75	0.89	0.60
		KT		-	0.88	0.88	0.83	0.83	0.66
		SSP			-	0.87	0.84	0.92	0.75
		ST				-	0.84	0.87	0.65
		TP					-	0.79	0.80
		TW						-	0.73

			KC	KT	SSP	ST	TP	TW	YL
RSP	1995	CW	0.95	0.93	-	0.95	-	0.95	0.81
		KC	-	0.95	-	0.97	-	0.98	0.88
		KT		-	-	0.93	-	0.92	0.81
		SSP			-	-	-	-	-
		ST				-	-	0.95	0.88
		TP					-	-	-
		TW						-	0.89
	1996	CW	0.95	0.93	-	0.94	-	0.95	0.94
		KC	-	0.94	-	0.95	-	0.98	0.95
		KT		-	-	0.94	-	0.93	0.89
		SSP			-	-	-	-	-
		ST				-	-	0.96	0.92
		TP					-	-	-
		TW						-	0.95
	1997	CW	0.94	0.93	0.97	0.95	0.91	0.95	0.92
		KC	-	0.94	0.97	0.95	0.95	0.97	0.91
		KT		-	0.96	0.95	0.94	0.93	0.86
		SSP			-	0.97	0.92	0.96	0.87
		ST				-	0.96	0.95	0.90
		TP					-	0.93	0.90
		TW						-	0.92
	1998	CW	0.91	0.92	0.95	0.94	0.91	0.93	0.92
		KC	-	0.91	0.95	0.93	0.90	0.96	0.89
		KT		-	0.95	0.90	0.88	0.91	0.86
		SSP			-	0.95	0.92	0.96	0.92
		ST				-	0.95	0.92	0.93
		TP					-	0.89	0.93
		TW						-	0.91
	1999	CW	0.90	0.97	0.97	0.96	0.94	0.96	0.93
		KC	-	0.90	0.93	0.92	0.90	0.94	0.88
		KT		-	0.97	0.96	0.93	0.95	0.89
		SSP			-	0.97	0.93	0.97	0.90
		ST				-	0.95	0.97	0.93
		TP					-	0.94	0.93
		TW						-	0.95
	2000	CW	0.90	0.95	0.96	0.96	0.92	0.94	0.92
		KC	-	0.92	0.94	0.93	0.91	0.95	0.85
		KT		-	0.96	0.96	0.93	0.94	0.88
		SSP			-	0.96	0.92	0.97	0.90
		ST				-	0.96	0.96	0.93
		TP					-	0.93	0.93
		TW						-	0.92

Table 3.5: Summary statistics of daily concentrations of pollutants ($\mu \mathrm{g} / \mathrm{m}^{\mathbf{3}}$)

A. General Level							
	Whole year	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
NO_{2}	1995	17.2	40.6	51.4	53.3	65.1	123.2
	1996	17.0	39.7	52.4	54.5	66.6	122.7
	1997	15.6	46.1	57.1	59.8	71.7	146.6
	1998	20.8	43.8	54.8	55.5	66.2	125.6
	1999	10.3	44.6	60.9	62.6	75.0	157.8
	2000	20.0	46.1	55.9	58.3	67.8	167.3
SO_{2}	1995	2.3	10.1	15.1	17.7	22.2	63.6
	1996	3.5	10.4	15.5	18.6	23.9	75.8
	1997	2.2	8.0	13.6	17.4	21.6	88.8
	1998	1.6	7.3	11.9	13.3	16.7	45.9
	1999	4.9	13.0	18.0	20.3	23.7	75.5
	2000	4.4	10.1	14.6	17.8	23.4	77.8
O_{3}	1995	0.0	12.5	25.2	29.1	43.5	99.6
	1996	0.9	18.0	32.1	37.2	53.4	170.7
	1997	0.8	17.6	28.2	34.2	47.3	124.9
	1998	3.9	15.6	25.4	32.1	44.3	125.8
	1999	6.1	19.4	34.2	35.3	48.5	123.8
	2000	3.0	19.2	30.3	34.3	47.3	106.9
RSP	1995	14.1	30.2	47.3	51.5	66.6	156.6
	1996	14.5	31.4	46.2	53.9	71.3	166.3
	1997	12.7	34.1	48.2	52.2	67.0	154.2
	1998	15.5	28.8	42.1	48.1	63.8	140.5
	1999	15.0	34.0	50.2	54.8	69.7	188.4
	2000	15.2	33.4	43.4	50.4	65.1	177.5
FSP	1998	10.5	24.7	33.8	37.7	49.8	120.3
	1999	8.3	22.3	33.3	36.7	47.5	118.6
	2000	8.9	21.2	29.1	33.2	43.2	104.2
CO	1998	17.6	52.7	69.2	71.8	89.3	214.1
	1999	48.1	86.6	110.2	117.7	139.0	388.8
	2000	1.0	72.8	89.3	91.9	110.7	212.2

B. Roadside level

	Whole year	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
NO_{2}	1995	7.8	65.1	86.3	83.9	102.7	179.3
	1996	21.7	57.1	82.6	80.4	102.1	172.0
	1997	27.9	67.9	86.2	86.9	102.9	185.0
	1998	36.5	70.8	93.6	93.0	114.5	186.8
	1999	12.6	65.2	98.4	94.3	116.3	192.5
	2000	40.4	74.5	93.6	93.1	110.7	216.4
SO_{2}	1995	3.3	21.2	28.8	33.0	41.4	120.7
	1996	5.1	19.7	26.0	30.8	36.6	122.4
	1997	0.6	9.1	14.0	18.7	22.2	102.6
	1998	1.6	12.1	17.0	19.0	23.7	62.3
	1999	3.8	18.2	22.7	26.0	31.1	100.0
	2000	9.3	18.8	22.9	25.5	29.8	82.7
RSP	1996	40.6	56.7	67.8	72.1	81.4	163.9
	1997	11.2	42.0	56.4	58.4	70.7	177.2
	1998	34.9	69.8	83.7	84.9	95.8	190.3
	1999	25.4	64.2	79.5	82.8	96.7	240.6
	2000	24.6	61.0	73.7	77.0	88.5	195.9
FSP	1998	29.4	62.0	74.5	74.3	85.8	132.9
	1999	14.5	39.6	50.0	53.6	63.8	205.9
CO	1995	57.7	98.4	116.7	122.0	142.9	239.5
	1996	46.5	92.0	109.1	111.8	130.9	223.1
	1997	23.1	90.5	110.5	110.5	131.3	192.1
	1998	50.2	94.7	111.1	114.4	132.7	209.8
	1999	60.7	93.5	114.3	120.5	136.6	352.7
	2000	53.2	102.4	121.0	125.8	146.8	248.8

Table 3.6: Daily means of relative humidity and temperature for 1995-2000

	Whole year	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
Humidity	1995	31.0	73.0	79.0	77.4	86.0	96.0
$(\%)$	1996	37.0	71.0	77.0	76.4	83.0	96.0
	1997	36.0	76.0	81.0	79.3	85.0	97.0
	1998	38.0	75.0	80.0	79.2	86.0	96.0
	1999	27.0	72.0	78.0	75.4	82.0	93.0
	2000	39.0	74.0	79.0	78.1	84.0	97.0
Temperature	1995	12.0	18.0	24.3	22.8	27.4	30.3
$\left({ }^{\circ} \mathrm{C}\right)$	1996	6.9	19.0	24.4	23.3	27.9	30.9
	1997	11.5	20.1	24.0	23.4	27.2	30.5
	1998	9.8	20.4	25.2	24.0	28.0	31.3
	1999	8.5	19.9	24.8	23.8	28.1	30.5
	2000	9.8	19.7	24.1	23.4	27.9	30.4

Table 3.7: Number of deaths ${ }^{\#}$ (known deaths) - all ages

	Year					
Diseases (ICD9)	1995	1996	1997	998	1999	2000
Non accidental (ICD9 001-799)	29640	30123	29733	30802	31275	31872
Respiratory (ICD9 460-519)	5843	6564	6400	6135	5662	5564
COPD (ICD9 490-496 excluding 493) ${ }^{@}$	2013	2113	1964	1990	2234	2078
Asthma (ICD9 493)	73	98	70	96	98	101
Cardiovascular (ICD9 390-459)	8720	8317	8080	8855	9144	9480
Cardiac (ICD9 390-429)	5002	4812	4679	5065	5224	5482
IHD (ICD9 410-414)	3322	3282	3190	3323	3291	3565

Notes: \# The number included all data with and without a date of death.
${ }^{@}$ COPD Chronic Obstructive Pulmonary Disease; IHD Ischaemic Heart Disease.

Table 3.8: Number of hospital admissions extracted from 12 major HA hospitals

	Year					
Diseases (ICD9)	1995	1996	1997	1998	1999	2000
Respiratory						
(ICD9 460-519)						
All ages	66495	77815	80062	88518	86723	89797
Age 0-14	23421	25551	25307	28500	23241	21850
Age 15-64	15171	16735	16766	18866	18929	19628
Age 65+	27636	35289	37276	41145	44550	48317
COPD						
(ICD9 490-496						
excluding 493)						
All ages	16648	18673	18316	19192	21192	22479
Age 0-14	466	308	316	227	179	150
Age 15-64	3430	3538	3238	3428	3348	3589
Age 65+	12709	14804	14516	15535	17664	18739
Asthma						
(ICD9 493)						
All ages	8682	9672	8794	8652	8554	7860
Age 0-14	4437	5156	4385	4330	3949	3383
Age 15-64	2855	2929	2734	2600	2757	2540
Age 65+	1381	1586	1590	1722	1848	1937
Cardiovasculary						
(ICD9 390-459)						
All ages	54054	59472	59342	61590	65860	69003
Age 0-14	1120	1208	923	883	957	913
Age 15-64	20198	21866	20182	21382	22434	23688
Age 65+	32561	36250	37453	39321	42464	44400
Cardiac						
(ICD9 390-429)						
All ages	34066	37545	37027	38921	41268	43407
Age 0-14	515	470	376	368	344	368
Age 15-64	12195	13052	11606	12723	13066	13782
Age 65+	21228	23923	24540	25829	27855	29257
IHD						
(ICD9 410-414)						
All ages	12281	13745	13632	14911	15315	16162
Age 0-14	23	16	144	4	6	9
Age 15-64	4553	5080	4436	5293	5231	5645
Age 65+	7681	8636	8940	9613	10077	10508

Table 4.1: Comparison of relative risks (RR) and $\mathbf{9 5 \%}$ confidence intervals (CI) of the best single lagged-day effects by linear extrapolation for a $10^{\text {th }}-\mathbf{9 0} \mathbf{0}^{\text {th }}$ percentile change in pollutant concentration - for mortality at all ages

Pollutant Cause of mortality	Lag day	$\begin{gathered} \text { EPD project } \\ (1995-2000) \\ \text { RR }(95 \% \mathrm{CI}) \\ \hline \end{gathered}$	p -value	Lag day	$\begin{aligned} & \text { from Wong CM } \\ & (1995-1997) \\ & \text { RR }(95 \% \mathrm{CI}) \\ & \hline \end{aligned}$	et al ${ }^{9}$ p -value
NO_{2}						
Non accidental	1	1.03 (1.02-1.05)	0.000	1	1.04 (1.01-1.05)	0.001
Respiratory	0	1.04 (1.01-1.07)	0.006	0	1.08 (1.03-1.13)	0.003
Cardiovascular	2	1.05 (1.02-1.07)	0.000	2	1.06 (1.03-1.10)	0.001
SO_{2}						
Non accidental	1	1.03 (1.02-1.04)	0.000	1	1.03 (1.03-1.05)	0.000
Respiratory	0	1.04 (1.02-1.06)	0.000	0	1.04 (1.01-1.08)	0.010
Cardiovascular	2	1.04 (1.02-1.06)	0.000	1	1.05 (1.02-1.08)	0.001
RSP						
Non accidental	1	1.01 (1.00-1.03)	0.037	1	1.02 (1.00-1.04)	0.102
Respiratory	1	1.02 (1.00-1.05)	0.080	1	1.06 (1.01-1.11)	0.024
Cardiovascular	2	1.02 (1.00-1.05)	0.068	2	1.03 (0.99-1.06)	0.165
O_{3}						
Non accidental	1	0.99 (0.98-1.01)	0.432	5	1.01 (0.99-1.03)	0.224
Respiratory	2	1.03 (1.00-1.06)	0.023	4	1.04 (1.00-1.08)	0.078
Cardiovascular	0	0.99 (0.97-1.02)	0.524	3	1.01 (0.98-1.05)	0.479

Table 4.2: Excess risks (ER) (\%) and 95% confidence interval (CI) for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for the best single lag day for each category of mortality from 1995 to 2000

1995-2000 pollutant concentration data

Mortality, age (ICD9)	Lag	ER (95\% CI)	p-value
Non-accidental, all ages (ICD9 001-799)			
$\quad \mathrm{NO}_{2}$	1	$0.64(0.36,0.91)$	0.000
SO_{2}	1	$1.36(0.93,1.78)$	0.000
$\mathrm{RSP}^{\mathrm{O}}$	1	$0.24(0.01,0.46)$	0.037
O_{3}	1	$-0.11(-0.37,0.16)$	0.432

Respiratory, all ages
(ICD9 460-519)

NO_{2}	0	$0.81(0.24,1.38)$	0.006
SO_{2}	0	$1.62(0.77,2.48)$	0.000
RSP	1	$0.40(-0.05,0.85)$	0.080
O_{3}	2	$0.62(0.09,1.16)$	0.023

COPD, all ages
(ICD9 490-496 excluding 493)

NO_{2}	2	$1.07(0.00,2.15)$	0.050
SO_{2}	2	$2.47(0.74,4.24)$	0.005
RSP	2	$0.87(0.00,1.74)$	0.050
O_{3}	2	$0.81(-0.26,1.89)$	0.137

Cardiovascular, all ages
(ICD9 390-459)

NO_{2}	2	$0.94(0.44,1.44)$	0.000
SO_{2}	2	$1.61(0.78,2.44)$	0.000
RSP	2	$0.37(-0.03,0.77)$	0.068
O_{3}	0	$-0.16(-0.65,0.33)$	0.524

Cardiac, all ages
(ICD9 390-429)

NO_{2}	1	$1.34(0.65,2.04)$	0.000
SO_{2}	1	$3.12(2.03,4.23)$	0.000
RSP	1	$0.17(-0.39,0.72)$	0.554
O_{3}	1	$-0.19(-0.88,0.50)$	0.585

IHD, all ages
(ICD9 410-414)

NO_{2}	1	$2.09(1.31,2.88)$	0.000
SO_{2}	1	$3.89(2.61,5.19)$	0.000
RSP	1	$0.33(-0.31,0.97)$	0.309
O_{3}	1	$-0.48(-1.28,0.31)$	0.235

Table 4.3: Comparison of excess risk (ER) (\%) and 95\% confidence interval (CI) of the best single lagged-day effects for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for hospital admissions

Hospital admission, age	From this project$(1995-2000)$		$\begin{aligned} & \text { From Wong CM et al } 2002^{10} \\ & (1995-1997) \end{aligned}$	
	Lag	ER (95\% CI)	Lag	ER (95\%CI)
Respiratory,				
$65+$				
NO_{2}	0	1.9 (1.6,2.2)	0	1.3 (0.8,1.8)
SO_{2}	0	2.4 (1.9,2.9)	0	1.7 (1.0,2.4)
RSP	0	$1.0(0.8,1.3)$	0	0.7 (0.3,1.0)
O_{3}	1	0.5 (0.2,0.8)	1	0.6 (0.2,1.0)
Asthma,				
15-64 years				
NO_{2}	2	0.8 (-0.1, 1.7)	1	-1.3 (-2.6,0.1)
SO_{2}	0	0.5 (-0.9,1.9)	2	-1.5 (-3.4,0.5)
RSP	0	-0.5 (-1.2,0.2)	0	-1.1 (-2.1,0.0)
O_{3}	1	0.5 (-0.3,1.4)	2	$1.2(0.0,2.4)$
Cardiac, all ages				
NO_{2}	0	1.1 (0.8,1.4)	0	1.2 (0.7,1.7)
SO_{2}	0	1.5 (1.1,2.0)	0	1.6 (1.0,2.2)
RSP	0	0.5 (0.3,0.7)	0	0.5 (0.2,0.9)
O_{3}	2	0.3 (0.1,0.6)	2	0.5 (0.1,0.8)
IHD, all ages				
NO_{2}	1	0.8 (0.4,1.2)	3	0.7 (0.1, 1.4)
SO_{2}	1	0.6 (-0.1, 1.3)	2	0.4 (-0.5, 1.4)
RSP	0	0.6 (0.2, 0.9)	2	0.5 (-0.1, 1.0)
O_{3}		0.6 (0.2, 1.0)	3	0.5 (0.0, 1.0)

Table 4.4: Excess risks (ER) (\%) and 95% confidence interval (CI) for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for the best single lag day for each category of hospital admissions from 1995-2000

1995-2000 pollutant concentration data

Hospital admission, age (ICD9)	Lag	ER $(95 \% \mathrm{CI})$	p-value
Respiratory, all ages (ICD9 460-519)			
$\quad \mathrm{NO}_{2}$	0	$0.54(0.27,0.80)$	0.000
SO_{2}	0	$0.76(0.34,1.18)$	0.000
$\mathrm{RSP}^{\mathrm{O}}$	0	$0.50(0.28,0.71)$	0.000
O_{3}	1	$0.55(0.31,0.79)$	0.000

