

Marine Water Quality in Hong Kong in 2003

Results for 2003 from the

Marine Monitoring Programme
of the Environmental Protection Department

Monitoring Section
Water Policy and Planning Group
Environmental Protection Department
Government of the Hong Kong Special Administrative Region
2004

Marine Water Quality in Hong Kong in 2003

Report number : EPD/TR2/04

Date : November 2004

Report written by : Jackie Y. C. Lam, J. H. Liu

Work done by : Jackie Y. C. Lam, J. H. Liu, W. S. Ng,

P. H. Yan, L. M. Li, H. W. Au, S. K. Fung,

M. F. Lam, K. K. Lo, M. S. Cheng,

S. K. Chan, S. S. Kwan, M. Y. Wu.

Work supervised by : Cathie S. W. Kueh

Security classification : Unrestricted

Note: The information contained in this publication can be used freely for study, research or training purposes subject to acknowledgement of the source. Use of the information for purposes other than those stated above requires prior written permission of the Director of

Environmental Protection.

CONTENTS

Chapter		Page
	Acknowledgements	K - 1
	Disclaimer	K - 2
	Summary of Marine Water Quality in Hong Kong in 2003	S - 1
1.	Introduction	1.1
2.	Tolo Harbour and Channel Water Control Zone	2.1
3.	Southern Water Control Zone	3.1
4.	Port Shelter Water Control Zone	4.1
5.	Junk Bay Water Control Zone	5.1
6.	Deep Bay Water Control Zone	6.1
7.	Mirs Bay Water Control Zone	7.1
8.	North Western Water Control Zone	8.1
9.	Western Buffer Water Control Zone	9.1
10.	Eastern Buffer Water Control Zone	10.1
11.	Victoria Harbour Water Control Zone	11.1
12.	Sediment Quality	12.1
13.	Typhoon Shelters	13.1
14.	Phytoplankton and Red Tides	14.1
15.	Marine Water Quality in 2003	15.1

	LIST OF FIGURES	Page
Figure 1.1	Water Control Zones in Hong Kong	1.4
Figure 1.2	76 water quality monitoring stations in open waters of Hong Kong in 2003	1.5
Figure 1.3	45 sediment monitoring stations in open waters of Hong Kong in 2003	1.6
Figure 1.4	18 water quality monitoring stations and 15 sediment monitoring stations in the typhoon shelters of Hong Kong in 2003	1.7
Figure 1.5	Bathing beaches, secondary contact recreational areas and seawater abstraction points in Hong Kong in 2003	1.8
Figure 1.6	Fish culture zones and marine conservation sites in Hong Kong in 2003	1.9
Figure 1.7	Marine disposal, public filling areas and major reclamation sites in Hong Kong in 2003	1.10
Figure 1.8	Major public sewage treatment works, outfalls and pollution loads in Hong Kong in 2003	1.11
Figure 2.1	Level of compliance with key Water Quality Objectives in the Tolo Harbour and Channel WCZ	2.4
Figure 2.2	Level of chlorophyll-a in the Tolo Harbour and Channel WCZ	2.7
Figure 2.3	Levels of total inorganic nitrogen and unionised ammonia in the Tolo Harbour and Channel WCZ	2.8
Figure 2.4	Dissolved oxygen, salinity and temperature profiles in the Tolo Harbour and Channel WCZ illustrating water stratification in the summer of 2003	2.9
Figure 3.1	Level of compliance with key Water Quality Objectives in the Southern WCZ	3.4
Figure 3.2	Marine water quality trends in the Southern WCZ	3.11
Figure 4.1	Level of compliance with key Water Quality Objectives in the Port Shelter WCZ	4.4
Figure 4.2	Levels of chlorophyll-a at PM4, 1986 - 2003	4.9
Figure 4.3	Levels of <i>E. coli</i> at PM2, 1986 - 2003	4.9
Figure 5.1	Level of compliance with key Water Quality Objectives in the Junk Bay WCZ	5.3

		Page
Figure 5.2	Levels of ammonia nitrogen and E. coli at JM3 and JM4, 1994 - 2003	5.4
Figure 6.1	Level of compliance with key Water Quality Objectives in the Deep Bay WCZ	6.4
Figure 6.2	Marine water quality trends in the Deep Bay WCZ	6.6
Figure 7.1	Level of compliance with key Water Quality Objectives in the Mirs Bay WCZ	7.4
Figure 7.2	Marine water quality trends in the Mirs Bay WCZ	7.9
Figure 8.1	Level of compliance with key Water Quality Objectives in the North Western WCZ	8.4
Figure 8.2	Dissolved oxygen, salinity and temperature profiles in the North Western WCZ illustrating water stratification in the summer of 2003	8.6
Figure 9.1	Level of compliance with key Water Quality Objectives in the Western Buffer WCZ	9.4
Figure 9.2	Levels of E. coli at WM2, WM3 and WM4, 1986 - 2003	9.6
Figure 10.1	Level of compliance with key Water Quality Objectives in the Eastern Buffer WCZ	10.4
Figure 10.2	Levels of ammonia nitrogen and E. coli at EM1, EM2 and EM3, 1994 - 2003	10.6
Figure 11.1	Level of compliance with key Water Quality Objectives in the Victoria Harbour WCZ	11.5
Figure 11.2	Marine water quality trends in the Victoria Harbour WCZ	11.9
Figure 12.1	Cadmium in marine sediments in Hong Kong, 1999 - 2003	12.4
Figure 12.2	Chromium in marine sediments in Hong Kong, 1999 - 2003	12.4
Figure 12.3	Copper in marine sediments in Hong Kong, 1999 - 2003	12.5
Figure 12.4	Mercury in marine sediments in Hong Kong, 1999 - 2003	12.5
Figure 12.5	Nickel in marine sediments in Hong Kong, 1999 - 2003	12.6
Figure 12.6	Lead in marine sediments in Hong Kong, 1999 - 2003	12.6

		Page
Figure 12.7	Silver in marine sediments in Hong Kong, 1999 - 2003	12.7
Figure 12.8	Zinc in marine sediments in Hong Kong, 1999 - 2003	12.7
Figure 12.9	Arsenic in marine sediments in Hong Kong, 1999 - 2003	12.8
Figure 12.10	Total polychlorinated biphenyls (PCBs) in marine sediments in Hong Kong, 2002 - 2003	12.8
Figure 12.11	Low molecular weight polycyclic aromatic hydrocarbons (PAHs) in marine sediments in Hong Kong, 2002 - 2003	12.9
Figure 12.12	High molecular weight polycyclic aromatic hydrocarbons (PAHs) in marine sediments in Hong Kong, 1999 - 2003	12.9
Figure 12.13	Electrochemical potential in marine sediments in Hong Kong, 1999 - 2003	12.10
Figure 13.1	Water quality of typhoon shelters in Hong Kong in 2003	13.5
Figure 13.2	Cadmium in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.7
Figure 13.3	Chromium in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.7
Figure 13.4	Copper in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.8
Figure 13.5	Mercury in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.8
Figure 13.6	Nickel in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.9
Figure 13.7	Lead in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.9
Figure 13.8	Silver in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.10
Figure 13.9	Zinc in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.10
Figure 13.10	Arsenic in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.11
Figure 13.11	Total polychlorinated biphenyls (PCBs) in typhoon shelter sediments in Hong Kong, 2002 - 2003	13.11
Figure 13.12	Low molecular weight polycyclic aromatic hydrocarbons (PAHs) in typhoon shelter sediments in Hong Kong, 2002 - 2003	13.12
Figure 13.13	High molecular weight polycyclic aromatic hydrocarbons (PAHs) in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.12

		Page
Figure 13.14	Electrochemical potential in typhoon shelter sediments in Hong Kong, 1999 - 2003	13.13
Figure 14.1	Phytoplankton monitoring stations in Hong Kong waters in 2003	14.6
Figure 14.2	Percentage contribution of phytoplankton groups to the total number of species in the nine WCZs (2003)	14.7
Figure 14.3	Percentage contribution of phytoplankton groups to the total density in the nine WCZs (2003)	14.8
Figure 14.4	Annual mean densities of total phytoplankton at 25 monitoring stations in Hong Kong waters in 2003	14.9
Figure 14.5	Annual mean densities of diatoms at 25 monitoring stations in Hong Kong waters in 2003	14.10
Figure 14.6	Annual mean densities of dinoflagellates at 25 monitoring stations in Hong Kong waters in 2003	14.11
Figure 14.7	Annual mean densities of other phytoplankton groups at 25 monitoring stations in Hong Kong waters in 2003	14.12
Figure 14.8	Frequency of red tides in 10 WCZs in Hong Kong, 1980 - 2003	14.13
Figure 14.9	Occurrence of red tides in Hong Kong waters, 1980 - 2003	14.14
Figure 14.10	Occurrence of red tides at bathing beaches in Hong Kong waters, 1980 - 2003	14.15
Figure 14.11	Seasonal occurrence of red tides caused by different phytoplankton groups in Hong Kong, 1980 - 2003	14.16
Figure 15.1	Bottom dissolved oxygen (DO) in marine waters of Hong Kong in the colder dry season and warmer wet season in 2003	15.5
Figure 15.2	Depth-averaged suspended solids (SS) in marine waters of Hong Kong in the colder dry season and warmer wet season in 2003	15.6
Figure 15.3	Surface chlorophyll-a in marine waters of Hong Kong in the colder dry season and warmer wet season in 2003	15.7
Figure 15.4	Level of compliance with key marine Water Quality Objectives for 10 Water Control Zones in Hong Kong, 1999 - 2003	15.8
Figure 15.5	Level of compliance with key marine Water Quality Objectives in Hong Kong, 1994 - 2003	15.9

		Page
Figure 15.6	Overall level of compliance with key marine Water Quality Objectives in Hong Kong, 1986 - 2003	15.9
Figure 15.7	Long-term changes in dissolved oxygen in marine waters of Hong Kong, 1986 - 2003	15.10
Figure 15.8	Long-term changes in 5-day Biochemical Oxygen Demand in marine waters of Hong Kong, 1986 - 2003	15.10
Figure 15.9	Long-term changes in <i>E.coli</i> in marine waters of Hong Kong, 1986 - 2003	15.11
Figure 15.10	Long-term changes in ammonia nitrogen in marine waters of Hong Kong, 1986 - 2003	15.11
Figure 15.11	Long-term changes in nitrate nitrogen in marine waters of Hong Kong, 1986 - 2003	15.12
Figure 15.12	Long-term changes in total inorganic nitrogen in marine waters of Hong Kong, 1986 - 2003	15.12
Figure 15.13	Long-term changes in orthophosphate phosphorus in marine waters of Hong Kong, 1986 - 2003	15.13
Figure 15.14	Long-term changes in chlorophyll-a in marine waters of Hong Kong, 1986 - 2003	15.13
Figure 15.15	Long-term changes in temperature in marine waters of Hong Kong, 1986 - 2003	15.14
Figure 15.16	Long-term changes in pH in marine waters of Hong Kong, 1986 - 2003	15.14
Figure 15.17	Decreasing trends in depth-averaged DO in the Deep Bay WCZ, 1986 - 2003	15.15
Figure 15.18	Decreasing trends in depth-averaged PO ₄ -P in the northern part of Mirs Bay, 1991 - 2003	15.16

	LIST OF TABLES	Page
Table 1.1	Summary of Water Quality Objectives for marine waters of Hong Kong	1.12
Table 1.2	Summary of marine water quality parameters	1.13
Table 1.3	Summary of marine sediment parameters	1.14
Table 1.4	Location of marine water and sediment monitoring stations	1.15
Table 2.1	Summary water quality statistics of the Tolo Harbour and Channel WCZ in 2003	2.10
Table 2.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Tolo Harbour and Channel WCZ, 1986 - 2003	2.11
Table 3.1	Summary water quality statistics of the Southern WCZ in 2003	3.12
Table 3.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Southern WCZ, 1986 - 2003	3.15
Table 4.1	Summary water quality statistics of the Port Shelter WCZ in 2003	4.10
Table 4.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Port Shelter WCZ, 1986 - 2003	4.12
Table 5.1	Summary water quality statistics of the Junk Bay WCZ in 2003	5.5
Table 5.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Junk Bay WCZ, 1986 - 2003	5.6
Table 6.1	Summary water quality statistics of the Deep Bay WCZ in 2003	6.7
Table 6.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Deep Bay WCZ, 1986 - 2003	6.8
Table 7.1	Summary water quality statistics of the Mirs Bay WCZ in 2003	7.10
Table 7.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Mirs Bay WCZ, 1986 - 2003	7.12
Table 8.1	Summary water quality statistics of the North Western WCZ in 2003	8.7
Table 8.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the North Western WCZ, 1986 - 2003	8.8
Table 9.1	Summary water quality statistics of the Western Buffer WCZ in 2003	9.7