Respiratory, 65+
(ICD9 460-519)

NO_{2}	0	$1.91(1.59,2.23)$	0.000
SO_{2}	0	$2.42(1.92,2.93)$	0.000
RSP	0	$1.04(0.78,1.30)$	0.000
O_{3}	1	$0.49(0.18,0.80)$	0.002

Asthma, 15-64 years
(ICD9 493)

NO_{2}	2	$0.77(-0.10,1.65)$	0.082
SO_{2}	0	$0.52(-0.88,1.94)$	0.468
RSP	0	$-0.51(-1.23,0.22)$	0.172
O_{3}	1	$0.54(-0.33,1.43)$	0.226

Cardiovascular, all ages
(ICD9 390-459)

NO_{2}	0	$0.73(0.48,0.98)$	0.000
SO_{2}	0	$1.08(0.72,1.44)$	0.000
RSP	0	$0.37(0.18,0.57)$	0.000
O_{3}	1	$0.24(0.01,0.47)$	0.040

Cardiac, all ages
(ICD9 390-429)

NO_{2}	0	$1.12(0.84,1.40)$	0.000
SO_{2}	0	$1.54(1.11,1.97)$	0.000
RSP	0	$0.49(0.27,0.72)$	0.000
O_{3}	2	$0.34(0.07,0.61)$	0.012

IHD, all ages

(ICD9 410-414)			
NO_{2}	1	$0.78(0.35,1.21)$	0.000
SO_{2}	1	$0.60(-0.08,1.29)$	0.083
RSP	0	$0.57(0.22,0.93)$	0.002
O_{3}	2	$0.57(0.15,1.00)$	0.008

Table 4.5: Excess risks (ER) (\%) and 95% confidence interval (CI) for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for mortality and hospital admission due to respiratory and cardiovascular diseases
(a) Total air pollution

	$\mathrm{ER}(95 \% \mathrm{CI})$ per $10 \mu \mathrm{gg} / \mathrm{m}^{3}$				
	NO_{2}	RSP	SO_{2}	O_{3}	
Mortality Respiratory					
All ages	$0.81(0.24,1.38)$	$0.40(-0.05,0.85)$	$1.62(0.77,2.48)$	$0.62(0.09,1.16)$	
65+	$0.86(0.22,1.51)$	$0.40(-0.11,0.91)$	$1.71(0.66,2.78)$	$0.24(-0.33,0.81)$	
Cardiovascular					
All ages	$0.94(0.44,1.44)$	$0.37(-0.03,0.77)$	$1.61(0.78,2.44)$	$-0.16(-0.65,0.33)$	
65+	$1.37(0.81,1.93)$	$0.45(0.01,0.90)$	$1.78(0.87,2.70)$	$0.41(-0.11,0.92)$	

Hospital

admissions
Respiratory
All ages $\quad 0.54(0.27,0.80) \quad 0.50(0.28,0.71) \quad 0.76(0.34,1.18) \quad 0.55(0.31,0.79)$
$65+\quad 1.91(1.59,2.23) \quad 1.04(0.78,1.30) \quad 2.42(1.92,2.93) \quad 0.49(0.18,0.80)$
Cardiovascular
All ages $\quad 0.73(0.48,0.98) \quad 0.37(0.18,0.57) \quad 1.08(0.72,1.44) \quad 0.24(0.01,0.47)$
$65+\quad 0.90(0.61,1.19) \quad 0.57(0.33,0.80) \quad 1.45(1.02,1.88) \quad 0.26(-0.01,0.52)$
(b) Traffic-related pollution ${ }^{@}$

	Traffic-related ER (95\% CI) per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$		
	NO_{2}	SO_{2}	

Mortality

Respiratory
All ages
$0.50(0.15,0.85)$
0.16 (-0.02,0.33)
0.15 (0.07,0.22)
$65+\quad 0.53(0.13,0.93) \quad 0.15(-0.04,0.35) \quad 0.15(0.06,0.25)$
Cardiovascular All ages
0.58 (0.27,0.89)
0.14 (-0.01,0.30)
0.14 (0.07,0.22)

65+
$0.85(0.50,1.19)$
0.18 ($0.00,0.35$)
0.16 (0.08,0.24)

Hospital

 admissionsRespiratory

All ages
65+
Cardiovascular All ages 65+

$0.33(0.17,0.50)$	$0.19(0.11,0.27)$	$0.07(0.03,0.11)$
$1.18(0.99,1.38)$	$0.40(0.30,0.50)$	$0.22(0.17,0.26)$
$0.45(0.30,0.61)$	$0.15(0.07,0.22)$	$0.10(0.06,0.13)$
$0.56(0.38,0.73)$	$0.22(0.13,0.31)$	$0.13(0.09,0.17)$

@ Obtained by multiplying \% of motor vehicle fraction to total pollution level: $\mathrm{NO}_{2}=$ $61.9 \% ; \mathrm{SO}_{2}=9.0 \% ; \mathrm{RSP}=38.8 \%$; for O_{3}, no data are available.

Table 4.6: Estimated number of deaths and number of admissions (95% confidence interval) ${ }^{\#}$ for respiratory and cardiovascular diseases due to a change in pollutant concentration in total air pollution, and in the fraction related to road traffic

	Due to total pollutants				Due to traffic related pollutants ${ }^{\wedge}$		
	NO_{2}	RSP	SO_{2}	O_{3}	NO_{2}	RSP	SO_{2}
(a) Due to $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change							
Deaths							
Respiratory	$45(13,77)$	$22(0,47)^{@}$	$90(43,138)$	$34(5,65)$	$28(8,48)$	$9(0,18){ }^{\text {@ }}$	$8(4,12)$
Cardiovascular	$89(42,137)$	$35(0,73)^{@}$	$153(74,231)$	$0(0,31)^{\text {@ }}$	$55(26,85)$	$14(0,28){ }^{\text {@ }}$	$14(7,21)$
Admissions to public hospitals							
Respiratory	$646(323,957)$	$598(335,850)$	$910(407,1412)$	$658(371,946)$	$400(200,593)$	$232(130,330)$	$82(37,127)$
Cardiovascular	$681(488,914)$	$345(168,532)$	1007 (672, 1343)	$224(9,438)$	$421(277,566)$	$134(65,206)$	$91(60,121)$

(b) Due to mean pollutant concentration* in year 2000

Deaths

Respiratory	$263(78,448)$	$112(0,238)^{@}$	$160(76,246)$	$118(17,221)$	$163(48,277)$	$44(0,92)^{@}$	$14(7,22)$
Cardiovascular	$520(243,796)$	$177(0,368)^{@}$	$272(132,412)$	$0(0,107)^{@}$	$322(151,493)$	$69(0,143)^{@}$	$24(12,37)$

Admissions to public hospitals~
Respiratory $3768(1884,5582) 3016(1689,4283) 1619(724,2514) 2258(1273,3243) 2332(1166,3455) 1170(655,1662) 146(65,226)$
Cardiovascular $3969(2610,5329) \quad 1739(846,2679) \quad 1793(1195,2391) \quad 768(32,1504) \quad 2457(1616,3298) \quad 675(328,1040) \quad 161(108,215)$

Note: ${ }^{\#}$ Calculated by multiplication of excess risk and number of deaths/admissions due to specific diseases in year 2000.
^Number due to traffic-related air pollutants is obtained by multiplying the number due to total pollutants with fraction of pollution due to motor vehicles: $\mathrm{NO}_{2}=61.9 \% ; \mathrm{SO}_{2}=9.0 \% ; \mathrm{RSP}=38.8 \%$; for O_{3}, no data are available.
${ }^{@}$ Lower limit of excess risk (ER) was assumed to be zero.
~ For all Hospital Authority hospitals except psychiatric.

* Mean pollutant concentrations in the year $2000\left(\mathrm{NO}_{2} 58.3, \mathrm{SO}_{2} 17.8\right.$, RSP 50.4 and $\left.\mathrm{O}_{3} 34.3 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$

Table 4.7: Estimates of unit cost, frequency of health service utilization in year 2000, and total direct health care cost per $10 \mu \mathrm{~g} / \mathrm{m}^{\mathbf{3}}$ change in each air pollutant

	Cost (HK\$) per episode/ visit A	Total no. of episodes/ visits per year ${ }^{\text {\# }}$ B	Direct health care cost (HK\$) per year due to total air pollution for each pollutants				Direct health care cost (HK\$) per year due to traffic-related air pollution for each pollutants		
			NO_{2}	RSP $\mathrm{C}=\mathrm{A}^{*}$	* ${ }^{\text {ER }} \mathrm{SO}_{2}$	O_{3}		D=A*B*Traffic-related ER	
(a) Hospital admissions - Public									
Respiratory			($\mathrm{A} * \mathrm{~B} * 0.54 \%)$	($\mathrm{A} * \mathrm{~B} * 0.50 \%$)	($\mathrm{A} * \mathrm{~B} * 0.76 \%$)	($\mathrm{A} * \mathrm{~B} * 0.55 \%$)	(A*B * 0.33%)	($\mathrm{A} * \mathrm{~B} * 0.19 \%$)	($\mathrm{A} * \mathrm{~B} * 0.07 \%$)
1. Acute General									
F \$3,132 x 3.639 (LOS)	11,397.35	42,759	2,631,632	2,436,696	3,703,778	2,680,366	1,628,980	945,438	333,340
M $\$ 3,132 \times 3.477$ (LOS)	10,889.96	62,420	3,670,658	3,398,758	5,166,112	3,738,634	2,272,138	1,318,718	464,950
2. CR Infirmary									
F $\quad \$ 2,735 \times 9.712$ (LOS)	26,562.32	5,058	725,502	671,761	1,021,077	738,937	449,086	260,643	91,897
M \$2,735 x 9.095 (LOS)	24,874.83	9,447	1,268,959	1,174,962	1,785,943	1,292,459	785,486	455,885	160,735
3. Coronary Care Unit									
F $\$ 5,188 \times 3.33$ (LOS)	17,276.04	565	52,709	48,805	74,183	53,685	32,627	18,936	6,677
M $\$ 5,188 \times 3.10$ (LOS)	16,082.80	771	66,959	61,999	94,239	68,199	41,448	24,056	8,481
Cardiovascular			($\mathrm{A} * \mathrm{~B} * 0.73 \%$)	($\mathrm{A} * \mathrm{~B} * 0.37 \%$)	($\mathrm{A} * \mathrm{~B} * 1.08 \%$)	($\mathrm{A} * \mathrm{~B} * 0.24 \%$)	(A*B * 0.45%)	($\mathrm{A} * \mathrm{~B} * 0.15 \%$)	($\mathrm{A} * \mathrm{~B} * 0.10 \%$)
1. Acute General									
F \$3,132 x 4.016 (LOS)	12,578.11	39,323	3,610,646	1,830,054	5,341,778	1,187,062	2,234,990	710,061	480,760
M $\$ 3,132 \times 3.855$ (LOS)	12,073.86	43,429	3,827,796	1,940,116	5,663,041	1,258,454	2,369,406	752,765	509,674
2. CR Infirmary									
F $\$ 2,735 \times 13.55$ (LOS)	37,059.25	5,715	1,546,093	783,636	2,287,371	508,305	957,032	304,051	205,863
M $\$ 2,735 \times 14.04$ (LOS)	38,399.40	4,799	1,345,235	681,831	1,990,210	442,269	832,700	264,551	179,119
3. Coronary Care Unit									
F $\$ 5,188 \times 3.74$ (LOS)	19,403.12	615	87,110	44,152	128,876	28,639	53,921	17,131	11,599
M $\$ 5,188 \times 3.48$ (LOS)	18,054.24	711	93,707	47,495	138,635	30,808	58,005	18,428	12,477
Cost for item (a):			18,927,008	13,120,266	27,395,243	12,027,815	11,715,818	5,090,663	2,465,572

	Cost (HK\$) pe episode/ visit A	Total no. of episodes/ visits per year ${ }^{\text {\# }}$ \qquad B	Direct health care cost (HK\$) per year due to total air pollution for each pollutants				Direct health care cost (HK\$) per year due to traffic-related air pollution for each pollutants		
			NO_{2}	C= A*B*ER			NO_{2} D=A	D=A*B*Traffic-related ER	
(b) Hospital admissions - Private Respiratory			($\mathrm{A} * \mathrm{~B} * 0.54 \%$)	($\mathrm{A} * \mathrm{~B} * 0.50 \%$)	(A * ${ }^{\text {* }} 0.76 \%$)	($\mathrm{A} * \mathrm{~B} * 0.55 \%$)	(A * $\mathrm{B}^{*} 0.33 \%$)	($\mathrm{A} * \mathrm{~B} * 0.19 \%$)	($\mathrm{A} * \mathrm{~B}$ * 0.07%)
$\$ 3,132 \times 3.543 \text { (LOS) }$ Cardiovascular	11,096.68	31,312	$\begin{gathered} 1,876,279 \\ (\mathrm{~A} * \mathrm{~B} * 0.73 \%) \end{gathered}$	$\begin{aligned} & 1,737,296 \\ & (\mathrm{~A} * \mathrm{~B} * 0.37 \%) \end{aligned}$	$\begin{gathered} 2,640,689 \\ (\mathrm{~A} * \mathrm{~B} * 1.08 \%) \end{gathered}$	$\begin{gathered} 1,911,025 \\ (\mathrm{~A} * \mathrm{~B} * 0.24 \%) \end{gathered}$	$\begin{gathered} 1,161,417 \\ (\mathrm{~A} * \mathrm{~B} * 0.45 \%) \end{gathered}$	$\begin{gathered} 674,071 \\ (\mathrm{~A} * \mathrm{~B} * 0.15 \%) \end{gathered}$	$\begin{array}{r} 237,662 \\ (\mathrm{~A} * \mathrm{~B} * 0.10 \%) \end{array}$
\$3,132 x 3.931 (LOS)	12,311.8	17,248	1,550,195	785,715	2,293,440	509,653	959,571	304,858	206,410
	Cost for item (b):		3,426,474	2,523,011	4,934,129	2,420,678	2,120,988	978,928	444,072
(c) Accident \& Emergency Visit									
	571.00	318,635	$\begin{gathered} 982,479 \\ (\mathrm{~A} * \mathrm{~B} * 0.73 \%) \end{gathered}$	$\begin{aligned} & 909,703 \\ & (\mathrm{~A} * \mathrm{~B} * 0.37 \%) \end{aligned}$	$\begin{aligned} & 1,382,748 \\ & (\mathrm{~A} * \mathrm{~B} * 1.08 \%) \end{aligned}$	$\begin{gathered} 1,000,673 \\ (\mathrm{~A} * \mathrm{~B} * 0.24 \%) \end{gathered}$	$\begin{array}{r} 608,154 \\ (\mathrm{~A} * \mathrm{~B} * 0.45 \%) \end{array}$	$\begin{array}{r} 352,965 \\ (\mathrm{~A} * \mathrm{~B} * 0.15 \%) \end{array}$	$\begin{array}{r} 124,447 \\ (\mathrm{~A} * \mathrm{~B} * 0.10 \%) \end{array}$
Cardiovascular	571.00	238,673	994,862	504,245	1,471,850	327,078	615,819	195,647	132,467
	Cost for item (c):		1,977,341	1,413,948	2,854,598	1,327,751	1,223,974	548,612	256,914
(d) Specialty Outpatient Clinic Visit									
Cardiovascular	660.00	298,256	$\begin{gathered} 1,062,986 \\ (\mathrm{~A} * \mathrm{~B} * 0.73 \%) \end{gathered}$	$\begin{array}{r} 984,246 \\ (\mathrm{~A} * \mathrm{~B} * 0.37 \%) \end{array}$	$\begin{gathered} 1,496,054 \\ (\mathrm{~A} * \mathrm{~B} * 1.08 \%) \end{gathered}$	$\begin{gathered} 1,082,671 \\ (\mathrm{~A} * \mathrm{~B} * 0.24 \%) \end{gathered}$	$\begin{array}{r} 657,988 \\ (\mathrm{~A} * \mathrm{~B} * 0.45 \%) \end{array}$	$\begin{array}{r} 381,888 \\ (\mathrm{~A} * \mathrm{~B} * 0.15 \%) \end{array}$	$\begin{array}{r} 134,645 \\ (\mathrm{~A} * \mathrm{~B} * 0.10 \%) \end{array}$
	660.00	223,409	1,076,384	545,564	1,592,458	353,880	666,282	211,679	143,321
	Cost for item (d):		2,139,370	1,529,811	3,088,513	1,436,551	1,324,270	593,567	277,966

[^0]Table 4.8: Productivity loss (PL) due to air pollution per $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in each air pollutant