		Page
Table 9.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Western Buffer WCZ, 1986 - 2003	9.8
Table 10.1	Summary water quality statistics of the Eastern Buffer WCZ in 2003	10.7
Table 10.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Eastern Buffer WCZ, 1986 - 2003	10.8
Table 11.1	Summary water quality statistics of the Victoria Harbour WCZ in 2003	11.10
Table 11.2	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Victoria Harbour WCZ, 1986 - 2003	11.12
Table 12.1	Summary statistics of bottom sediment quality of the Tolo Harbour and Channel and Southern WCZs, 1999 - 2003	12.11
Table 12.2	Summary statistics of bottom sediment quality of the Southern, Junk Bay and Deep Bay WCZs, 1999 - 2003	12.12
Table 12.3	Summary statistics of bottom sediment quality of the Port Shelter and Mirs Bay WCZs, 1999 - 2003	12.13
Table 12.4	Summary statistics of bottom sediment quality of the Mirs Bay WCZ, 1999 - 2003	12.14
Table 12.5	Summary statistics of bottom sediment quality of the North Western and Western Buffer WCZs, 1999 - 2003	12.15
Table 12.6	Summary statistics of bottom sediment quality of the Eastern Buffer and Victoria Harbour WCZs, 1999 - 2003	12.16
Table 12.7	Sediment Quality Criteria for the Classification of Sediments	12.17
Table 13.1	Summary water quality statistics of the typhoon shelters in 2003	13.14
Table 13.2	Summary statistics of bottom sediment quality of the typhoon shelters, 1999 - 2003	13.17
Table 13.3	Results of the Seasonal Kendall Test for trends in water quality parameters measured in the typhoon shelters, 1986 - 2003	13.19
Table 14.1	Abundance and frequency of the dominant phytoplankton species in different WCZs in 2003	14.17
Table 14.2	Occurrence and distribution of red tide species in different WCZs, 1980 - 2003	14.18

ACKNOWLEDGEMENTS

We acknowledge the following parties for their contributions to the marine water quality report:

Government Laboratory

for undertaking chemical analyses of water and sediment samples.

* Marine Department

for managing and operating the vessel *Dr. Catherine Lam* for conducting field sampling and measurement.

* Waste Policy and Services Group, Environmental Protection Department

for carrying out chemical and bacteriological analyses of water samples.

* Agriculture, Fisheries and Conservation Department, Civil Engineering Department, Drainage Services Department, Lands Department and Water Services Department

for providing information on the geography, major activities and uses of marine water.

DISCLAIMER

Whilst the Government of the Hong Kong Special Administrative Region ("the Government") endeavours to ensure the accuracy of the information in this report, the Government (including its officers and employees) makes no warranty, statement or representation, expressed or implied, with respect to accuracy, completeness, or usefulness of the information contained herein, and in so far as permitted by law, shall not have any legal liability or responsibility (including liability for negligence) for any loss, damage, injury and death which may result, whether directly or indirectly, from the supply or use of such information. Users are responsible for making their own assessments of all information contained in this publication before acting on it.

Summary of Marine Water Quality in Hong Kong in 2003

In 2003, the marine water quality of Hong Kong was largely similar to that in 2002. The overall compliance with the Water Quality Objectives (WQOs) at 87% was among the best ever recorded.

The water quality of Port Shelter and Mirs Bay continued to be excellent, with low sewage bacteria, nutrients and high dissolved oxygen (DO). On the other hand, the water quality in Inner Deep Bay was poor with lower DO and elevated levels of nitrogen and phosphorus, showing signs of further deterioration.

The water quality in Tolo Harbour continued to improve with declines in organic and inorganic pollutants and a decrease in hypoxia. The Southern water experienced a marked reduction in total inorganic nitrogen (TIN) in 2003, which resulted in an improvement in the compliance with the WQOs.

The commissioning of the Harbour Area Treatment Scheme (HATS) Stage I in 2002 has resulted in a significant improvement in the eastern and central parts of Victoria Harbour, including an increase in DO, decreases in TIN and *E.coli* bacteria. These water quality improvements were sustained in 2003.

There was a widespread reduction of DO of around 10% in Hong Kong waters in 2003. This might be related to the unusually warm, dry and calm weather during the year.

Chapter 1 - Introduction

Introduction

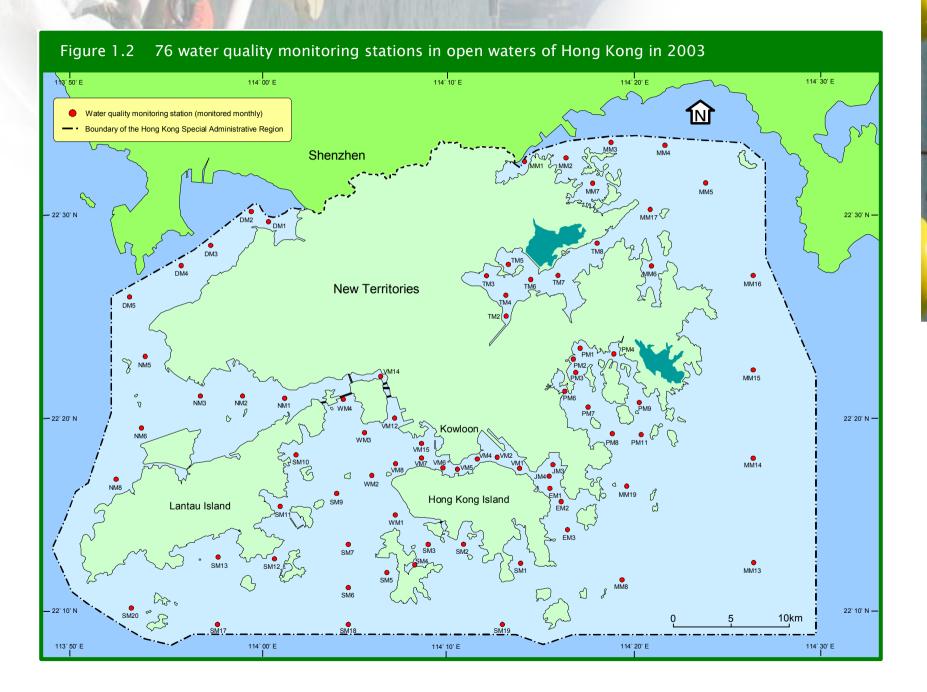
- 1.1 The Hong Kong Special Administrative Region (HKSAR) has a land area of 1,103km² and 1,651km² area of marine waters. It has long coastlines, including 458km in Kowloon Peninsula and New Territories and 724km in Hong Kong Island, Lantau Island and other small islands. There are more than 260 islands in the territory, each with an area greater than 500m².
- 1.2 With a population approaching 7 million, Hong Kong relies heavily on its coastal water for a variety of uses such as recreation, fish culture, cooling, toilet flushing, transport and effluent disposal. There is also a rich array of marine life in Hong Kong ranging from microscopic planktons, corals to dolphins and porpoises.
- 1.3 To protect the ecology and beneficial uses of Hong Kong marine waters, a set of Water Quality Objectives (WQOs) (Table 1.1) was established for each of the 10 Water Control Zones (WCZs) (Figure 1.1). The HKSAR Government aims to achieve the WQOs by implementing pollution abatement measures to reduce pollution and improve water quality. In order to assess the state of health of the marine environment and its long-term changes, and to measure the compliance with the WQOs, the Environmental Protection Department (EPD) implements a comprehensive marine monitoring programme.

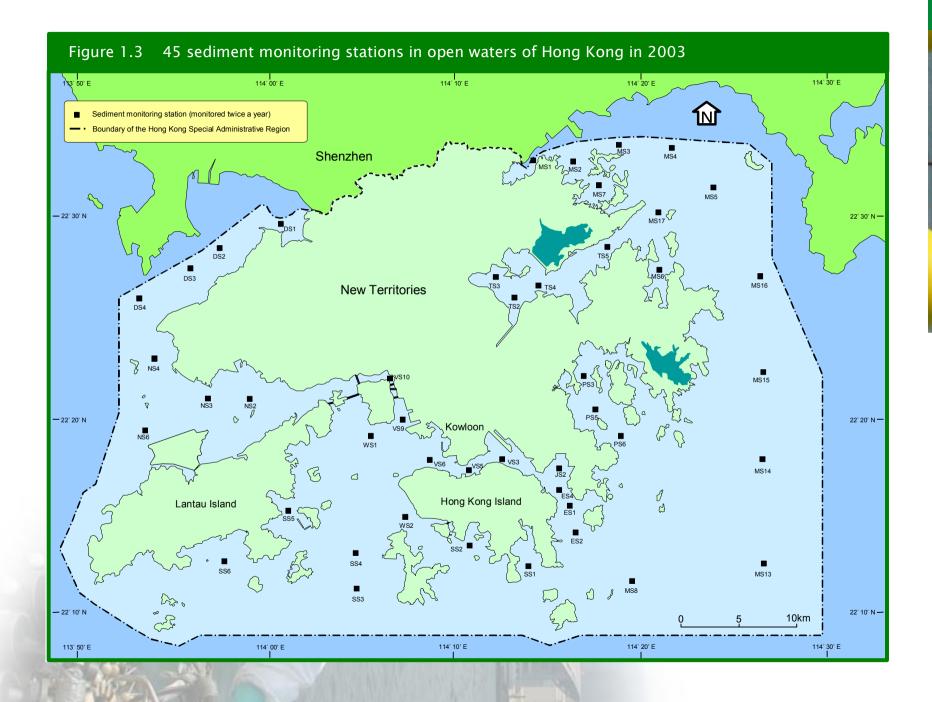
Marine Monitoring Programme

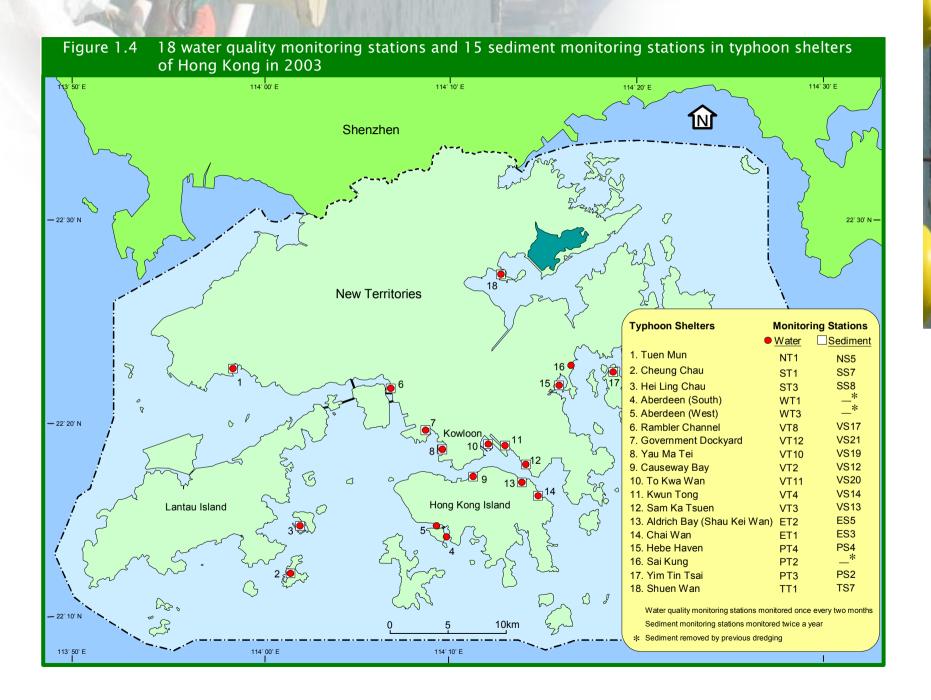
- 1.4 The current marine monitoring programme was set up in 1986. Monitoring is mostly conducted onboard a 26-metre monitoring vessel Dr. Catherine Lam. The vessel is equipped with an advanced Differential Global Positioning System (DGPS) and an electronic navigation chart system for precise location of monitoring stations in the sea.
- 1.5 A conductivity-temperature-depth (CTD) profiler linked to a computer -controlled rosette water sampler, is used for in situ measurement of a number of physical and chemical parameters and for collecting water samples. Bottom sediment samples are collected using a sediment grab. The water and sediment samples are analysed by EPD's laboratories and Government Laboratory (http://www.info.gov.hk/govlab) for over 80 physical, chemical and biological parameters (see Tables 1.2 and 1.3 for analytical methods).
- 1.6 In 2003, a total of 94 water quality stations were monitored (Table 1.4): 76 in open