	PL (HK\$) per episode A	Total no. of episodes/ per year B	Productivity loss (HK\$) per year due to total air pollution for each pollutants				Productivity loss (HK\$) per year due to traffic-related air pollution for each pollutants		
			$\mathrm{C}=\mathrm{A} * \mathrm{~B}^{*} \mathrm{ER}$				$\mathrm{NO}_{2} \underset{\mathbf{D}=\mathbf{A}}{ }$	RSP *B* Traffic-relate	${ }_{\text {ER }} \mathrm{SO}_{2}$
(a) Hospital admissions - Public									
Respiratory			($\mathrm{A} * \mathrm{~B} * 0.54 \%)$	($\mathrm{A} * \mathrm{~B} * 0.50 \%$)	($\mathrm{A} * \mathrm{~B} * 0.76 \%$)	($\mathrm{A} * \mathrm{~B} * 0.55 \%$)	($\mathrm{A} * \mathrm{~B} * 0.33 \%$)	($\mathrm{A} * \mathrm{~B} * 0.19 \%$)	($\mathrm{A} * \mathrm{~B} * 0.07 \%$)
1. Acute General									
F	714.08 ${ }^{\text {\# }}$	4,407 ${ }^{\text { }}$	16,995	15,736	23,919	17,310	10,520	6,106	2,153
M	1,121.62 ${ }^{\text {\# }}$	11,292^	68,391	63,325	96,254	69,658	42,334	24,570	8,663
2. CR Infirmary ${ }^{\text {a }}$									
F	1,372.93 ${ }^{\text {\# }}$	$338{ }^{\wedge}$	2,504	2,319	3,524	2,551	1,550	900	317
M	2,511.12 ${ }^{\text {\# }}$	$1,467{ }^{\wedge}$	19,890	18,416	27,993	20,258	12,312	7,146	2,519
3. Coronary Care Unit									
F	$781.15{ }^{\text {\# }}$	61^{\wedge}	258	239	363	262	159	93	33
M	1,270.36 ${ }^{\text {\# }}$	$146 \wedge$	1,001	927	1,409	1,020	620	360	127
Cardiovascular			($\mathrm{A} * \mathrm{~B} * 0.73 \%$)	($\mathrm{A} * \mathrm{~B} * 0.37 \%$)	($\mathrm{A} * \mathrm{~B} * 1.08 \%$)	($\mathrm{A} * \mathrm{~B} * 0.24 \%$)	($\mathrm{A} * \mathrm{~B} * 0.45 \%$)	($\mathrm{A} * \mathrm{~B} * 0.15 \%$)	($\mathrm{A} * \mathrm{~B} * 0.10 \%$)
1. Acute General									
F	$719.08{ }^{\text {\# }}$	6,122 ${ }^{\wedge}$	32,137	16,289	47,545	10,566	19,893	6,320	4,279
M	1,200.92 ${ }^{\text {\# }}$	14,032^	123,016	62,351	181,997	40,444	76,147	24,192	16,380
2. CR Infirmary									
F	2,441.56 ${ }^{\text {\# }}$	498^	8,872	4,497	13,125	2,917	5,492	1,745	1,181
M	4,568.55*	$1,034^{\wedge}$	34,470	17,471	50,997	11,333	21,337	6,779	4,590
3. Coronary Care Unit									
F	$799.56{ }^{\text {\# }}$	83^{\wedge}	486	246	719	160	301	96	65
M	1,226.96 ${ }^{\text {\# }}$	$214 \wedge$	1,919	973	2,839	631	1,188	377	256
Productivity loss:			309,939	202,788	450,684	177,108	191,852	78,682	40,562

	PL (HK\$) per episode A	Total no. of episodes/ per year B	Productivity loss (HK\$) per year due to total air pollution for each pollutants				Productivity loss (HK\$) per year due to traffic-related air pollution for each pollutants		
			C=A*B*ER				D=A*B*Traffic-related ER		
(b) Hospital admissions - Private Respiratory			($\mathrm{A} * \mathrm{~B}$ *0.54\%)	($\mathrm{A} * \mathrm{~B} * 0.50 \%$)	($\mathrm{A} * \mathrm{~B} * 0.76 \%$)	($\mathrm{A} * \mathrm{~B} * 0.55 \%$)	(A * ${ }^{\text {\% }} 0.33 \%$)	(A * ${ }^{\text {* }} 0.19 \%$)	($\mathrm{A} * \mathrm{~B} * 0.07 \%$)
Cardiovascular	$919.46{ }^{\text {\# }}$	14,885 ${ }^{\wedge}$	$\begin{array}{r} 73,907 \\ (\mathrm{~A} * \mathrm{~B} * 0.73 \%) \end{array}$	$\begin{gathered} 68,432 \\ (\mathrm{~A} * \mathrm{~B} * 0.37 \%) \end{gathered}$	$\begin{aligned} & 104,017 \\ & (\mathrm{~A} * \mathrm{~B} * 1.08 \%) \end{aligned}$	$\begin{aligned} & \quad 75,275 \\ & (\mathrm{~A} * \mathrm{~B} * 0.24 \%) \end{aligned}$	$\begin{array}{r} 45,748 \\ (\mathrm{~A} * \mathrm{~B} * 0.45 \%) \end{array}$	$\begin{array}{r} \begin{array}{r} 26,552 \\ (\mathrm{~A} * \mathrm{~B} * 0.15 \%) \end{array} \end{array}$	$\begin{array}{r} 9,362 \\ (\mathrm{~A} * \mathrm{~B} * 0.10 \%) \end{array}$
	961.24 ${ }^{\text {\# }}$	8,199 ${ }^{\wedge}$	57,536	29,162	85,122	18,916	35,615	11,315	7,661
	Productivity loss:		131,443	97,594	189,139	94,191	81,363	37,867	17,022
(c) Private General Practitioner Visit									
Respiratory			($\mathrm{A} * \mathrm{~B}^{*} 2.98 \%$)	(A*B*1.42\%)	(A*B*1.55\%)	(A*B*2.40\%)	(${ }^{*}{ }^{\text {B }}$ *1.845\%)	($\mathrm{A} * \mathrm{~B} * 0.551 \%$)	($\mathrm{A} * \mathrm{~B} * 0.140 \%$)
1. Sick leave	$55.89{ }^{\text {@ }}$	15,220,317 ${ }^{+}$	25,349,959	12,079,511	13,185,381	20,416,074	15,691,624	4,686,850	1,186,684
2. Waiting \& travelling time	$20.55{ }^{\sim}$	15,220,317 ${ }^{+}$	9,319,838	4,440,997	4,847,567	7,505,910	5,768,980	1,723,107	436,281
Cardiovascular			($\mathrm{A} * \mathrm{~B}^{*} 2.98 \%$)	($\mathrm{A} * \mathrm{~B}^{*} 1.42 \%$)	($\mathrm{A} * \mathrm{~B}^{*} 1.55 \%$)	(A*B*2.40\%)	($\mathrm{A} * \mathrm{~B} * 1.845 \%$)	($\mathrm{A} * \mathrm{~B} * 0.551 \%$)	($\mathrm{A} * \mathrm{~B} * 0.140 \%$)
1. Sick leave	$55.89{ }^{\text {@ }}$	970,067 ${ }^{+}$	1,615,680	769,888	840,370	1,301,218	1,000,106	298,716	75,633
2. Waiting \& travelling time	20.55	970,067 ${ }^{+}$	594,000	283,047	308,960	478,389	367,686	109,822	27,806
Productivity loss :			36,879,476	17,573,442	19,182,278	29,701,591	22,828,396	6,818,495	1,726,405

	PL (HK\$) per person A	Total personyears of life loss	Productivity loss (HK\$) per year due to total air pollution for each pollutants				Productivity loss (HK\$) per year due to traffic-related air pollution for each pollutants		
			C=A*B*ER				D=A*B* Traffic-related ER		
(d) Premature death									
Respiratory			($\mathrm{A} * \mathrm{~B} * 0.81 \%$)	($\mathrm{A} * \mathrm{~B} * 0.40 \%$)	(A*B*1.62\%)	($\mathrm{A} * \mathrm{~B} * 0.62 \%$)	($\mathrm{A} * \mathrm{~B} * 0.50 \%$)	($\mathrm{A} * \mathrm{~B} * 0.16 \%)$	($\mathrm{A} * \mathrm{~B} * 0.15 \%)$
F	96,000.00 $=$	1,403 ${ }^{\text {> }}$	1,090,973	538,752	2,181,946	835,066	675,312	209,036	196,375
M	$144,000.00=$	4,118 ${ }^{\text {> }}$	4,803,235	2,371,968	9,606,470	3,676,550	2,973,203	920,324	864,582
Cardiovascular			(${ }^{*}{ }^{\text {B }}{ }^{*} 0.94 \%$)	($\mathrm{A} * \mathrm{~B} * 0.37 \%$)	($\mathrm{A} * \mathrm{~B}^{*} 1.61 \%$)	($\mathrm{A} * \mathrm{~B} * 0 \%$)	($\mathrm{A} * \mathrm{~B} * 0.58 \%)$	($\mathrm{A} * \mathrm{~B} * 0.14 \%$)	($\mathrm{A} * \mathrm{~B} * 0.14 \%$)
F	96,000.00 $=$	4,606 ${ }^{\text { }}$	4,156,454	1,636,051	7,119,034	0	2,572,845	634,788	640,713
M	144,000.00 $=$	11,144 ${ }^{\text {P }}$	15,084,518	5,937,523	25,836,250	0	9,337,317	2,303,759	2,325,262
	Productivity loss :		25,135,181	10,484,294	44,743,699	4,511,616	15,558,677	4,067,906	4,026,933
	Total productivity loss:		62,456,039	28,358,118	64,565,800	34,484,506	38,660,288	11,002,950	5,810,922

Note: Formula -
\# Mean LOS (in day) x median daily income
© Mean sick leave/consultation (in day) x median daily income
~ Mean waiting and travelling time/consultation (in hour) x median hourly income
^ Number of episodes (working group aged from 15-64) x labour force rate x employment rate
$+\quad$ Number of consultations x labour force rate x employment rate
$=\quad$ Median monthly income by sex X 12
> Total number of years for those, aged from 15-64, died in year 2000 before 65 years old

Table 4.9: Estimates of willingness to pay (WTP) to avoid death, serious morbidity and minor morbidity for Hong Kong population in year 2000 and the value associated with $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in each air pollutant for the fraction related to traffic

(a) Deaths

Respiratory	10,000,000 ${ }^{\text {\# }}$	5,564	($\mathrm{A} * \mathrm{~B} * 0.81 \%$)	($\mathrm{A} * \mathrm{~B} * 0.40 \%$)	($\mathrm{A} * \mathrm{~B} * 1.62 \%$)	($\mathrm{A} * \mathrm{~B} * 0.62 \%$)	($\mathrm{A} * \mathrm{~B} * 0.50 \%$)	(A*B *0.16\%)	($\mathrm{A} * \mathrm{~B} * 0.15 \%$)
			$\begin{gathered} 450,684,000 \\ (\mathrm{~A} * \mathrm{~B} * 0.94 \%) \end{gathered}$	$\begin{gathered} 222,560,000 \\ (\mathrm{~A} * \mathrm{~B} * 0.37 \%) \end{gathered}$	$\begin{aligned} & 901,368,000 \\ & (\mathrm{~A} * \mathrm{~B} * 1.61 \%) \end{aligned}$	$\begin{aligned} & 344,968,000 \\ & (\mathrm{~A} * \mathrm{~B} * 0 \%) \end{aligned}$	$\begin{aligned} & 278,973,396 \\ & (\mathrm{~A} * \mathrm{~B} * 0.58 \%) \end{aligned}$	$\begin{gathered} 86,353,280 \\ (\mathrm{~A} * \mathrm{~B} * 0.14 \%) \end{gathered}$	$\begin{aligned} & 81,123,120 \\ & (\mathrm{~A} * \mathrm{~B} * 0.14 \%) \end{aligned}$
Cardiovascular	10,000,000 ${ }^{\text {\# }}$	9,480	891,120,000	350,760,000	1,526,280,000	--	551,603,280	136,094,880	137,365,200
	Cost for item (a):		1,341,804,000	573,320,000	2,427,648,000	344,968,000	830,576,676	222,448,160	218,488,320
(b) Serious morbidity									
Respiratory	$00^{\text {@ }} 121,020$		($\mathrm{A} * \mathrm{~B} * 0.54 \%$)	($\mathrm{A} * \mathrm{~B} * 0.50 \%$)	($\mathrm{A} * \mathrm{~B} * 0.76 \%$)	(A*B * 0.55%)	($\mathrm{A} * \mathrm{~B} * 0.33 \%$)	($\mathrm{A} * \mathrm{~B} * 0.19 \%$)	($\mathrm{A} * \mathrm{~B} * 0.07 \%$)
			$\begin{gathered} 3,202,189 \\ (\mathrm{~A} * \mathrm{~B} * 0.73 \%) \end{gathered}$	$\begin{array}{r} 2,964,990 \\ (\mathrm{~A} * \mathrm{~B} * 0.37 \%) \end{array}$	$\begin{gathered} 4,506,785 \\ (\mathrm{~A} * \mathrm{~B} * 1.08 \%) \end{gathered}$	$\begin{aligned} & 3,261,489 \\ & (\mathrm{~A} * \mathrm{~B} * 0.24 \%) \end{aligned}$	$\begin{gathered} 1,982,155 \\ (\mathrm{~A} * \mathrm{~B} * 0.45 \%) \end{gathered}$	$\begin{gathered} 1,150,416 \\ (\mathrm{~A} * \mathrm{~B} * 0.15 \%) \end{gathered}$	$\begin{array}{r} 405,611 \\ (\mathrm{~A} * \mathrm{~B} * 0.10 \%) \end{array}$
Cardiovascular	4,100 ${ }^{\text {® }}$	94,592	2,831,139	1,434,961	4,188,534	930,785	1,752,475	556,765	376,968
	Cost for item (b):		6,033,328	4,399,951	8,695,319	4,192,274	3,734,630	1,707,181	782,579
(c) Minor morbidity									
Respiratory (Upper respiratory tract)			($\mathrm{A} * \mathrm{~B} * 3.21 \%$)	($\mathrm{A} * \mathrm{~B} * 2.55 \%$)	(A * ${ }^{\text {* } 2.16 \%) ~}$	($\mathrm{A} * \mathrm{~B} * 2.20 \%$)	($\mathrm{A} * \mathrm{~B} * 1.99 \%$)	($\mathrm{A} * \mathrm{~B} * 0.99 \%$)	(A*B *0.19\%)
HK\$183.67^ $\times 4$ (day)	734.68	22,688,508	535,068,257	425,054,223	360,045,930	366,713,447	331,207,251	164,921,039	32,404,134
Cost for item (c):			535,068,257	425,054,223	360,045,930	366,713,447	331,207,251	164,921,039	32,404,134

[^1]Table 4.10: Economic valuation (in HK\$ million) for health effects of air pollution, for a change in a pollutant concentration in total air pollution, and for the fraction related to road traffic
(I) for $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in a pollutant concentration

Monetary value to avoid mortality/morbidity ${ }^{\#}$

For whole Hong
Kong population
in year 2000
$(6,665,000)$
(a) Due to $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in total air pollution ${ }^{@}$ NO_{2}
RSP
SO_{2}
O_{3}

Excluding Including productivity productivity loss loss 227.3289 .7
227.3
$114.3 \quad 142.6$
$142.7 \quad 207.2$
178.9
213.4

$$
1,901.8
$$

$$
285.3
$$

$$
1,015.9
$$

$$
152.4
$$

$$
2,823.8
$$

$$
423.7
$$

$$
727.9
$$

$$
109.2
$$

(b) Due to $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in trafficrelated air pollution

NO_{2}	140.7	179.3	$1,177.2$	176.6
RSP	44.3	55.3	394.2	59.1
SO_{2}	12.8	18.7	254.1	38.1

Note: ${ }^{@}$ For part (a), excess risk (ER) for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in O_{3} for cardiovascular mortality was assumed to be zero.
\# Monetary value is calculated by the sum of WTP to avoid mortality/morbidity and cost of health service utilization due to public hospital admissions.
(II) for mean pollutant concentration in year 2000

Cost of illness
Monetary value to avoid mortality/morbidity ${ }^{\text {\# }}$

	Excluding productivity loss	Including productivity loss	For whole Hong Kong population in year 2000	Per 1 million population
(a)Due to mean pollutant concentration in total air	$1,325.2$	$1,689.0$	$(6,665,000)$ pollution	
(b)Due to mean pollutant concentration in traffic- related air pollution	820.3	$1,045.3$	$1,663.6$	

Table 5.1: Sensitivity analysis - Comparison of excess risk (ER) and 95% confidence interval (CI) of the best single lagged-day effects for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for mortality in 1995-2000: Overall population and roadside population*

	Overall population exposed to overall concentrations			Roadside population exposed to overall concentrations		
Mortality, age	Lag	ER $(95 \%$ CI $)$	p-value	Lag	ER $(95 \%$ CI)	p-value
Respiratory, all ages						
NO_{2}	0	$0.81(0.24,1.38)$	0.006	0	$0.77(0.22,1.33)$	0.006
SO_{2}	0	$1.62(0.77,2.48)$	0.000	0	$1.59(0.77,2.42)$	0.000
RSP	1	$0.40(-0.05,0.85)$	0.080	1	$0.38(-0.05,0.82)$	0.084

Cardiovascular, all ages

NO_{2}	2	$0.94(0.44,1.44)$	0.000	2	$0.90(0.41,1.39)$	0.000
SO_{2}	2	$1.61(0.78,2.44)$	0.000	2	$1.55(0.74,2.37)$	0.000
RSP	2	$0.37(-0.03,0.77)$	0.068	2	$0.36(-0.03,0.76)$	0.070

*Roadside population is defined according to the Tertiary Planning Unit (TPU) coding of the guidebook from Census \& Statistics Department. Roadside districts include Central (TPU 121124), Causeway Bay (TPU 147), Tsim Sha Tsui (TPU 211-214), Yau Ma Tei (TPU 223-226) and Mongkok (TPU 221-222).

Table 5.2: Sensitivity analysis - Comparison of excess risk (ER) and $\mathbf{9 5 \%}$ confidence interval (CI) of the best single lagged-day effects for a $10 \mu \mathrm{~g} / \mathrm{m}^{3}$ change in pollutant concentration for hospital admissions in 1995-2000: Overall population and roadside population*

	Overall population exposed to overall concentrations				Roadside population exposed to overall concentrations	
Hospital admission, Age	Lag	ER $(95 \%$ CI)	p-value	Lag	ER $(95 \% \mathrm{CI})$	p-value
Respiratory, all ages						
NO_{2}						

Cardiovascular,
all ages

NO_{2}	0	$0.73(0.48,0.98)$	0.000	0	$0.88(0.17,1.59)$	0.016
SO_{2}	0	$1.08(0.72,1.44)$	0.000	0	$1.18(0.14,2.23)$	0.026
RSP	0	$0.37(0.18,0.57)$	0.000	0	$0.45(-0.11,1.00)$	0.113

*Roadside population is defined according to district coding sheet provided from Hospital Authority. Roadside districts include Central, Causeway Bay, Wan Chai, Mongkok, Tai Kok Tsui, Tsim Sha Tsui and Yau Ma Tei.

Table 5.3: Sensitivity Analysis - Direct costs of illness due to traffic-related air pollution (TRAP)

References

1. Sommer H, Sheehtaler R, Chanel O, Herry M, Masson S, Vergnaud JC et al. Health Costs due to Road Traffic-related Air Pollution. WHO Regional Office for Europe, 1999.
2. Wong TW, Ho KM, Lau TS, Neller A, Wong SL, Yu TS. A study of short-term effects of ambient air pollution on public health. Hong Kong: Department of Community \& Family Medicine \& Department of Statistics, the Chinese University of Hong Kong, 1997.
3. Wong CM, Ma S, Hedley AJ, Lam TH. Short-term effects of ambient air pollution on public health in Hong Kong - a follow-up study. Hong Kong: Department of Community Medicine, the University of Hong Kong, 1998.
4. Wong CM, Ma S, Hedley AJ, Lam TH. Short-term effects of ambient air pollution on public health in Hong Kong - an APHEA-2 study. Hong Kong: Department of Community Medicine, the University of Hong Kong, 1999.
5. Yee LW, Liao S. Study of economic aspects of ambient air pollution on health effects. Hong Kong: EHS Consultants Limited, 1998.
6. Chiu C, Yee LW. Study of ambient air pollution effects on hospital admissions and mortality. Hong Kong: EHS Consultants Limited, 2000.
7. Hong Kong Air Pollution and Health Joint Research Group. Design of statistical system for logging air pollution related diseases. Final report submitted to Environmental Protection Department, Hong Kong, 2000.
8. Wong TW. Report of a study of cancer risks of diesel particulates in Hong Kong. Hong Kong: Department of Community \& Family Medicine, the Chinese University of Hong Kong, 2000.
9. Wong CM, Ma S, Hedley AJ, Lam TH. Effect of air pollution on daily mortality in Hong Kong. Environmental Health Perspectives 2001; 109:335-340.
10. Wong CM, Atkinson RW, Anderson HR, Hedley AJ, Ma S, Chau YK, Lam TH. A tale of two cities: effects of air pollution on hospital admissions in Hong Kong and London compared. Environmental Health Perspectives 2002; 110:67-77.
11. Schwartz J, Spix C, Touloumi G, Bacharova L, Barumamdzadeh T, le Tertre A, Piekarksi T, Ponce de Leon A, Ponka A, Rossi G, Saez M, Schouten JP. Methodological issues in studies of air pollution and daily counts of deaths or hospital admissions. J Epidemiology and Community Medicine 1996; 50(Suppl)S3-S11.
12. Cleveland RB, Cleveland W, McRae JE, Terpening I. STL: a seasonal-trend decomposition procedure based on loess. Journal of Official Statistics 1990; 6:3-73.
13. Hospital Authority Costing Exercise 2000. Personal communication with Hospital Authority (email address: cwchu@ha.org.hk).
14. Health and Welfare Bureau. Lifelong Investment in Health: Consultation Document on Health Care Reform. Hong Kong: Government Printing. 2000.
15. McGhee SM, Bacon-Shone J, Hung J, Ma SK, Bondevold C, Hedley AJ. Household survey report 1998 - A report prepared for Harvard University. Department of Community Medicine (Health Services Research Group) and Social Sciences Research Centre, The University of Hong Kong.
16. Census and Statistics Department. Annual Digest of Statistics. Hong Kong Printer, 2001.
17. Wong TW, Wun YT, Yu TS, Tam W, Lau TS, Wong CM, Hedley AJ, Lam TH, Thach TQ. Short-term effects of air pollution on morbidity of the general population and associated cost of illness. Final Report submitted to Environmental Protection Department. Hong Kong Air Pollution and Health Joint Research Group, 2001.
18. Apportioning the contribution of road traffic emissions to ambient air pollution. Personal communication (letter dated on 11 Dec 2001) with Environmental Protection Department, 2001.
19. Census and Statistics Department. Quarterly Report on General Household Survey, October to December 2001. Hong Kong Printer, 2001.
20. Wong TW, Wun YT, Yu TS, Tam W, Lau TS, Wong CM, Hedley AJ, Lam TH, Thach TQ. Short-term effects of air pollution on morbidity of the general population - a continuation study. Final Report submitted to Environmental Protection Department. Hong Kong Air Pollution and Health Joint Research Group, 2002.
21. Department of Community Medicine, The University of Hong Kong. Valuation of the avoidance of respiratory symptoms in Hong Kong. Working paper No. AP02-01-002 (Annex 2).
22. Johannesson M. Theory and Methods of Economic Evaluation of Health Care. Kluwer Academic Publishers 1996.
23. Department of Community Medicine, The University of Hong Kong. Valuation of health impact of air pollution in Hong Kong. Working paper No. AP02-02-001 (Annex 1)
24. Department of Community Medicine, The University of Hong Kong. Valuation of avoiding cardiovascular or respiratory illness in Hong Kong. Working paper No. AP02-02-003 (Annex 3).
25. Wong TW, Wun YT, Yu TS, Tam W, Wong CM, Wong AHS. Air pollution and GP consultations for respiratory illnesses. Journal of Epidemiology and Community Health (in press).
26. Schwartz J. Harvesting and long term exposure effects in the relation between air pollution and mortality. American Journal of Epidemiology 2000;151:440-8.
27. Zeger SL, Dominici F, Samet J. Harvesting-resistant estimates of air pollution effects on mortality. Epidemiology 1999;10:171-5.
28. Fry J. Effects of severe smog on a general practice. Lancet 1953; i:235-36.
29. Wichmann HE, Mueller W, Allhof P, Beckmann M, Bocter N, Csicsaky MJ, Jung, M; Molik B, Schoeneberg G. Health effects during a smog episode in West Germany in 1985. Environmental Health Perspectives 1989; 79:89-99.
30. Anderson HR, Atkinson R, Limb ES, Strachan DP. Epidemic of asthma was not associated with episode of air pollution. BMJ 1996; 312:1606-1607.
31. Ussetti P, Roca J, Agusti AG, Montserrat JM, Rodriguez RR, Agusti VA . Asthma outbreaks in Barcelona. Lancet 1983; ii:280.
32. Wong CM, Lam TH, Peters J, Hedley AJ, Ong SG, Tam AYC, Liu J, Spiegelhalter DJ. Comparison between two districts of the effects of an air pollution intervention on bronchial responsiveness in primary school children in Hong Kong. Journal of Epidemiology and Community Health 1998; 52:571-8.
33. Burney P. Air pollution and asthma: the dog that doesn't always bark. Lancet 1999; 353:859-60.
34. McConnell R, Berhane K, Gilliland F, London SJ, Islam T, Gauderman WJ, Avol E, Margolis HG, Peters JM. Asthma in exercising children exposed to ozone: a cohort study. Lancet 2002; 359:386-91.
35. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL. Fine particulate air pollution and mortality in 20 US cities. New England Journal of Medicine 2000; 343:1742-9.
36. Samet JM, Zeger SL, Dominici F, Curriero F, Coursac I, Dockery DW, Schwartz J, Zanobetti A. The National Morbidity, Mortality, and Air Pollution Study Part I: Methods and Methodologic Issues. Research Report 94. Cambridge, MA: Health Effects Institute, 2000
37. Zmirou D, Schwartz J, Saez M, Zanobetti A, Wojtyniak B, Touloumi G, Spix C, Ponce de Leon A, Le Moullec Y, Bacharoval L, Schouten J, Ponka A, Katsouyanni K. Time-series analysis of air pollution and cause-specific mortality. Epidemiology 1998; 9:495-503
38. Morgan G, Corbett S, Wlodarczyk J, Lewis P. Air pollution and daily mortality in Sydney, Australia, 1989 through 1993. American Journal of Public Health 1998;88: 75964.
39. Xu X, Gao J, Dockery DW, Chen Y. Air pollution and daily mortality in residential areas of Beijing, China. Archives of Environmental Health 1994; 49:216-22.
40. Simpson RW, Williams G, Petroeschevsky A, Morgan G, Rutherford S. Associations between outdoor air pollution and daily mortality in Brisbane, Australia. Archives of Environmental Health 1997; 52:442-54.
41. Lee JT, Shin D, Chung Y. Air pollution and daily mortality in Seoul and Ulsan, Korea. Environmental Health Perspectives 1999; 107:149-54.
42. Hong YC, Leem JH, Ha EH, Christiani DC. PM_{10} exposure, gaseous pollutants, and daily mortality in Inchon, South Korea. Environmental Health Perspectives 1999; 107:873-8.
43. Spix C, Anderson HR, Schwartz J, Vigotti MA, LeTertre A, Vonk JM, Touloumi G, Balducci F, Piekarski T, Bacharova L, Tobias A, Ponka A, Katsouyanni K. Short-term effects of air pollution on hospital admissions of respiratory diseases in Europe: a quantitative summary of APHEA study results. Archives of Environmental Health 1998; 53:54-64.
44. Friends of the Earth. What price clean air? Friend's research report on the economic costs of air pollution, 1997.
45. Ontario Medical Association. The illness costs of air pollution in Ontario-A summary of finding, 2000 (http://www.oma.org/phealth/icap.htm)
46. Carthy T, Chilton S, Covey J, Hopkins L, Jones-Lee M, Loomes G, Pidgeon N, Spencer A. On the contingent valuation of safety and the safety of contingent valuation: Part 2 - The CV/SG "chained" approach. Journal of Risk and Uncertainty 1998; 17:187-213.
47. Tinch R. The Valuation of Environmental Externalities. UK Department of Transport, HMSO. 1995.

Appendices and Annexes

Appendix 1:

Roadside workers' perceptions of air pollution

Health Economics Team: Health Services Research Group
Department of Community Medicine, The University of Hong Kong
March 2002

Roadside workers' s perceptions of air pollution

1. Objective

The main objective of this survey was to obtain the perceptions of roadside workers regarding traffic-related air pollution in order to help inform Government policy regarding roadside pollution levels in Hong Kong.

2. Methods

There were seven identified groups of roadside related workers. Each of these groups was surveyed aiming to achieve as many responses as possible from each group within the timespan allocated to the interviews - 24 December 2001 to 19 January 2002. The questionnaire used in this interview-based survey was the same as that used for the population survey, minus the assessment of willingness to pay to avoid symptoms because the numbers of respondents to this survey would be too small to estimate willingness to pay values.

3. Results

A total of 60 respondents completed in-person interviews. The distribution of responses within the target groups is shown in Table 1.

Table 1: Target groups and responses

	Frequency	$\%$ of total sample
Bus station workers	5	8.3
Construction workers	10	16.7
Drivers	13	21.7
Gas station workers	7	11.7
Hawkers	10	16.7
Household near busy bridges	10	16.7
Newspaper sellers	5	8.3
Total	60	100.0

The following tables present the frequencies of responses for each question.
Table 2: Do you have coronary heart diseases or respiratory diseases?

	Frequency	$\%$
Yes	9	15.0
No	51	85.0
Total	60	100.0

Table 3: Do any of your family members or friends have coronary heart diseases or respiratory diseases such that you know what it is like to have these diseases?

	Frequency	$\%$	Valid \%
Yes	17	28.3	28.8
No	42	70.0	71.2
Reject	1	1.7	
Total	60	100.0	100.0

Table 4: How would you rate your overall health at present?

	Frequency	$\%$	Valid $\%$
Excellent	2	3.3	3.4
Good	13	21.7	22.0
Fair	43	71.7	72.9
Poor	1	1.7	1.7
Missing	1	1.7	
Total	60	100.0	100.0

Table 5: What health problem(s) do you have that you think is related to air pollution (can choose more than 1 answer)?

	Frequency	$\%$	No. (\%) of respondents
Breathing problem	31	36.47	
Allergic rhinitis	11	12.94	
Dizziness, headache	2	2.35	
Congested throat, coughing	21	24.71	
Eye	7	8.24	
Skin	7	8.24	
Mental / Emotional status	5	5.88	
Others	1	1.18	
Total problems	85	100.00	$35(58.3)$
No problem			$25(41.7)$

Table 6: How many hours per week on average do you spend outdoors? How many hours per week on average do you spend near a busy road or street with a lot of traffic?

	Outdoors			Busy traffic		
	Frequency	\%	Valid \%	Frequency	\%	Valid \%
0-9	2	3.3	3.4	10	16.7	17.9
10-19	5	8.3	8.5	5	8.3	8.9
20-29	4	6.7	6.8	4	6.7	7.1
30-39				2	3.3	3.6
40-49	11	18.3	18.6	8	13.3	14.3
50-59	9	15.0	15.3	8	13.3	14.3
60-69	16	26.7	27.1	13	21.7	23.2
70-79	4	6.7	6.8			
80-89	8	13.3	13.6	6	10.0	10.7
Reject	1	1.7		4	6.7	
Total	60	100.0	100.0	60	100.0	100.0
Average	50.8 SD 21.5 hours			40.2 SD 25.8 hours		

Table 7: What do you consider to be the signs of good air quality (can choose more than 1 answer)?

	Frequency	$\%$
Fresh air	36	21.82
Breathing comfortably	28	16.97
More plants - parks	17	10.30
Rural areas	12	7.27
Less exhaust fumes, less cars, less dust	41	24.85
Wind and rain	3	1.82
Visibility	4	2.42
API	3	1.82
Morning	12	7.27
Peak	9	5.45
Others	0	0.00
Total	165	100.00

Table 8: How would you rate the air quality in the district you live over the last 12 months?

	Frequency	$\%$
Very good	3	5.0
Good	4	6.7
Fair	46	76.7
Poor	7	11.7
Total	60	100.0

Table 9: What is your sex?

	Frequency	$\%$
Male	42	70.0
Female	18	30.0
Total	60	100.0

Table 10: What is your age?

	Frequency	$\%$	Valid $\%$		
$17-24$	4	6.7	8.5		
$25-34$	6	10.0	12.8		
$35-44$	20	33.3	42.6		
$45-54$	14	23.3	29.8		
$55-64$					
$65+$	3	5.0	6.4		
Reject	13	21.7			
Total	60	100.0	100.0		
Average					41.4 ± 11.6 years

Table 11: What is the level of your educational attainment?

	Frequency	$\%$
Primary or below	20	33.3
Secondary	34	56.7
Matriculation/ Diploma	5	8.3
Tertiary (degree) or above	1	1.7
Total	60	100.0

Table 12: What is your housing type?

	Frequency	$\%$
Public housing estate	29	48.3
Home ownership scheme	14	23.3
Private	17	28.3
Total	60	100.0

Table 13: What is your marital status?

	Frequency	$\%$
Single	16	26.7
Married	40	66.7
Separated		
Divorced		
Widowed	4	6.7
Total	60	100.0

Table 14: Ask household near busy streets only: How many household members (including you) live at this address for at least 5 days a week on average?

	Frequency	$\%$	Valid $\%$	
1	1	10.0	14.3	
2	2	20.0	28.6	
3				
4	1	10.0	14.3	
5	3	30.0	42.9	
$6+$	3	30.0	100.0	
Reject	10	100.0	10.0	
Total	4.1 ± 2.4 members			
Average				

Table 15: Ask household near busy streets only: In your household, how many children are 12 years of age or under?

	Frequency	$\%$	Valid $\%$	
0	5	50.0	71.4	
1	1	10.0	14.3	
2	1	10.0	14.3	
Reject	2	20.0		
Missing	1	10.0		
Total	10	100.0	100.0	
Average	0.4 ± 0.8 children			

Table 16: Ask household near busy streets only: What is your relationship with the household head?

	Frequency	$\%$	Valid $\%$
Self	3	30.0	33.3
spouse	1	10.0	11.1
children	3	30.0	33.3
parent			
grandparent grandchildren	1	10.0	11.1
Relative		10.0	11.1
Friend			
Others	1	10.0	
Reject	10	100.0	100.0
Total			

Table 17: How long have you been working in this field?