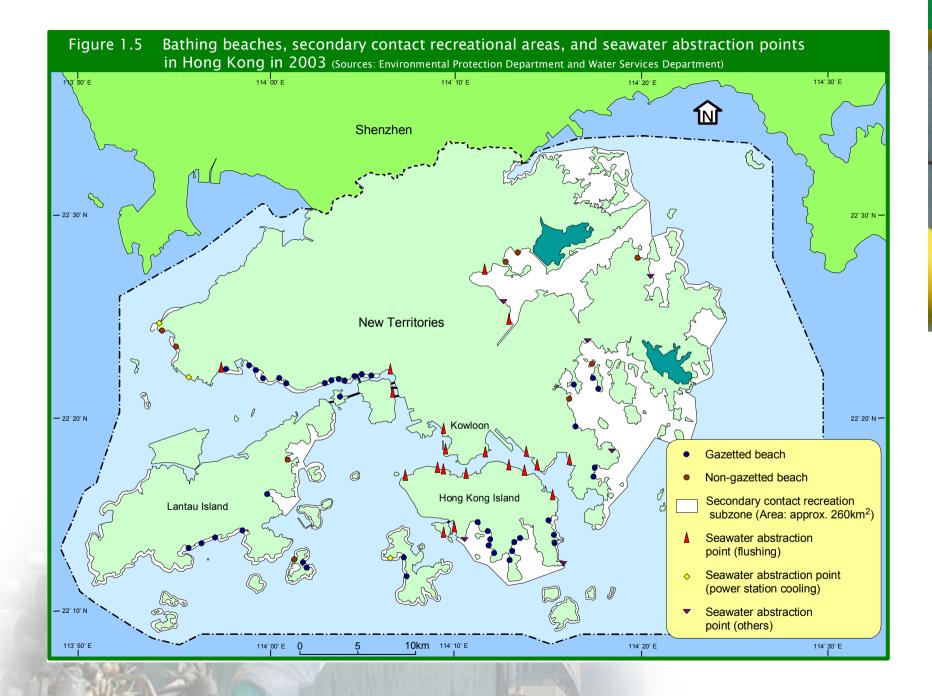
INTRODUCTION

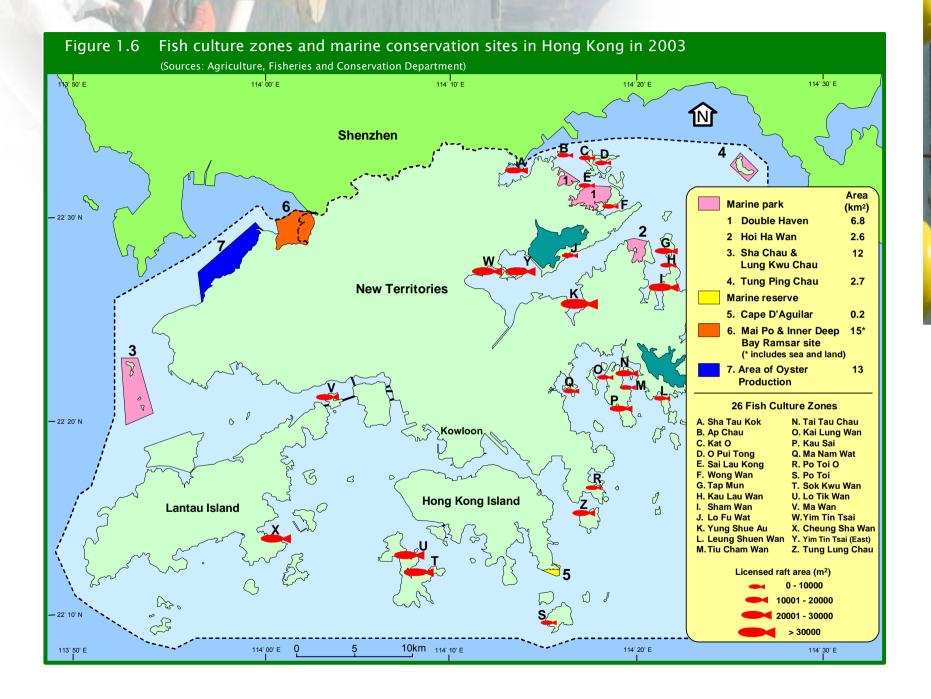
waters (Figure 1.2) sampled once a month; and 18 in typhoon shelters (Figure 1.4) sampled once every two months. Sea bottom sediments were monitored twice a year at 60 stations: 45 in open waters (Figure 1.3) and 15 in typhoon shelters (Figure 1.4).