	Frequency	$\%$	Valid \%
$0-5$	20	33.3	37.7
$6-10$	14	23.3	26.4
$11-15$	3	5.0	5.7
$16-20$	7	11.7	13.2
$21-25$	3	5.0	5.7
$26-30$	6	10.0	11.3
Missing	7	11.7	
Total	60	100.0	100.0
Average		11.7 ± 9.2 years	

Table 18: What is your average monthly household income? What is your average monthly personal income?

	Household Income			Personal Income		
	Frequency	$\%$	Valid $\%$	Frequency	$\%$	Valid $\%$
Under $\$ 1,000$				2	3.3	10.5
Under $\$ 2,000$	1	1.7	5.6			
$\$ 2,000-\$ 3,999$	1	1.7	5.6	1	1.7	5.3
$\$ 4,000-\$ 5,999$						
$\$ 6,000-\$ 7,999$				1	1.7	5.3
$\$ 8,000-\$ 9,999$	1	1.7	5.6	3	5.0	15.8
$\$ 10,000-\$ 14,999$				2	3.3	10.5
$\$ 15,000-\$ 19,999$	5	8.3	27.8	3	5.0	15.8
$\$ 20,000-\$ 24,999$	5	8.3	27.8	6	10.0	31.6
$\$ 25,000-\$ 29,999$	2	3.3	11.1			
$\$ 30,000-\$ 39,999$	1	1.7	5.6	1	1.7	5.3
$\$ 40,000-\$ 59,999$	2	3.3	11.1			
$\$ 60,000$ and over						
Reject	42	70.0		41	68.3	
Total	60	100.0	100.0	60	100.0	100.0

Table 19: In which district do you live? Ask household near busy streets only: In which district do you work (can choose more than 1 district)?

	Living district		Working district	
	Frequency	Valid $\%$	Frequency	Valid $\%$
Wanchai				
Eastern District	9	15.3		
Central/West District				
Southern District	1	1.7		50.0
Kwun Tong	12	20.3	4	25.0
Kowloon City	4	6.8	2	12.5
Wong Tai Sin	6	10.2	1	
Mongkok	1	1.7		
Shamshuipo	3	5.1		12.5
Yaumati/Tsimshatsui			1	
Sai Kung	2	3.4		
Shatin	5	8.5		
Islands				
Tsuen Wan	3	5.1		
Kwai Chung/ Tsing Yi	2	3.4		
Tuen Mun	1	1.7		
Yuen Long	3	5.1		
North District	2	3.4		
Tai Po	5	8.7		
Reject			2	
Missing	1	100.0	10	100.0
Total	60			

Table 20: Place of birth

		Frequency	$\%$
Valid $\%$			
Hong Kong	43	71.7	72.9
Mainland China	16	26.7	27.1
Reject	1	1.7	
Total	60	100.0	100.0

Table 21: Have you ever smoked?

	Frequency	$\%$
Never	28	46.7
Smoked occasionally in the past (less than one cigarette a day and for more		
than 6 months)	3	5.0
Smoked regularly in the past (more than one cigarette a day for over 6	5	8.3
months continuously)	24	40.0
Smoke occasionally (on average less than one cigarette a day)	60	100.0
Smoke regularly (at least one cigarette a day)		
Total		

Table 22: Excluding yourself, how many smokers reside at your unit/ work with you?

	Frequency	Valid \%	$\%$	Mean (SD)
0	26	49.1	43.3	
1	8	15.1	13.3	
2	2	3.8	3.3	
3	3	5.7	5.0	
4	7	13.2	11.7	
5	1	1.9	1.7	
$6+$	6	11.3	10.0	
Reject	5		8.3	
Missing	2		3.3	
Total	60	100.0	100.0	$1.8(2.5)$ smokers

4. Comparison of responses of roadside workers and population

Table 23: Age

Age Group	Sample $\mathrm{N}=60$		2001 Population census		Goodness of fit test χ^{2} p-value
	N	\%	N	\%	
Male					
18-24 (15-24)*	3	8.8	456639	16.8	
25-34	4	11.8	499492	18.4	
35-44	15	44.1	650455	24.0	
45-54	11	32.4	489891	18.1	
55-64	0	0.0	269326	9.9	
>=65	1	2.9	345184	12.7	0.003
Female					
18-24 (15-24)*	1	7.7	463806	16.1	
25-34	2	15.4	609037	21.1	
35-44	5	38.5	710032	24.6	
45-54	3	23.1	470526	16.3	
55-64	0	0.0	232716	8.1	
>=65	2	15.4	401868	13.9	0.666
Both Sexes					
18-24 (15-24)*	4	8.5	920445	16.4	
25-34	6	12.8	1108529	19.8	
35-44	20	42.6	1360487	24.3	
45-54	14	29.8	960417	17.2	
55-64	0	0.0	502042	9.0	
$>=65$	3	6.4	747052	13.3	0.001

[^2]Table 24: Geographical Distribution by District Council District

District	Sample $\mathrm{N}=60$		2001 Population census	Goodness of fit test	
	N	$\%$	N	$\%$	$\chi^{2} \mathrm{p}$-value
Central and Western	0	0.0	261884	3.9	
Wan Chai	0	0.0	167146	2.5	
Eastern	9	15.3	616199	9.2	
Southern	1	1.7	290	240	4.3
Yau Tsim Mong	1	1.7	282020	4.2	
Sham Shui Po	3	5.1	353550	5.3	
Kowloon City	4	6.8	381352	5.7	
Wong Tai Sin	6	10.2	444630	6.6	
Kwun Tong	12	20.3	562427	8.4	
Kwai Tsing	2	3.4	477092	7.1	
Tsuen Wan	3	5.1	275527	4.1	
Tuen Mun	1	1.7	488831	7.3	
Yuen Long	3	5.1	449070	6.7	
North	2	3.4	298657	4.5	
Tai Po	5	8.5	310879	4.6	
Sha Tin	5	8.5	628634	9.4	
Sai Kung	2	3.4	327689	4.9	
Islands	0	0.0	86667	1.3	

Table 25: Gender

Gender					
Male	42	70.0	2710987	48.4	
Female	18	30.0	2887985	51.6	0.001

only those aged $>=15$ for population data
Table 26: Educational attainment

Educational Attainment	Sample $\mathrm{N}=60$		2001 Population census		Goodness of fit test	
	N	$\%$	N	$\%$	$\chi^{2} \mathrm{p}$-value	
Primary or below	20	33.3	1618212	28.9		
Secondary	34	56.7	2534170	45.3		
Matriculation/Diploma	5	8.3	737968	13.2		
Tertiary	1	1.7	708622	12.7		

5. Comparison between the roadside workers and the general population sample

Table 27: Do you have coronary heart diseases or respiratory diseases?

	Roadside sample \%	\% in population sample
Yes	15.0	5.4
No	85.0	
Total	100.0	

Table 28: How would you rate your overall health at present?

	Roadside sample $\%$	\% in population sample
Excellent	3.4	20.7
Good	22.0	35.4
Fair	72.9	40.0
Poor	1.7	3.9
Total	100.0	100

Table 29: What health problem(s) do you have that you think is related to air pollution (can choose more than 1 answer)?

	Roadside sample		Population sample	
	\% distribution of problems	No. (\%)	$\%$ distribution of problems	No. (\%)
Breathing problem	37		56	
Allergic rhinitis	13		14	
Dizziness, headache	2		4	
Congested throat, coughing	25		15	
Others	24	11		
Total		100	$960(69.3)$	
No perceived problem related to air pollution	100	$35(58.3)$		$425(30.7)$

Table 30: How many hours per week on average do you spend outdoors? How many hours per week on average do you spend near a busy road or street with a lot of traffic?

	Mean (SD) hours per week outdoors	Mean (SD) hours per week near busy roads
Roadside workers	$50.8(21.5)$	$40.2(25.8)$
Population	$26.1(20.8)$	$12.0(14.6)$

Table 31: What do you consider to be the signs of good air quality (can choose more than 1 answer)?

	Roadside sample $\%$ choosing	Population sample $\%$ choosing
Fresh air	22	16
Breathing comfortably	17	7
More plants - parks	10	18
Rural areas	7	16
Less exhaust fumes, less	25	31
cars, less dust		
Wind and rain	2	2
Others	17	11
Total	100	100

Table 32: How would you rate the air quality in the district you live over the last 12 months?

	Roadside sample $\%$	\% in population sample
Very good	5.0	9.6
Good	6.7	33.1
Fair	76.7	46.1
Poor	11.7	11.2
Total	100.0	100

6. Discussion

The roadside workers are clearly, as expected, a different group in demographic and socioeconomic characteristics from the general population and the population sample used for the WTP estimates. They have a higher rate of declared heart and respiratory disease (15% versus 5\%) and poorer self-perceived health with 75% being fair or poor compared with 44% of the population sample. They are more inclined to complain of throat symptoms than breathing problems but this may reflect a 'survivor effect' i.e. those who had breathing problems no longer work at the roadside. The survivor effect is also supported by the finding that 42% of the roadside workers say they have no problem related to air pollution compared with only 31% of the general population. They spend for more time outdoors and near busy roads than the population sample and are more inclined to rate the air quality in the district they live in as only fair or poor (88% versus 57%) although the same proportion $11-12 \%$ rate the air quality as poor.

Appendix 2:
 Validation of value of life

Health Economics Team: Health Services Research Group
Department of Community Medicine, The University of Hong Kong

Validation of value of life

28 March 2002

Objective

To test the validity of the estimate taken from the WHO European study for the value of a life lost or saved in Hong Kong.

Methods

A short questionnaire was designed to determine whether the population would accept a value for avoiding a risk of death that would multiply up to give the same value as used in the WHO European study (1.4 million euros or HK $\$ 10$ million).

The question asked was: 'If one life can be saved when there are 100,000 persons in Hong Kong willing to give HK\$100 each, are you willing to pay?'

Results

Out of 183 households contacted (from 600 numbers attempted), 108 interviews were carried out; response rate is 59%.

Comparison of demographic characteristic of sample with 2001 Census data

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{Education
$$
(15+)
$$} \& Primary or below \& 1618212 \& 28.9 \& 30 \& 27.8 \& \multirow[b]{5}{*}{0.968}

\hline \& Secondary \& 2534170 \& 45.3 \& 51 \& 47.2 \&

\hline \& Matriculation/Diploma \& 737968 \& 13.2 \& 13 \& 12.0 \&

\hline \& Tertiary \& 708622 \& 12.7 \& 14 \& 13.0 \&

\hline \& \& 5598972 \& 100.0 \& 108 \& 100.0 \&

\hline \multirow[t]{5}{*}{Marital status
(15+)} \& Never married \& 1787519 \& 31.9 \& 23 \& 21.7 \& \multirow[b]{5}{*}{0.070}

\hline \& Now married \& 3325482 \& 59.4 \& 75 \& 70.8 \&

\hline \& Widowed \& 333622 \& 6.0 \& 4 \& 3.8 \&

\hline \& Divorced/Separated \& 152349 \& 2.7 \& 4 \& 3.8 \&

\hline \& \& 5598972 \& 100.0 \& 106 \& 100.0 \&

\hline \multirow[t]{9}{*}{Occupation} \& Manager \& 349637 \& 10.7 \& 5 \& 7.4 \& \multirow[b]{16}{*}{0.000

0.462}

\hline \& Professionals \& 678496 \& 20.9 \& 10 \& 14.7 \&

\hline \& Clerks \& 529992 \& 16.3 \& 25 \& 36.8 \&

\hline \& Service workers \& 488961 \& 15.0 \& 12 \& 17.6 \&

\hline \& Craft workers \& 321000 \& 9.9 \& 6 \& 8.8 \&

\hline \& Machine operator \& 238666 \& 7.3 \& 1 \& 1.5 \&

\hline \& Elementary \& 635393 \& 19.5 \& 7 \& 10.3 \&

\hline \& Agricultural \& 10561 \& 0.3 \& 2 \& 2.9 \&

\hline \& \& 3252706 \& 100.0 \& 68 \& 100.0 \&

\hline \multirow[t]{7}{*}{Household size} \& 1 \& 321565 \& 15.7 \& 14 \& 13.0 \&

\hline \& 2 \& 447690 \& 21.8 \& 17 \& 15.7 \&

\hline \& 3 \& 438216 \& 21.3 \& 29 \& 26.9 \&

\hline \& 4 \& 481183 \& 23.4 \& 26 \& 24.1 \&

\hline \& 5 \& 245194 \& 11.9 \& 16 \& 14.8 \&

\hline \& 6 and over \& 119564 \& 5.8 \& 6 \& 5.6 \&

\hline \& \& 2053412 \& 100.0 \& 108 \& 100.0 \&

\hline Household \& <2,000 \& 65855 \& 3.2 \& 4 \& 4.4 \& \multirow{12}{*}{0.462}

\hline \multirow[t]{12}{*}{Income} \& 2,000-3,999 \& 97568 \& 4.8 \& 1 \& 1.1 \&

\hline \& 4,000 - 5,999 \& 93018 \& 4.5 \& 5 \& 5.5 \&

\hline \& 6,000-7,999 \& 116340 \& 5.7 \& 5 \& 5.5 \&

\hline \& 8,000 - 9,999 \& 120721 \& 5.9 \& 3 \& 3.3 \&

\hline \& 10,000-14,999 \& 318623 \& 15.5 \& 17 \& 18.7 \&

\hline \& 15,000-19,999 \& 262086 \& 12.8 \& 13 \& 14.3 \&

\hline \& 20,000-24,999 \& 223708 \& 10.9 \& 10 \& 11.0 \&

\hline \& 25,000-29,999 \& 159470 \& 7.8 \& 7 \& 7.7 \&

\hline \& 30,000-39,999 \& 219229 \& 10.7 \& 11 \& 12.1 \&

\hline \& 40,000-59,999 \& 197311 \& 9.6 \& 8 \& 8.8 \&

\hline \& > $=\mathbf{6 0 , 0 0 0}$ \& 179483 \& 8.7 \& 7 \& 7.7 \&

\hline \& \& 2053412 \& 100.0 \& 91 \& 100.0 \& 0.917

\hline
\end{tabular}

81.3% of respondents agreed to be one of 100,000 willing to donate $\$ 100$ i.e. they agree to a total value of $\$ 10$ million for one life. $(\$ 100 * 100,000$ people $=\$ 10,000,000)$.

Conclusion

These figures imply that a life in HK can actually be valued higher than HK $\$ 10$ million. Therefore, we can say that HK $\$ 10$ million is a conservative estimation for the value of statistical life in Hong Kong.

Appendix 3: Residuals and auto-correlation plots

(a) Respiratory mortality

(b) Cardiovascular mortality

(c) Respiratory hospital admissions

(d) Cardiovascular hospital admissions

Appendix 4: Predicted (solid line) according to core model and observed (dotted line)

 plots from 1995-2000

(b) Cardiovascular mortality

(c) Respiratory hospital admissions

(d) Cardiovascular hospital admissions

Appendix 5: Difference between expected number of hospital admissions and observed

 number of hospital admissions according to 1995-2000 model adjusted by different pollutants from 1 Jan 2001 to 31 Mar 2001(a) Respiratory hospital admissions

RSP

(b) Cardiovascular hospital admissions

Appendix 6: Preliminary analysis of carbon monoxide ($\mathbf{C O}$) and fine suspended particulates (FSP) recorded during 1998-2000 in Tsuen Wan station
(a) Mortality

Disease, age (ICD9)	Lag	ER (95\% CI)	p-value
Non-accidental, all ages (ICD9 001-799)			
\quad CO	0	$-0.10(-0.28,0.08)$	0.257
\quad FSP	3	$-0.53(-0.94,-0.12)$	0.011

Respiratory, all ages
(ICD9 460-519)

CO	3	$-0.23(-0.60,0.14)$	0.225
FSP	0	$-0.54(-1.39,0.32)$	0.215

COPD, all ages
(ICD9 490-496 excluding 493)
CO
FSP
$1 \quad-0.32(-1.02,0.38)$
0.365
$1 \quad-1.11(-2.76,0.57)$
0.196

Cardiovascular, all ages
(ICD9 390-459)
CO
2
$-0.14(-0.48,0.19)$
0.395
FSP
3
$-0.52(-1.28,0.25)$
0.186

Cardiac, all ages
(ICD9 390-429)

CO	3	$0.15(-0.30,0.60)$	0.514
FSP	3	$-0.81(-1.84,0.23)$	0.125

IHD, all ages
(ICD9 410-414)

CO	1	$0.18(-0.35,0.71)$	0.516
FSP	1	$0.74(-0.48,1.98)$	0.237

(b) Hospital admission

Disease, age (ICD9)	Lag	ER (95\% CI)	p-value
Respiratory, all ages (ICD9 460-519)			
CO	1	-0.21 (-0.39, -0.04)	0.013
FSP	0	0.80 (0.43, 1.18)	0.000
Respiratory, 65+ (ICD9 460-519)			
CO	0	0.25 (0.06, 0.45)	0.011
FSP	0	1.36 (0.90, 1.82)	0.000
Asthma, 15-64 years (ICD9 493)			
CO	1	0.80 (0.22, 1.39)	0.007
FSP	1	-0.40 (-1.77, 0.99)	0.572
Cardiovascular, all ages (ICD9 390-459)			
CO	3	0.12 (-0.03, 0.27)	0.126
FSP	0	0.41 (0.06, 0.77)	0.023
Cardiac, all ages (ICD9 390-429)			
CO	3	0.11 (-0.07, 0.30)	0.237
FSP	0	0.39 (-0.01, 0.81)	0.059
IHD, all ages (ICD9 410-414)			
CO	0	0.81 (-1.73, 3.41)	0.536
FSP	0	0.54 (-0.11, 1.19)	0.103

Valuation of health impact of air pollution in Hong Kong: Household survey

WORKING PAPER NO: AP 02-02-001

Health Economics Team: Health Services Research Group Department of Community Medicine, The University of Hong Kong March 2002

This report is currently unpublished and therefore should not yet be quoted. Report and questionnaires obtainable from the Department of Community Medicine.

Valuation of health impacts of air pollution in Hong Kong: Household survey

Summary

A telephone survey on Hong Kong households was performed during the period August to November, 2001. The objectives were to estimate the willingness to pay (WTP) to avoid respiratory symptoms related to air pollution, to obtain data on factors which may confound the relationship between WTP and exposure to air pollution and to obtain other relevant data on perceptions of air pollution. The topic of air pollution was not mentioned until after the respondent had reported on their health status and symptoms.

The sample under-represented the higher income groups and smaller households in the population and any implications drawn from the data should take this into account. The prevalence of self-reported symptoms was high and two thirds of the sample thought air pollution affected their health. Most common problems perceived to be related to air pollution were breathing and throat problems.

The average number of hours per week spent near busy roads was $12,46 \%$ of the time outdoors. Regarding where they lived, 11% thought the air quality was poor, almost half thought it was only fair. In Kowloon, those who lived closer to ground level considered their air quality poorer.

1. Background

There is a growing interest in quantifying the effects of risk factors in the environment in order to inform public policy. One of the most serious current concerns is air pollution. Reducing air pollutants is not cheap and decision-makers may want to have some idea of the value of the benefits that will be brought about by any reduction before determining what level of resources to commit to reducing air pollution. We lack information on the monetary value of many of the potential benefits in Hong Kong. It is doubtful whether information on values from overseas populations, even if available, could be directly extrapolated to Hong Kong. There is clearly a need for new empirical studies valuing the avoidance symptoms associated with air pollution.

To value the avoidance of health impacts of air pollution, contingent valuation is being increasingly used. This involves obtaining a representative sample of the population and determining their WTP to avoid specific symptoms. The currently favoured method of obtaining the values is by closed-ended questions (bids) to which the respondent answers yes or no and this method was used in the current study.

2. Objectives

1. To obtain the WTP to avoid symptoms related to air pollution
2. To obtain data on factors which may confound the relationship between WTP and exposure to air pollution
3. To obtain other relevant data on exposure to and perceptions of air pollution and health status.

3. Methods

The detailed methods and results of the WTP valuations are described in another working paper no. AP 02-02-002. This working paper reports on the methods of the survey and the other results obtained
3.1 Sample: A population sample was obtained by a telephone survey on Hong Kong households during the period August 8, 2001 to November 17, 2001. To minimise sampling bias, the random digit dialing method for generating the sample list of telephone numbers and the "Kish Grid" approach to randomly select target respondents were adopted. The interviewers first asked the household how many adult family members of 18 years old or above were living in the unit. Next, they requested to interview the target respondent, which was determined by asking the household to rank the age of all family members from the eldest to the youngest and then choosing the person who was ranked as the random number pre-determined by us. Up to 15 attempts were made to contact the targetted respondent. When contacted, he or she was interviewed using a structured questionnaire in a telephone interview.
3.2 Questionnaire: The questionnaire was developed by using as many previously validated questions as possible and was extensively pilotted on the local population and amended. All interviews were in Cantonese.

The questionnaire had 3 main sections:

1. Health status and WTP including prevalence of symptoms, value of avoiding symptoms ranking of symptoms, existing health problems and self-perceived health
2. Perceptions of air pollution
3. Demographic characteristics

In the initial section of the questionnaire, we asked the respondent whether he/ she had experienced the relevant symptoms in the past 12 months. The symptoms were coughing, shortness of breath, sinus congestion, congested throat, itching and smarting eyes, and fever. We asked every respondent about three symptoms: coughing, breathing trouble, and a randomly allocated symptom from the other four symptoms (sinus congestion, congested throat, itching and smarting of eyes, or fever). Therefore, each respondent was asked about a sub-set of the symptoms but the remainder of the questionnaire was identical for everyone.

We followed previous studies and use a closed-ended question format to elicit people's WTP for avoiding one day of each symptom. To maintain comparability, our symptom descriptions mainly follow those of Navrud (1997) but were translated into the local Chinese dialect. Air pollution was not mentioned in the survey. Thus, we estimate non-contextual values which should be more transferable from one project to another. A separate working paper no. AP 02-02-002 describes the details of the methods used for the WTP questions.

4. Results

During the period August 8, 2001 to November 17, 2001, we made 5,416 calls to randomly selected individuals. Of these, about 1,671 phone numbers were invalid (no such number, need password, fax line, moved, etc.), and 727 numbers were commercial lines. Another 904 numbers were unanswered after at least 5 tries and 147 people could not speak Chinese or
were too old to participate. Only 580 subjects refused to participate in the survey. The final response rate is 71%.

There were 1,387 sets of observations. Usual error checking procedures were applied. One subject did not answer the WTP questions and one observation was deemed invalid because the amount was over the budget constraint, leaving 1,385 complete sets of data for analysis.

The following tables provide the frequencies of responses for questions in the questionnaire but not including the WTP questions which are reported in the working paper no. AP 02-02002.

Health status : symptoms

Table 1: Have you experienced coughing in the past 12 months?

	Frequency	$\%$
Yes	466	33.7
No	919	66.4
Total	1385	100.0

Table 2: Have you experienced breathing trouble in the past 12 months?

	Frequency	$\%$
Yes	425	30.7
No	960	69.3
Total	1385	100.0

Table 3: Have you experienced sinus congestion in the past 12 months?

	Frequency	$\%$	Valid $\%$
Yes	159	11.5	43.3
No	208	15.0	56.7
Total	367	26.5	100.0
Question not asked	1018	73.5	
Total	1385	100.0	

Table 4: Have you experienced congested throat in the past 12 months?

	Frequency	$\%$	Valid \%
Yes	174	12.6	51.1
No	167	12.0	49.0
Total	341	24.6	100.0
Question not asked	1044	75.4	
Total	1385	100.0	

Table 5: Have you experienced itching and smarting of eyes in the past 12 months?

	Frequency	$\%$	Valid \%
Yes	113	8.2	31.8
No	243	17.5	68.3
Total	356	25.7	100.0
Question not asked	1029	74.3	
Total	1385	100.0	

Table 6: Have you experienced fever in the past 12 months?

	Frequency	$\%$	Valid \%
Yes	136	9.9	42.4
No	185	13.4	57.6
Total	321	23.2	100.0
Question not asked	1064	76.8	
Total	1385	100.0	

Table 7: If you have one day of symptoms tomorrow, which symptom is most troublesome?

	Frequenc Coughing	$\%$	Valid $\%$	
Breathing trouble	419	30.3	30.3	
	653	47.1	47.3	
	Sinus congestion	98	7.1	7.1
	Congested throat	55	4.0	4.0
	Itching and smarting of	83	6.0	6.0
	eyes			
	Fever	74	5.3	5.4
	Total	1382	99.8	100.0
	Missing	3	.2	
Total		1385	100.0	

Table 8: If you have one day of symptoms tomorrow, which symptom is least troublesome?

	Frequenc Coughing	$\%$	Valid $\%$
Breathing trouble	501	36.2	36.3
	174	12.6	12.6
	Sinus congestion	197	14.2
Congested throat	187	13.3	
	Itching and smarting of	162	11.7
eyes		13.6	
	Fever	158	11.4
	Total	6	11.5
	Missing	1385	.4
Total			100.0

Existing health problems

Table 9: Has your doctor ever told you you had acute bronchitis?

	Frequency	$\%$	Valid $\%$
Yes	96	6.9	6.9
No	1289	93.1	93.1
Total	1385	100.0	100.0

Table 10: Has your doctor ever told you you had asthma?

	Frequency	$\%$	Valid $\%$
Yes	57	4.1	4.1
No	1328	95.9	95.9
Total	1385	100.0	100.0

Table 11: Has your doctor ever told you you had coronary heart disease?

	Frequency	$\%$	Valid $\%$
Yes	30	2.2	2.2
No	1355	97.8	97.8
Total	1385	100.0	100.0

Table 12: Has your doctor ever told you you had either one of these: chronic bronchitis, emphysema, or chronic obstructive airways disease?

	Frequency	$\%$	Valid $\%$
Yes	75	5.4	5.4
No	1310	94.6	94.6
Total	1385	100.0	100.0

Self-perceived health

Table 13:How would you rate your overall health at present?

	Frequency	$\%$	Valid \%	
	Excellent	287	20.7	20.7
	Good	490	35.4	35.4
	Fair	553	39.9	40.0
	Poor	54	3.9	3.9
	Total	1384	99.9	100.0
	Missing	1	.1	
Total		1385	100.0	

Perceptions of air pollution

Table 14: Do you think air pollution affects your health?

	Frequency	$\%$	Valid $\%$
Yes	960	69.3	69.3
No	425	30.7	30.7
Total	1385	100.0	100.0

Table 15: If yes, what health problem do you have that you think is related to air pollution (can choose more than 1 answer)?

	Frequency	$\%$
Breathing problem	632	56.3
Allergic rhinitis	156	13.9
Dizziness, headache	41	3.7
Congested throat, coughing	169	15.0
Others	125	11.1
Total	1123	100.0

Table 16: How many hours per week on average do you spend outdoors?
How many hours per week do you spend near a busy road/one with lots of traffic?

	N	Minimu m	Maximu m	Mean	Std. Deviation
Average hours per week spend outdoors	1385	0	105	26.1	20.8
Average hours per week spend busy road	1385	0	105	12.0	14.6

Table 17: What do you consider to be the signs of good air quality?

	Frequency	$\%$
Fresh air	330	16.4
Breathing comfortably	136	6.8
More plants	371	18.4
Rural areas	314	15.6
Less exhaust fumes, cars,	617	30.6
dust		
Wind and rain	32	1.6
Others	214	10.6
Total	2014	100.0

Table 18: How would you rate the air quality in the district you live over the last 12 months?

	Frequency	$\%$	Valid $\%$
Very good	133	9.6	9.6
Good	459	33.1	33.1
Fair	638	46.1	46.1
Poor	155	11.2	11.2
Total	1385	100.0	100.0

Housing

Table 19: What is your housing type?

	Frequenc	$\%$	Valid \%	
	y			
	Public housing estate	506	36.5	36.6
	Homeownership	199	14.4	14.4
	scheme	678	49.0	49.0
	Private	1383	99.9	100.0
	Total	2	.1	
Total	Missing	1385	100.0	

Table 20: On what floor do you live in your building?

Floor	Frequency	$\%$
$1-10$	696	50
$11-20$	412	30
$21-30$	204	15
$31-40$	70	5
$41+$	1	-
Total	1383	100

The mean floor level is 13 , range is 1 to 45 .
Table 21: Is there a busy road or street with a lot of traffic that is 100 metres away (5 minutes
walking distance) from your building?

	Frequenc	$\%$	Valid \%	
	y			
	Yes	635	45.8	46.1
	No	742	53.6	53.9
	Total	1377	99.4	100.0
	Missing	8	.6	
Total		1385	100.0	

5. Comparison of the sample demographics with the general population demographics according to the Census 2001

Table 22: Age and gender

Age Group	Sample$N=1385$ N		2001 Population census 	Goodness of fit p-value	
				$\%$	
$18-24(15-24)^{*}$	73	12.0	456639	16.8	
$25-34$	119	19.6	499492	18.4	
$35-44$	171	28.2	650455	24.0	
$45-54$	95	15.7	489891	18.1	
$55-64$	48	7.9	269326	9.9	

$>=65$	100	16.5	345184	12.7	<0.001

Female

$18-24(15-24)^{*}$	56	7.2	463806	16.1	
$25-34$	151	19.5	609037	21.1	
$35-44$	234	30.2	710032	24.6	
$45-54$	153	19.7	470526	16.3	
$55-64$	69	8.9	232716	8.1	
$>=65$	113	14.6	401868	13.9	<0.001

Both Sexes

$18-24(15-24)^{*}$	129	9.3	920445	16.4	
$25-34$	270	19.5	1108529	19.8	
$35-44$	405	29.3	1360487	24.3	
$45-54$	248	17.9	960417	17.2	
$55-64$	117	8.5	502042	9.0	
$>=65$	213	15.4	747052	13.3	<0.001

Gender**

Male	609	44.0	2710987	48.4	
Female	776	56.0	2887985	51.6	0.001

*2001 population census grouping of age (15-24)
** only those age $>=15$ for population data
Table 23: Educational attainment

Educational Attainment	Sample$\mathrm{N}=1385$ $\%$		N	2001 Population census N	
	421	30.4	1618212	Goodness of fit p-value	
Secondary	683	49.4	2534170	45.3	
Matriculation/Diploma	110	8.0	737968	13.2	
Tertiary	169	12.2	708622	12.7	<0.001

Table 24: Marital status

Marital status	Sample $\mathrm{N}=1385$		2001 Population census*		
	N	$\%$	N	$\%$	Goodness of fit
	351	25.4	1787519	31.9	
Single	928	67.1	3325482	59.4	
Married	30	2.2	152349	2.7	
Divorced / Separated	73	5.3	333622	6.0	<0.001
Widowed					

[^3]Table 25: Geographical distribution by district

District	Sample N (1385) $\%$	2001 Population census	p-value	
Central and Western	51	3.7	3.9	
Wan Chai	18	1.3	2.5	
Eastern	136	9.9	9.2	
Southern	59	4.3	4.3	
Yau Tsim Mong	62	4.5	4.2	
Sham Shui Po	70	5.1	5.3	
Kowloon City	103	7.5	5.7	
Wong Tai Sin	91	6.6	6.6	
Kwun Tong	109	7.9	8.4	
Kwai Tsing	79	5.8	7.1	
Tsuen Wan	71	5.2	4.1	
Tuen Mun	99	7.2	7.3	
Yuen Long	84	6.1	6.7	
North	85	6.2	4.5	
Tai Po	71	5.2	4.6	
Sha Tin	124	9.0	9.4	
Sai Kung	47	3.4	4.9	
Islands	14	1.0	1.3	

Table 26: Household size

Household size	Sample N (1385)			
$\%$	2001 Population census \%	p-value		
1	126	9.1	15.7	
2	249	18.0	21.8	
3	319	23.1	21.3	
4	400	28.9	23.4	
5	187	13.5	11.9	
$6+$	102	7.4	5.8	<0.001

Table 27: Working population* by occupation
$\left.\begin{array}{lcccc}\hline \text { Occupation } & \text { Sample N (1385) } \\ \%\end{array}\right)$ 2001 Population census \% \quad p-value

[^4]Table 28: Average monthly personal income
\(\left.\begin{array}{lcccl}\hline Monthly Income \& Sample N (1385)

\%\end{array} $$
\begin{array}{l}\text { 2001 Population census* }\end{array}
$$\right)\) p-value | |
| :--- |
| $<1 \mathrm{~K}$ |

[^5]
6. Association between floor lived on and perceptions of air quality

We have examined the data in an attempt to confirm or refute the prior hypothesis that those who live nearer street level will perceive their air quality to be poorer than those who live at higher levels. We have initially examined the possible confounders of age, gender, education and income but find no association between these variables and the floor lived on. We then stratified the sample according to district and examined the association between perceptions of air quality at home and floor of housing block for Hong Kong Island (HKI), Kowloon (K) and other New Territories plus Islands (NTI).

Table 29 shows the results. There is no association between floor and air quality for Hong Kong Island but a significant association for Kowloon where those who live on lower floors (1 to 10) are more likely to say that the air quality where they live is poor and a borderline association for New Territories where those on lower floors are less likely to say that air quality is very good.

Table 29: Association between floor of building on which respondent lives and perception of air quality in that district

Floor	Perceived air quality						
	Very good $\mathrm{N}(\%)$	Good $\mathrm{N}(\%)$	Fair $\mathrm{N}(\%)$	Poor $\mathrm{N}(\%)$	$\mathrm{N}(\%)$		
Hong Kong Island							
$1-10$	$9(6)$	$43(29)$	$79(53)$	$17(11)$	$148(100)$		
$11-20$	$7(10)$	$23(32)$	$34(47)$	$9(12)$	$73(100)$		
$21+$	$3(7)$	$15(36)$	$22(52)$	$2(5)$	$42(100)$		
Total	$19(7)$	$81(31)$	$135(51)$	$28(11)$	$263(100)$		
$\chi^{2}=3.4, \mathrm{p}=0.75$							
Kowloon	$12(5)$	$54(22)$	$127(51)$	$54(22)$	$247(100)$		
$1-10$	$3(3)$	$47(40)$	$47(40)$	$20(17)$	$117(100)$		
$11-20$	$4(6)$	$24(34)$	$37(53)$	$5(7)$	$70(100)$		
$21+$	$19(4)$	$125(29)$	$211(49)$	$79(18)$	$434(100)$		
Total	$\chi^{2}=20.4, \mathrm{p}=0.002$						
New Territories	$55(19)$	$103(35)$	$119(40)$	$19(6)$	$296(100)$		
$1-10$	$24(11)$	$82(38)$	$92(42)$	$20(9)$	$218(100)$		
$11-20$	$15(9)$	$64(40)$	$73(46)$	$8(5)$	$160(100)$		
$21+$	$94(14)$	$249(37)$	$284(42)$	$47(7)$	$674(100)$		
Total	$\chi^{2}=12.4, \mathrm{p}=0.05$						

7. Discussion/comments

This working paper presents the frequencies for questions related to air pollution and a comparison of the sample with the general population, as reported in the 2001 census. Our sample slightly under-represents the higher income, more highly educated and professional groups and has fewer single person households than the general population. However the
geographical distribution is quite similar to the whole population. The disparity in income and educational levels should be taken into account when the data is used e.g. by weighting or by stratification.