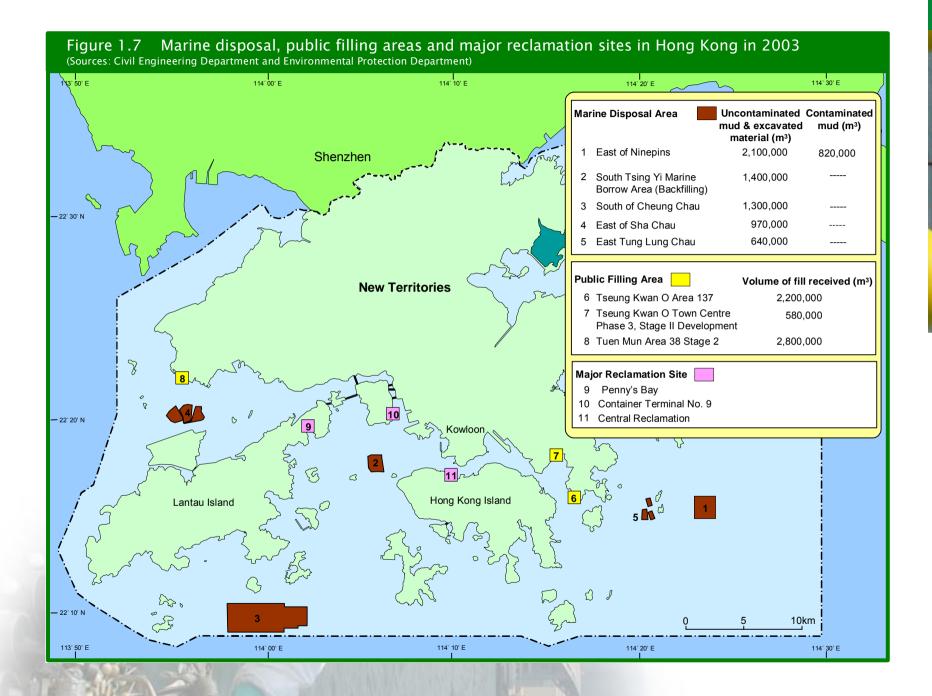

Uses and Characteristics of Marine Water


- 1.7 Human activities affect the quality of the receiving water body. Similarly, water quality also determines the suitability of water for specific uses. Areas of Hong Kong marine waters with major activities and uses include:
- Bathing beaches, secondary contact recreation areas, and seawater abstraction points (Figure 1.5)
- Fish culture zones and marine conservation areas (Figure 1.6)
- Disposal areas for dredged materials, public filling areas and major reclamation sites (Figure 1.7)
- Disposal of treated effluent from major public sewage treatment works and outfalls (Figure 1.8)


Annual Report on Marine Water Quality


- 1.8 This is EPD's 18th annual Marine Water Quality Report. It reports on the state of Hong Kong marine waters in 2003 and their compliance with the key Water Quality Objectives (WQOs) (Figures 15.5 and 15.6). The Seasonal Kendall statistical test was applied to detect long-term water quality trends, and the increase or decrease of pollutants in the last 18 years (1986-2003). In addition, the Wilcoxon-Mann-Whitney test was also used to reveal significant variations of water quality parameters between 2003 and 2002.
- The 2003 Marine Water Quality Report (CD-ROM version) is found in many public libraries (http://www.hkpl.gov.hk) and EPD's Environmental Resource Centres. The report and monitoring data are also available on EPD's website (http://www.epd.gov.hk) for public's viewing and free download.





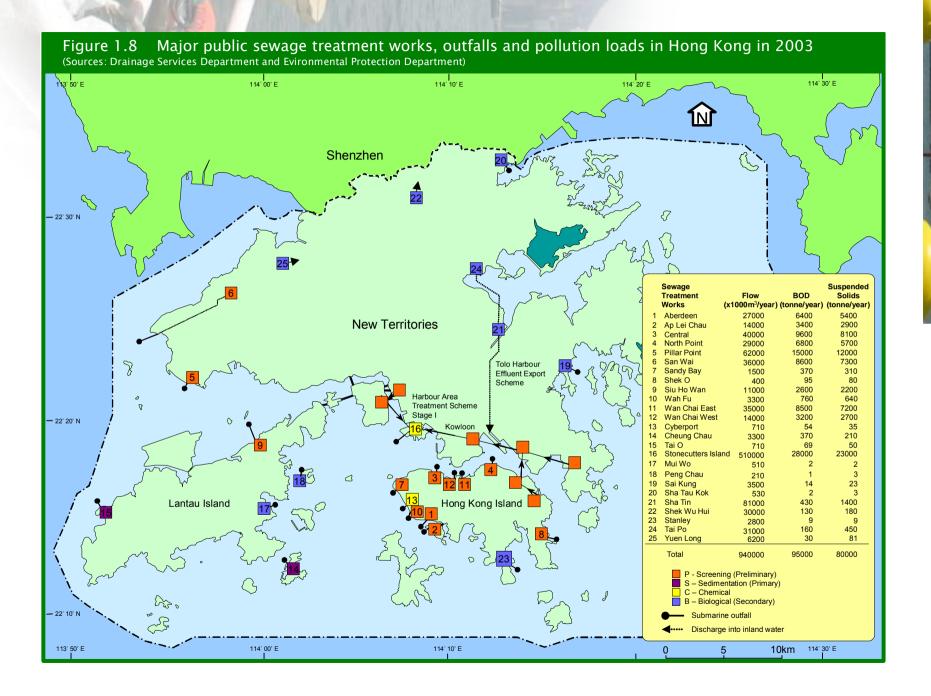


Table 1.1
Summary of Water Quality Objectives (WQOs) for marine waters of Hong Kong