The prevalence of self-reported respiratory symptoms is quite high - 31/32\% for eye and breathing problems and 51% for throat problems. Breathing trouble and coughing were considered to be the most troublesome symptoms. Chronic and respiratory illness were not very common in the population with only 7% reporting that they had had acute bronchitis, 4% reporting asthma and 5% other chronic respiratory problems while 2% reported heart disease. Self-perceived health was quite good with 56% reporting good or excellent health and only 4% reporting poor health. However 69% of the sample thought air pollution affected their health with 56% thinking it caused breathing problems and 15% throat problems. The most common suggestions as to the signs of good air quality were less vehicle exhaust fumes and dust and more green plants.

The sample estimated that they spent an average of 26 hours outdoors per week of which 12 hours, or 46%, was near a busy road. Almost half considered the air quality where they live to be fair and one third thought is good but 11% thought it was poor. As shown in section 6, the prior hypothesis that those who live nearer ground level in busy, traffic congested areas would be more likely to report poor air quality in their living district was supported by the study findings

Valuation of the avoidance of respiratory symptoms in Hong Kong

WORKING PAPER NO: AP 02-02-002

Health Economics Team: Health Services Research Group Department of Community Medicine, The University of Hong Kong March 2002

Valuation of the avoidance of respiratory symptoms in Hong Kong

1. Background

This paper reports the detailed methods and results of the valuation of avoiding one day of respiratory symptoms which may result from air pollution. Other aspects of the survey and its results are reported in working paper no. AP-02-02-001.

2. Objectives

The main objective for this part of the survey is to estimate the WTP to avoid six respiratory symptoms in Hong Kong: coughing, shortness of breath, sinus congestion, congested throat, itching and smarting eyes and fever. A secondary objective is to compare the values that people in Hong Kong place on avoiding minor illness with those obtained in the United States and Norway.

3. Methods

A telephone survey was conducted on a population sample. Details of the sampling methods are in paper AP 02-02-001.

Dichotomous choice (or closed-ended) question formats are now widely used for contingent valuation (CV) of nonmarket goods and services. One advantage of this "take-it-or-leave-it" format is that it mimics the decision making task that individuals face in everyday market transactions. In addition, follow-up questions (or double-bounded dichotomous choice) (DB) have been proposed as one way to improve the efficiency of single-bounded questionnaires (SB). Here we follow previous studies and use DB question format to elicit people's WTP for avoiding one day of each symptom.

To maintain comparability with others' findings, our symptom descriptions mainly follow those of Navrud (1997). Furthermore, air pollution was not mentioned in the survey until after the valuation had been done. Thus, we estimate non-contextual values. The non-contextual values should be transferable from one project to another.

A number of pretests of the survey instrument were conducted prior to the main study. These pretests confirmed that original questionnaire worked well, and only minor changes were required. In the first pilot study, we used an open-ended question format to elicit eight starting bid levels for the eight symptoms (coughing, shortness of breath, sinus congestion, congested throat, itching and smarting eyes, fever, headache and acute bronchitis) to be valued. The eight first bids were $\$ 30, \$ 50, \$ 100, \$ 200, \$ 300, \$ 500, \$ 1000$, and $\$ 5000$. The second bid was conditional on the respondent's response to the first bid: half the first bid if the first response is 'no' and double the first bid if it is 'yes' (Table 1). Eight initial bid amounts were assigned randomly to respondents.

To avoid the questionnaire being too long, we only ask three symptoms at a time. Everyone was asked about cough and shortness of breath and one randomly allocated from sinus congestion, congested throat, itching \& smarting eyes and fever.

Table 1: Structure of the bids

Initial bid (first bid)	First bid respond	Follow-up bid (second bid)	Second bid respond
$\$ 30$	Y	$\$ 60$	Y / N
	N	$\$ 15$	Y / N
$\$ 50$	Y	$\$ 100$	Y / N
	N	$\$ 25$	Y / N
$\$ 100$	Y	$\$ 200$	Y / N
	N	$\$ 50$	Y / N
$\$ 200$	Y	$\$ 400$	Y / N
	N	$\$ 100$	Y / N
$\$ 300$	Y	$\$ 600$	Y / N
	N	$\$ 150$	Y / N
$\$ 500$	Y	$\$ 1,000$	Y / N
	N	$\$ 250$	Y / N
$\$ 1,000$	Y	$\$ 2,000$	Y / N
	N	$\$ 500$	Y / N
$\$ 5,000$	Y	$\$ 10,000$	Y / N
	N	$\$ 2,500$	Y / N

Statistical Analysis

As opposed to the open-ended approach, our data collected from the closed-ended is the proportion of respondents replying 'yes' or 'no'. Therefore, we need to recover the value of WTP from their discrete choices. This involves discrete choice econometric modelling. We can estimate the WTP by either a simple linear model or a log-linear model. The latter would rule out negative WTP. On the other hand, we can also estimate the WTP by using SB or DB data. DB data can provide more information about the location of the respondent's WTP than using only the SB data. This improves the efficiency of dichotomous choice questionnaires. Thus, we use DB log-linear interval regression model.

An individual's WTP is the monetary amount that equates the utility level derived from the current health state to that enjoyed in the improved health state. Denoting $W T P_{i}$ as WTP for respondent i, assume that sample WTP follows a lognormal distribution,

$$
\log \left(W T P_{i}\right)=W_{i}=\beta_{0}+\varepsilon_{i}
$$

where

$$
\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

From our bidding data, W_{i} is manifested through the discrete variable $I_{1 i}, I_{2 i}$ of the two responses. Suppose t_{i} is the bid level facing the respondents. The first and second bid together then define three types of regions R_{1}, R_{2}, R_{3} with different lower and upper bounds B_{L}, B_{U} where W_{i} locates:

$$
\begin{aligned}
& R_{1}:-\infty \leq W_{i} \leq \min \left(t_{1 i}, t_{2 i}\right)=B_{U} \quad \text { if } \quad I_{1 i}=0 \quad \text { and } \quad I_{2 i}=0 ; \\
& R_{2}: B_{L}=t_{1 i} \leq W_{i} \leq t_{2 i}=B_{U} \quad \text { if } \quad I_{1 i}=1 \quad \text { and } I_{2 i}=0 ; \\
& R_{2}: B_{L}=t_{2 i} \leq W_{i} \leq t_{1 i}=B_{U} \quad \text { if } \quad I_{1 i}=0 \quad \text { and } I_{2 i}=1 ; \\
& R_{3}: \infty \geq W_{i} \geq \max \left(t_{1 i}, t_{2 i}\right)=B_{L} \quad \text { if } \quad I_{1 i}=1 \quad \text { and } I_{2 i}=1 .
\end{aligned}
$$

Using the estimate of β_{0}, we can calculate the mean or median WTP. Because of the lognormal distribution, the median WTP is $\exp \left(\beta_{0}\right)$ and the mean is $\exp \left(\beta_{0}\right) \exp \left(\sigma^{2} / 2\right)$. Since we are interested in the median WTP, the 95% confidence interval for the median WTP was estimated by non-parametric bootstrap percentile interval with 5000 bootstrap replications. We decided to use a bootstrap percentile interval because the bootstrap median WTP is not normally distributed.

4. Results

During the period August 8, 2001 to November 17, 2001, we made 5,416 calls to randomly selected individuals. Of these, about 1,671 phone numbers were invalid (no such number, need password, fax line, moved, etc.), and 727 numbers were commercial lines. Another 904 numbers were unanswered after at least 5 tries and 147 people could not speak Chinese or were too old to participate. Only 580 subjects refused to participate in the survey. The final response rate is 71%.

There were 1,387 sets of observations. Usual error checking procedures were applied. One subject did not answer the WTP questions and one observation was deemed invalid because the amount was over the budget constraint, leaving 1,385 complete sets of data for analysis.

Table 2 compares the age and sex structure of the final sample and that of 2001 Hong Kong population. Chi-squared tests (p -values $<=0.001$) show that the sample age and sex structure are significantly different from the 2001 Population Census.

Table 2: Comparison of sample and population age and sex structure

Age Group	Sample$\mathrm{N}=1385$ N		2001 Population census N		Goodness of fit test $\chi^{2} \mathrm{p}$-value
$18-24(15-24)^{*}$	73	12.0	456639	16.8	
$25-34$	119	19.6	499492	18.4	
$35-44$	171	28.2	650455	24.0	
$45-54$	95	15.7	489891	18.1	
$55-64$	48	7.9	269326	9.9	
$>=65$	100	16.5	345184	12.7	<0.001
Female					
$18-24(15-24)^{*}$	56	7.2	463806	16.1	
$25-34$	151	19.5	609037	21.1	
$35-44$	234	30.2	710032	24.6	
$45-54$	153	19.7	470526	16.3	
$55-64$	69	8.9	232716	8.1	
$>=65$	113	14.6	401868	13.9	<0.001

Both Sexes					
$18-24(15-24)^{*}$	129	9.3	920445	16.4	
$25-34$	270	19.5	1108529	19.8	
$35-44$	405	29.3	1360487	24.3	
$45-54$	248	17.9	960417	17.2	
$55-64$	117	8.5	502042	9.0	
$>=65$	213	15.4	747052	13.3	<0.001
Gender**	609	44.0	2710987	48.4	
Male	776	56.0	2887985	51.6	0.001
Female					

*2001 population census grouping of age (15-24)
** only those age $>=15$ for population data
Table 3 shows the estimated median WTP of the Hong Kong people to avoid 1 day of each symptom. Comparing the unweighted WTP with the weighted WTP, we find that the results are similar. To avoid any bias created from the weighting process, we recommend using the unweighted WTP. As indicated in the table, respondents are willing to pay more to avoid one day of shortness of breath, followed by itching eyes, fever, coughing, congested throat and sinus congestion. The ranking of WTP confirmed the consistency with the ranking of disutility of those symptoms (Table 4).

Table 3: Estimated median WTP to avoid 1 day of each symptom using DB log-linear model

Symptom	Unweighted Median WTP	95% CI*	Weighted** Median WTP
Coughing	179.16	$164.97-195.47$	183.67
Shortness of breath	265.28	$239.63-295.87$	276.86
Sinus congestion	138.58	$117.28-165.17$	139.22
Congested throat	145.54	$122.76-171.65$	149.74
Itching \& smarting of eyes	211.55	$174.16-259.93$	211.73
Fever	203.67	$171.21-242.65$	212.20

*nonparametric bootstrap 95% percentile interval for median WTP based on 5000 replication.
**we create a sample weighting based on age and sex structure of the 2001 Census
Table 4: Ranking of symptoms

	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{0} \end{aligned}$	Sinus congestion		Congested throat		Itching \& smarting of eyes		Fever	
		N	\%	N	\%	N	\%	N	\%
C B	R	82	22.3	88	25.9	75	21.1	84	26.3
C R	B	17	4.6	37	10.9	23	6.5	13	4.1
B C	R	115	31.3	99	29.1	88	24.8	75	23.5
B R	C	55	15.0	61	17.9	86	24.2	74	23.2
R C	B	27	7.4	20	5.9	19	5.4	18	5.6
R B	C	71	19.3	35	10.3	64	18.0	55	17.2
Total		367	100.0	340	100.0	355	100.0	319	100.0

[^6]Table 5 compares the results in this report with those reported in similar studies for Norway (Navrud 1997) and United States (Tolley 1994). Median values for the US and Norway are both lower than those for Hong Kong. Differences across the three studies could be due to differences in the elicitation approach or survey methodology or could be real economic or cultural effects.

Table 5: WTP for avoiding one day of symptom in 3 studies (US\$)

Symptom	Hong Kong*	US**	Norway***
Cough	26.0	18.1	2.1
shortness of breath	38.4	-	10.7
sinus congestion	20.1	23.0	8.0
congested throat	21.1	21.4	2.1
itching \& smarting of eyes	30.7	20.6	5.3
Fever	29.5	-	-

Note: US survey was conducted in 1985 and Norway survey was conducted in 1996.
*Adjusted by 6.9 PPP exchange rate (from EIU)
** Adjusted by 164.59 CPI (from U.S. Department of Labor)
*** Adjusted by 114.06 CPI (from Statistics Norway) then 10.7 PPP exchange rate (from OECD)

5. Valuing more than one day of symptoms

We conducted a further, smaller, survey to estimate WTP to avoid 3 or 7 days of the same symptom. We find that, to avoid three days of symptoms, respondents are willing to pay three times the value to of avoiding one day of symptom. However, there is a declining marginal value of a symptom day as the number of symptom days increases because the value for avoiding seven days is less than seven times one day and is nearer five times one day more than 3 days (details reported separately).

6. Reliability of the questionnaire

To test the reliability of the questionnaire, we randomly selected 311 out of 1385 respondents to call back and asked again; 268 were successfully asked eight questions. Using test-retest reliability method, we are confident that the willingness to pay question is quite reliable (see Table 6).

Table 6: Reliability for eight questions

	\% of same answer	Correlation coefficients
Q9 WTP for 1 day of coughing*	66	NA
Q21 Air quality in the district	61	.5681
Q27 Live near busy traffic	76	.5163
Q28 Marital status	96	.9150
Q24 Education	93	.9504
Q32 Occupation	89	.9149
Q33 District	96	.9760
Q36 Personal income	70	.9128

* 19% changed to lower WTP and 14% changed to higher WTP

Major references

Alberini, A., Cropper, M., Fu, T. T., Krupnick, A., Liu, J. T., Shaw, D., Harrington, W. (1997)
Valuing Health Effects of Air Pollution in Developing Countries: The Case of Taiwan, Journal of Environmental Economics and Management 34, 107-126.

Cameron, T. A. (1988) A New Paradigm for Valuing Non-market Goods Using Referendum Data: Maximum Likelihood Estimation by Censored Logistic Regression, Journal of Environmental Economics and Management, 15, 355-379.

Cameron, T. A. (1994) Estimation Using Contingent Valuation Data from a "Dichotomous Choice with Follow-Up" Questionnaire, Journal of Environmental Economics and Management, 27, 218-234.

Davison, A. C. and Hinkley, D. V. (1997) Bootstrap methods and their application, Cambridge University Press, New York, USA.

Navrud, S. (1997) Valuing Health Impacts from Air Pollution in Europe: New Empirical Evidence on Morbidity.

Tolley, G., D. Kenkel and R. Fabian (eds.) (1994) Valuing Health for Policy: An Economic Approach, The University of Chicago Press, Chicago and London.

Value of avoiding cardiovascular or respiratory illness in Hong Kong

WORKING PAPER NO: AP 02-02-003

Health Economics Team: Health Services Research Group Department of Community Medicine, The University of Hong Kong

March 2002

Value of avoiding cardiovascular or respiratory illness in Hong Kong

1. Background

Medical research has provided evidence that air pollution in Hong Kong is responsible for many acute health problems and chronic illnesses. In recent year, the community has been increasingly concerned with the policy issues involved in air pollution control. In evaluation of possible policy impact, it is important to conduct some cost-benefit analyses. However, because health and quality of life are not market goods, we have to estimate the benefits in some way other than by reference to market prices. Stated-preference methods have been found useful to elicit the value of such benefits.

In this paper, we describe the application of stated-preference methods using a conjoint analysis approach to estimate the value of health benefits from air quality improvement. The health benefits in this study are serious cardiovascular and respiratory illness.

2. Objectives of the study

1. To estimate the willingness to pay (WTP) of the Hong Kong population to avoid serious cardiovascular and respiratory disease through air quality improvements.
2. To estimate the relative value of other factors also related to air quality improvement which might be traded against health effects.

3. Methods

Conjoint analysis (CA) is a commonly used technique for estimating WTP when the subjects are faced with a trade-off situation. According to Ryan and Farrar (2000):
"CA was developed in mathematical psychology and has a strong theoretical basis. It has been successfully used in market research, transport economics, and environmental economics and was recommended to the UK Treasury for valuing quality in the provision of public services. Within these areas it has been well received by policymakers."

CA involves surveying respondents' preference among alternatives or scenarios. We followed the practice of Ryan (1999), Bryan et al (2000), Hakim and Pathak (1999) and Farrar and Ryan (1999) to use discrete choice format questions, asking respondents to make a choice between two scenarios: the current state and a new hypothetical state. We also allowed respondents to rate the intensity of preference between the two alternatives on a 5-point scale. Respondents' WTP was estimated based on the choices made and the variation of economic costs between the two scenarios.