Parameter	Water Quality Objective	Water Control Zone (WCZ) / Part(s) of zone Subzone to which the WQO applies		
Dissolved Oxygen	Not less than 2 mg/L for 90% samples ;	Marine waters of all WCZs except Tolo Harbour & Channel		
bottom)		WCZ		
Dissolved Oxygen Depth–averaged)	Not less than 4 mg/L for 90% samples ;	Marine waters of all WCZs except Tolo Harbour & Channel WCZ		
•	Not less than 2mg/L	Harbour Subzone in Tolo Harbour & Channel WCZ		
Dissolved Oxygen	Not less than 3mg/L	Buffer Subzone in Tolo Harbour & Channel WCZ		
bottom)	Not less than 4mg/L	Channel Subzone in Tolo Harbour & Channel WCZ		
Dissolved Oxygen		Harbour Subzone and Buffer Subzone in Tolo Harbour &		
surface to 2m above bottom)	Not less than 4mg/L	Channel WCZ		
Dissolved Oxygen all depths)	Not less than 4mg/L	Channel Subzone in Tolo Harbour & Channel WCZ		
	Annual mean depth-averaged inorganic	Marine waters of Southern WC7 and Dort Shelter WC7		
	nitrogen not to exceed 0.1 mg/L	Marine waters of Southern WCZ and Port Shelter WCZ		
	Annual mean depth-averaged inorganic	Marine waters of Mirs Bay WCZ, Junk Bay WCZ, North Weste		
	nitrogen not to exceed 0.3 mg/L	WCZ (Castle Peak Subzone)		
Nutrients	Annual mean depth-averaged inorganic	Marine waters of Eastern Buffer WCZ, Western Buffer WCZ,		
	nitrogen not to exceed 0.4 mg/L	Victoria Harbour WCZ.		
	Annual mean depth-averaged inorganic	Marine waters of Deep Bay WCZ (Outer Subzone) and North		
	nitrogen not to exceed 0.5 mg/L	Western WCZ (Whole zone except Castle Peak Subzone).		
	Annual mean depth-averaged inorganic	Marine waters of Deer Day WC7 (Inc. C. I.		
	nitrogen not to exceed 0.7 mg/L	Marine waters of Deep Bay WCZ (Inner Subzone)		
Jnionised ammonia	Annual mean not to exceed 0.021 mg/L	All WCZs (whole zone) except Tolo Harbour & Channel WCZ		
monisea ammonia	74111441 Healt Hot to exceed 0.021 Hig/E	Secondary contact recreation subzones in Tolo Habour &		
	Annual geometric mean not to exceed			
	610cfu/100mL	Channel WCZ, Southern WCZ, Port Shelter WCZ, Mirs Bay W		
. coli		Deep Bay WCZ, North Western WCZ, Western Buffer WCZ.		
L. COII	Annual geometric mean not to exceed	Fish culture subzones in Tolo Habour & Channel WCZ,		
		Southern WCZ, Port Shelter WCZ, Junk Bay, Mirs Bay WCZ,		
	610cfu/100mL	Deep Bay WCZ, Eastern Buffer WCZ, Western Buffer WCZ.		
	To be in the range 6.5 - 8.5, change due to	Marine waters of all WCZs except Tolo Harbour & Channel		
	waste discharge not to exceed 0.2	WCZ		
	Change due to waste discharge not to be	WCZ		
		Harbour Subzone in Tolo Harbour & Channel WCZ		
рΗ	greater than ±0.5			
	Change due to waste discharge not to be	Buffer Subzone in Tolo Harbour & Channel WCZ Channel Subzone in Tolo Harbour & Channel WCZ		
	greater than ± 0.3			
	Change due to waste discharge not to be			
	greater than ± 0.1			
	Change due to waste discharge not to			
	exceed 10% of natural ambient level	All WCZs (Whole zone) except Tolo Harbour & Channel WCZ		
Salinity				
	Change due to waste discharge not to be	Tolo Harbour & Channel WCZ		
	greater than ±3‰			
Геmperature	Change due to waste discharge not to exceed 2℃	All WCZs (Whole zone) except Tolo Harbour & Channel WC		
- emperature	Change due to waste discharge not to exceed $1^{\circ}\!\!\mathrm{C}$	Tolo Harbour & Channel WCZ		
	Waste discharge not to raise the natural ambient			
	level by 30% nor cause the accumulation of	Marine waters of all WCZs except Tolo Harbour & Channel		
Suspended solids	suspended solids which may adversely affect	WCZ		
	aquatic communities			
	Not to be present at levels producing			
oxicants		All WCZs (Whole zone)		
	significant toxic effect			
	Not to exceed 20mg/m³ (µg/L) calculated as			
	running arithmetic mean of 5 daily	Harbour Subzone in Tolo Harbour & Channel WCZ		
	measurements for any location and depth			
	Not to exceed 10mg/m³ (µg/L) calculated as			
Chlorophyll- <i>a</i>	running arithmetic mean of 5 daily	Buffer Subzone in Tolo Harbour & Channel WCZ		
2		Cabbone in 1010 that bout a chainer wee		
	measurements for any location and depth			
	Not to exceed 6mg/m³ (µg/L) calculated as			
	anna and an anish anna si a anna an a file daile.	Channel Subzone in Tolo Harbour & Channel WCZ		
	running arithmetic mean of 5 daily	Chamier Subzone in 1010 Harboar & Chamier WCZ		

INTRODUCTION

Table 1.2 Summary of marine water quality parameters

-	ameter	Reporting Limit	Unit	Sampling Depth	Standard Method / Techniques used ²⁰	Analysed by
	Temperature ¹	0.1	°C	Depth Profiling ¹⁰	Instrumental (thermistor), SEACAT19+ CTD and Water Quality Profiler	MMT/EPD ¹⁵
	Salinity 1,8	0.1	-	Depth Profiling	Instrumental (electrical conductivity), SEACAT19+ CTD and Water Quality Profiler	MMT/EPD
	Dissolved Oxygen ¹	0.1 1	mg/L % saturation ⁹	Depth Profiling	Instrumental (membrane elelectrode), SBE23Y dissolved ox ygen sensor linked to SEACAT19+ CTD and Water Quality Profiler	MMT/EPD
Physical and Aggregate Properties	Turbidity ²	0.1	NTU	Depth Profiling	Instrumental (nephelometric / infrared back scattering), OBS-3 turbidity sensor linked to SEACAT 19+ CTD and Water Quality Profiler	MMT/EPD
rioperties	pH ¹	0.1	-	Depth Profiling	Instrumental (electrodemetric) SBE18 pH sensor linked to SEACAT19 + CTD and Water Quality Profiler	MMT/EPD
	Secchi Disc Depth ²	0.1	m		Manual	MMT/EPD
	Suspended Solids ²	0.5	mg/L	S,M,B ¹¹	In house method GL-PH-23, based on APHA 20ed. 2540D (weighing)	GL ¹⁸
	Volatile Suspended	0.5	mg/L	S,M,B	In house method GL-PH-23, based on APHA 20ed. 2540E (weighing)	GL
Aggregate Organic Constituents	5-day Biochemical Oxygen Demand (BOD5) ⁴	0.1	mg/L	S,M,B	In house method based on APHA 18ed. 5210B	EML/EPD ¹⁶
	Ammonia Nitrogen ⁵	0.005	mg/L	S,M,B	In house method GL-IN-15, based on ASTM D3590-89 B (FIA)	GL
	Unionised Ammonia ⁵	0.001	mg/L	S,M,B	By calculation ¹²	MMT/EPD
	Nitrite Nitrogen ⁵	0.002	mg/L	S,M,B	In house method GL-IN-18, based on APHA 20ed. 4500-NO2- B (FIA)	GL
	Nitrate Nitrogen ⁵	0.002	mg/L	S,M,B	In house method GL-IN-18, based on APHA 20ed. 4500-NO3- F & I (FIA)	GL
	Total Inorganic Nitrogen ⁵	0.01	mg/L	S,M,B	By calculation ¹³	MMT/EPD
Nutrients and Inorganic	Total Kjeldahl Nitrogen ⁵ (soluble; soluble & particulate)	0.05	mg/L	S,M,B	In house method GL-IN-14 & GL-IN-15, based on ASTM D3590-89 B (FIA) & APHA 20ed 4500-N A&D (FIA)	GL
Constituents	Total Nitrogen ⁵	0.05	mg/L	S,M,B	By calculation ¹³	MMT/EPD
	Orthophosphate	0.002	mg/L	S,M,B	In house method GL-IN-16, based on ASTM D515-88 A (FIA)	GL
	Total Phosphorus ⁵ (soluble; soluble & particulate)	0.02	mg/L	S,M,B	In house method GL-IN-14 & GL-IN-16, based on ASTM D515-88 B (FIA) & APHA 20ed 4500-P G (FIA) $$	GL
	Silica (as SiO ₂) (soluble) ⁵	0.05	mg/L	S,M,B	In house method GL-IN-17, based on APHA 20ed. 4500-SiO2 C&E (FIA)	GL
	Chlorophy II-a ⁶	0.2	μg/L	S,M,B	In house method GL-OR-34, based on APHA 20ed. 10200H 2 (spectrophotometric)	GL
Biological and Microbiological	Escherichia coli (E. coli) ⁷	1	cfu/100mL	S,M,B	In house method, membrane filtration with CHROMagar Liquid $\it E.coli$ -coliform culture 14	EML/EPD
Examination	Faecal Coliforms ⁷	1	cfu/100mL	S,M,B	In house method, membrane filtration with CHROMagar Liquid $\it E.~coli$ coliform culture 14	EML/EPD
	Phy toplankton	1	cell/ml	S	In house method, 10 ml settled sub-sample using plankton chamber and inverted microscope $^{\rm 19}$	WSL/EPD ¹⁷