We followed the procedure of undertaking a CA study suggested by Ryan and Farrar (2000).

Stage 1 Identifying the characteristics: The dichotomous choice question includes a set of characteristics (or attributes). The characteristics were selected according to the nature of the policy concerned, literature reviews, focus group studies and expert advice. Four characteristics were included in our scenarios: (1) the perceived morbidity risks; (2) the convenience of commuting in the respondents' daily life; (3) amount of time spent on commuting and (4) expenditure on transportation in the coming 12 months.

Table 1: Characteristics and levels of the choice set

Characteristic	Levels
The probability of getting the disease in the coming	1) Base case 0% reduction,
12 months according to the respondent's age	2) 2% reduction,
	3) 10% reduction
The convenience of daily commuting	1) Current level, 2) Need to make one transit and have a chance of unable to find a seat
Amount of time spent on commuting	1) Current situation,
	2) 10% increase in time
Cost of transportation in the coming 12 months	1) No change,
	2) HK $\$ 50$ more,
	3) HK $\$ 100$ more,
	4) HK $\$ 500$ more
	5) HK $\$ 1000$ more

Stage 2 Assigning levels to the characteristics: The levels assigned to the characteristics define a set of variations to identify the respondents' preferences. They can be cardinal, ordinal and categorical. Table 1 shows the attributes and the levels included in this study. There were two sets of questionnaires focusing on respiratory diseases and cardiovascular diseases. The only difference between the two sets of questions was their levels of morbidity risks which do differ between the two diseases with the risk of cardiovascular disease being much higher than that of respiratory disease.

The probability of getting respiratory diseases and cardiovascular diseases were calculated from the number of people who were admitted to hospital with these conditions, grouped into three age groups. When considering the base case and then changes in the probabilities of getting disease in the alternative scenarios, respondents were supplied with information on the actual probabilities of disease per 100,000 members of the local population. Table 2 shows these probabilities.

Stage 3 Choice of scenarios: Given the number of attributes and the number of levels, there were $60(3 \times 2 \times 2 \times 5)$ possible combinations; 59 scenarios were to be compared with the status quo. By elimination of dominant choices, the size of the experiment was reduced to 38 meaningful sets of alternative scenarios. The 38 dichotomous choices were distributed randomly to 4 sets of respondents.

Table 2: The morbidity risk in numbers by age group

	Respiratory disease	Cardiovascular disease
Age 15-34	Base case $327 / 100,000$	Base case $147 / 100,000$
	2% reduction $=7$	2% reduction $=2$
	10% reduction $=33$	10% reduction $=15$
Age 35-64	Base case $659 / 100,000$	Base case $1,021 / 100,000$
	2% reduction $=13$	2% reduction $=20$
	10% reduction $=66$	10% reduction $=102$
Age 65 or above	Base case $9,293 / 100,000$	Base case $8,303 / 100,000$
	2% reduction $=186$	2% reduction $=166$
	10% reduction $=929$	10% reduction $=830$

Stage 4 Establishing preferences: Respondents were asked to choose between two sets of attributes and, depending on their choice, they were then given a further two sets. This is a preferred method because the questions closely resemble a real life decision. This continued until each respondent had valued 9 or 10 choice sets.

Stage 5 Data analysis: Given the nature of our data, a benefit function was estimated based on regression techniques of which only the dichotomous choice (and rating scale) was observed. The benefit function was specified as:

$$
\Delta B=\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}
$$

where $\Delta \mathrm{B}$ is the change in benefit in moving from the status quo to the alternative scenario and $X_{j}(j=1,2,3,4)$ are the changes in level of characteristics; $\beta_{j}(j=1,2,3,4)$ are the coefficients of the model to be estimated. The coefficients indicate the relative importance of the different characteristics and show the change of utilities for a unit of change in these characteristics. The ratios of $\beta_{1}, \beta_{2}, \beta_{3}$ to β_{4} represent the marginal WTP (the dollarcharacteristic tradeoffs) for an increment of a level of an attribute.

4. Data collection

The questionnaires containing 9 or 10 choices were mailed to the interviewees before the telephone interviews. A total of 409 subjects were drawn randomly from the respondents in the main survey. They were divided into two groups and each group was allocated to one of the disease categories - 204 subjects for respiratory disease and 205 for cardiovascular disease. Of the two groups, 110 and 135 respectively completed the interviews, giving response rates of 54% and 66%.

5. Subjects

Table 3 shows the age structure of the collected sample. Because of missing data, we report the data of 231 of the 245 respondents. The age structure of the males is not different from that of the Hong Kong adult population (18 years or over). The female sample has a statistically different age structure from that of the population, mainly due to the over representation of 45-54 year age group in the cardiovascular disease category and the 35-44 year age group in the respiratory disease category.

Table 3: Age distribution of the sample

Age Group	2001 Census		Total sample$\mathrm{N}=231$		Cardiovascular$\mathrm{N}=130$		Respiratory$\mathrm{N}=101$	
	N	\%	N	\%	N	\%	N	\%
Male								
17-24 *	456639	16.8	14	12.6	7	11.1	7	14.6
25-34	499492	18.4	18	16.2	10	15.9	8	16.7
35-44	650455	24.0	29	26.1	18	28.6	11	22.9
45-54	489891	18.1	28	25.2	17	27.0	11	22.9
55-64	269326	9.9	8	7.2	5	7.9	3	6.3
>=65	345184	12.7	14	12.6	6	9.5	8	16.7
			$P=0.341$		$\boldsymbol{P}=0.354$		$\boldsymbol{P}=0.833$	
Female								
17-24*	463806	16.1	10	8.3	6	9.0	4	7.5
25-34	609037	21.1	20	16.7	6	9.0	14	26.4
35-44	710032	24.6	41	34.2	19	28.4	22	41.5
45-54	470526	16.3	28	23.3	21	31.3	7	13.2
55-64	232716	8.1	10	8.3	8	11.9	2	3.8
> $=65$	401868	13.9	11	9.2	7	10.4	4	7.5
			$\boldsymbol{P}=0.008$		$\boldsymbol{P}=0.003$		$P=0.030$	
Both Sexes								
17-24*	920445	16.4	24	10.4	13	10.0	11	10.9
25-34	1108529	19.8	38	16.5	16	12.3	22	21.8
35-44	1360487	24.3	70	30.3	37	28.5	33	32.7
45-54	960417	17.2	56	24.2	38	29.2	18	17.8
55-64	502042	9.0	18	7.8	13	10.0	5	5.0
>=65	747052	13.3	25	10.8	13	10.0	12	11.9
			$\boldsymbol{P}=0.003$		$\boldsymbol{P}=0.001$		$P=0.220$	

Table 4: Gender distribution of the sample

Gender**	2001 Census		Total sample		Cardiovascular		Respiratory	
	N	\%	N	\%	N	\%	N	\%
Male	2710987	48.4	111	48.1	63	48.5	48	47.5
Female	2887985	51.6	120	51.9	67	51.5	53	52.5
			$P=0.911$		$P=0.992$		$P=0.857$	

** only those age $>=15$ for 2001 Census
$\dagger \mathrm{P}=\mathrm{p}$-value of the goodness of fit χ^{2} test
Table 4 shows the distribution of gender in our sample. The p-values based on chi-square statistics suggested that our sample is not statistical significantly different from the Hong Kong population.

Table 5 displays the income distribution of our sample.

Table 5: Income distribution of the collected sample

Income group	Household monthly income			
	N	$\%$	Personal monthly income	
$<1 \mathrm{k}$	8	4.0	46	24.5
$1-2 \mathrm{k}$			2	1.1
$2-4 \mathrm{k}$	2	1.0	6	3.2
$4-6 \mathrm{k}$	6	3.0	9	4.8
$6-8 \mathrm{k}$	9	4.6	13	6.9
$8-10 \mathrm{k}$	15	7.6	18	9.6
$10-15 \mathrm{k}$	47	23.7	41	21.8
$15-20 \mathrm{k}$	21	10.6	17	9.0
$20-25 \mathrm{k}$	24	12.1	16	8.5
$25-30 \mathrm{k}$	15	7.6	3	1.6
$30-40 \mathrm{k}$	24	12.1	8	4.3
$40-60 \mathrm{k}$	23	11.6	6	3.2
$>=60 \mathrm{k}$	4	2.0	3	1.6
Total	198	100.0	188	100.0
Refuse to answer	46		56	
Missing	1		1	
Total	245		245	

6. Results

The ratio of β_{1} to β_{4} represents the marginal WTP (the dollar-characteristic tradeoffs) for an increment of health risk. Table 6 presents 3 types of estimation strategy of 2 sets of data. Full sample estimation used observed choices from all subjects. We also estimated WTP based only on a subset of subjects who could answer two questions in the survey testing their numerical abilities. These sub-samples should be more knowledgeable in assessing risk reduction.

Three estimation models were attempted. Random effect probit models heterogeneity across subjects by decomposing the proportion of stochastic errors to overall and personal level variance. The population average model considers an equal correlation structure across observations (choices) within the same subject and all subjects are assumed to have the same within-subject correlation. Ordered probit is supposed to be more efficient in the sense that it takes into account the 5-point scale which describes the intensity of the respondents' preference.

However, there is no preprogrammed routine available in STATA for ordered probit to estimate the panel data structure. Therefore, ordered probit estimates ignore the heterogeneity of subjects. For random effect and population average models, which take the panel data features into account, special treatment is required for observations where the respondent states that they are indifferent among the two alternatives (rating = 3). To apply the panel data methods, we therefore force these observations into one of the two choices based on a 50-50 chance random number generator. Statistically, this method is similar to removing these observations.

Reduction in risk	Cardiovascular			Respiratory		
	1\%	8\%	100\%	1%	8\%	100\%
Dichotomous choice model						
Random Effect Probit			HK\$			HK\$
Full sample	41	328	4100	49	392	4900
Sub-sample	51	408	5100	48	384	4800
Population Average						
Full sample	43	344	4300	51	408	5100
Sub-sample	52	416	5200	50	400	5000
Rating model						
Ordered probit estimation						
Full sample	17	136	1700	15	120	1500
Sub-sample	33	264	3300	14	112	1400
Full sample - no. of subjects		135			110	
No. of observations		1396			1182	
Subsample - no. of subjects		94			77	
No. of observations		973			827	
Note: WTP is calculated as the ratio of estimated β_{1} to β_{4}						

7. Discussion

The questionnaire is structured in a way that leads the respondents to think about the degradation of quality of life. The valuation of morbidity may therefore excludes loss of productivity and cost of medication.

The aggregated WTP to avoid 100% (certain) chance of suffering a disease is the valuation of morbidity. This 100% is calculated by multiplying the value for a change in risk up to the value that would be required for a 100% change (i.e. multiply value by 100/change in risk valued)

The estimated values of avoiding morbidity vary greatly between estimation methods, greatly between sample, and a little between the two diseases. Based on the full sample, the value of avoiding cardiovascular disease calculated using the 3 estimation methods are HK\$4300 (population average model), $\$ 1700$ (ordered probit), and $\$ 4100$ (random effect probit). If we only use the sub-sample, the values are HK $\$ 5200, \$ 3300$, and $\$ 5100$. For respiratory diseases, the full sample estimates are $\mathrm{HK} \$ 5100$ (population average), $\$ 1500$ (ordered probit) and $\$ 4900$ (random effect probit) whereas the sub-sample estimates are $\mathrm{HK} \$ 5000, \$ 1400$ and $\$ 4800$.

Between the two diseases the WTPs are similar in magnitude. For the respiratory disease group, the full-sample estimates and the sub-sample estimates are similar in magnitude. But the sub-sample of the cardiovascular disease group has higher WTP than that of the full sample. The reason behind this variation requires further investigation.

For both diseases, the random effect model produced slightly lower estimates of WTP than the population average model. The ordered probit model provides a substantially lower WTP estimate, probably due to the presence of the constant term in the estimation equation (The ordered probit model cannot be without the constant). There is no standard method to determine the selection of the best model. From an econometric point of view, model selection is based on the theory behind the data generation process. To follow previous practice (Ryan and Farrar, 2000), the random effect estimates are recommended for subsequent use. Therefore, the value used to estimate monetary value of avoiding one admission to hospital is $\$ 4,100$ for cardiovascular disease and $\$ 4,900$ for respiratory disease.

8. Validation of the estimate of value of avoiding serious morbidity

8.1 Objective

To test the validity of the WTP amount to avoid serious morbidity derived from the conjoint analysis.

8.2 Methods

The derived values of $\$ 4100$ to avoid having coronary heart disease and $\$ 4900$ to avoid having respiratory disease were tested in a random population sample using a close-ended question. The survey was carried out during March 2002.

8.3 Results

A total of 75 successful responses and 100 refusals were obtained from 175 approaches. This gives a response rate of $43 \% ; 37(49 \%)$ interviewees were first asked the WTP to avoid coronary heart disease, followed by the WTP to avoid respiratory disease. Another 38 (51\%) observations were first asked the WTP to avoid respiratory disease, then the WTP to avoid coronary heart disease.
84% interviewees don't have any chronic disease. For those who have, mostly are high blood pressure and bronchitis; 25% of respondents do have family members or friends with chronic disease. Mostly are asthmatic, diabetic, have heart disease or high blood pressure; 63% of respondents rated their current health good or very good.

Table 7:Demographic characteristics of the sample and the whole population

		2001 census		Sample		p
		N	\%	N	\%	
Gender$(15+)$	Male	2710987	48.4	31	41.3	0.219
	Female	2887985	51.6	44	58.7	
		5598972	100.0	75	100.0	
Age - Male	15/18-24	456639	16.8	3	10.7	
	25-34	499492	18.4	6	21.4	
	35-44	650455	24.0	8	28.6	
	45-54	489891	18.1	4	14.3	
	55-64	269326	9.9	0	0.0	0.198
	>=65	345184	12.7	7	25.0	
		2710987	100.0	28	100.0	

Age - Female	15/18-24
	$25-34$
	$35-44$
	$\mathbf{4 5 - 5 4}$
	$55-64$
	$>=65$
Age - Both	$15 / 18-24$
	$25-34$
	$35-44$
	$\mathbf{4 5 - 5 4}$
	$\mathbf{5 5 - 6 4}$
	$>=65$

$\begin{aligned} & \text { Education } \\ & (15+) \end{aligned}$	Primary or below	1618212	28.9	12	16.0	0.092
	Secondary	2534170	45.3	41	54.7	
	Matriculation/Diploma	737968	13.2	10	13.3	
	Tertiary	708622	12.7	12	16.0	
		5598972	100.0	75	100.0	
Household	<2,000	65855	3.2	3	4.9	
Income	2,000-3,999	97568	4.8	1	1.6	
	4,000-5,999	93018	4.5	0	0.0	
	6,000-7,999	116340	5.7	1	1.6	
	8,000-9,999	120721	5.9	4	6.6	
	10,000-14,999	318623	15.5	22	36.1	
	15,000-19,999	262086	12.8	8	13.1	
	20,000-24,999	223708	10.9	7	11.5	
	25,000-29,999	159470	7.8	4	6.6	
	30,000-39,999	219229	10.7	3	4.9	
	40,000-59,999	197311	9.6	6	9.8	
	> $=\mathbf{6 0 , 0 0 0}$	179483	8.7	2	3.3	0.004
		2053412	100.0	61	100.0	

Only 41% of respondents accepted the first bid amount (\$4100) to avoid having coronary heart disease; 57% accepted the first bid amount (\$5100) to avoid having respiratory disease. Using a simple interval regression model, we estimated the WTP are $\$ 5083$ and $\$ 4227$ to avoid having coronary heart disease and respiratory disease respectively. The estimated WTP are $\$ 4792$ and $\$ 3227$ respectively using log interval regression.

9. References

1. Bryan S, Gold L, Sheldon R, Buxton M. (2000) Preference measurement using conjoint methods: an empirical investigation of reliability. Health Economics 9:385-95.
2. Farrar S, Ryan M. (1999) Response-ordering effects: a methodological issue in conjoint analysis. Health Economics 8:75-9.
3. Hakim Z, Pathak DS. (1999) Modelling the EuroQol data: a comparison of discrete choice conjoint and conditional preference modelling. Health Economics 8:103-16.
4. Ryan M. (1999) A role for conjoint analysis in technology assessment in health care? Int J Technol Assess Health Care 15(3):443-57.
5. Ryan M, Farrar S. (2000) Using conjoint analysis to elicit preferences for health care. BMJ 320:1530-3.

[^0]: \# Data is extracted from HA database

[^1]: Note: ${ }^{\#}$ Obtained from Sommer (1999) ${ }^{1}$ and validated in Hong Kong (2002) Appendix 2
 ${ }^{@}$ Obtained by conjoint analysis ${ }^{21}$
 ${ }^{\wedge}$ Obtained by contingent valuation ${ }^{20}$

 Explanation of calculations refers to page 13.

[^2]: *2001 population census grouping of age (15-24)

[^3]: * only those age $>=15$ for population data

[^4]: * include those age $>=15$ working population for population data

[^5]: * include those age $>=15$ working population and exclude unpaid family workers for population data

[^6]: Note: Denote C as coughing, B as shortness of breath, R as one of the four symptoms randomly (sinus congestion, congested throat, itching \& smarting eyes and fever)