Note: 1. Indicate general oceanographic conditions of marine water

- 2. Low transparency and light penetration would affect aesthetic value and photosynthesis in marine water
- Indicate the amount of particulate organic matters in marine water
 Indicate the amount of organic pollutants in marine water
- 5. Major nutrients (nitrogen, phosphorus, silica) promoting algal growth in marine water
- Indicate the amount of algal biomass in marine water
 Sewage bacteria indicate the extent of faecal pollution in marine water
- 8. Measuring and reporting of Salinity (S) is based on the Practical Salinity Scale and International Equation of State of Seawater (UNESCO Technical Papers in Marine
- Science No. 30 (1981); No. 36 (1981) and No. 45 (1985))

 9. Percent saturation of dissolved oxygen is calculated from dissolved oxygen in mg/L based on Weiss R.F. (1970); The solubility of nitrogen, oxygen ad argon in water and seawater. Deep Sea Res. Vol. 17, pp.721–735
- 10. Depth profiling continuous measurements at downcast are processed and presented at 1m intervals from 1m below the surface to 1m above the seabed

 11. If water depth is 6m or above, sampling is taken at three depths during upcast: S 1m below water surface; M mid–depth of water column; B 1m above seabed. If water depth is 4 to 5 m, 'M' is skipped; If water depth is 3m or less, 'M' and 'B' are skipped.
- 12. i) Bower C.E. and Bidwell J.P. (1978), Ionization of ammonia in seawater: Effect of temperature, pH and salinity. J. Fish. Res. Board Can. Vol.35, pp.1012–1016; ii) K., Russo R.C. & et. al. (1975), Aqueous ammonia equilibrium calculations: effect of pH and temperature. J. Fish. Res. Board Can. Vol.32, pp.2379–2383 13. Total Inorganic Nitrogen = Ammonia Nitrogen + Nitrite Nitrogen + Nitrate Nitrogen ; Total Nitrogen = Total Kjeldahl Nitrogen (soluble & particulate) + Nitrite
- Nitrogen + Nitrate Nitrogen
 14. i) DoE, DHSS & PHLS (1983); The Bacteriological Examination of Drinking Water Supplies 1982, Sec.7.8 & 7.9; ii) B.S.W. Ho and T.Y. Tam (1997), Enumeration of E. coli in environmental waters and wastewater using a chromogenic medium. Wat. Sci. Tech.Vol.35, No.11-
- 12, pp.409–413; method adopted in 1997.

 15. MMT/EPD Marine Monitoring Team, Water Policy & Planning Group, Environmental Protection Department.

 16. EML/EPD Environmental Microbiology Laboratory, Waste Policy & Services Group, Environmental Protection Department.
- 17. WSL/EPD Water Sciences Laboratory, Water Policy & Planning Group, Environmental Protection Department
- 18. GL Environmental Chemistry B Section, Environmental Chemistry & Other Scientific Services Group, Government Laboratory.
- 19. i) Lund, J.H., Kipling, C. and Le Cren, E.D. 1958. The inverted microscope method of estimating algal numbers, and the statistical basis of estimations by counting. Hydrobiologia Vol. 11, pp. 143-170.
 - ii) Utermohl, H. 1958. Zur Vervollkommung der Quantitativen Phytoplankton-Methodik. Mitt. Inter. Verein. Lim. Vol. 9, pp. 1-38.
- 20. Mention of brand names and commercial products does not constitute or imply endorsement or recommendation by the Environmental Protection Department.

Table 1.3 Summary of marine sediment¹ parameters

	Parameter	Reporting Limit	Unit 2	Standard Method / Techniques used ⁸	Analysed by
	Particle Size Fractionation	1	% w/w	In house method, sieving and weighing; 8 fractions: >4000μm, <4000μm, <2000μm, <1000μm, <500μm, <250μm, <125μm and <63μm	MMT/EPD 6
Phy sical and	Electrochemical Potential ⁴	1	mV	Instrumental, Orion Model 250A pH/Redox Meter (electrodemetric)	MMT/EPD
Aggregate	Total Solids (TS) 3	0.1	% w/w	In house method GL-PH-22, based on APHA 20ed 2540G (weighing)	GL ⁷
Properties	Total Volatile Solids (TVS) 3	0.1	% TS	In house method GL-PH-22, based on APHA 20ed 2540G (weighing)	GL
	Dry Wet Ratio	0.01	-	In house method GL-PH-22, based on APHA 20ed 2540G (weighing)	GL
Aggregate Organic	Chemical Oxygen Demand (COD)	2	mg/kg	In house method GL-OR-38, based on ASTM D1252-00 A (open reflux)	GL
	Total Carbon (TC)	0.1	% w/w	In house method GL-OR-33, based on APHA 20ed 5310 B (FIA)	GL
	Ammonia Nitrogen (NH ₄ -N)	0.05	mg/kg	In house method GL-IN-15, based on ASTM D3590-89 B (FIA)	GL
Nutrients and	Total Kjeldahl Nitrogen (TKN)	0.5	mg/kg	In house method GL-IN-14 & GL-IN-15, based on ASTM D3590-89 B (FIA) & APHA 20ed 4500-N A&D (FIA)	GL
Inorganic	Total Phosphorus	0.2	mg/kg	In house method GL-IN-14 & GL-IN-16, based on ASTM D515-88 B (FIA) & APHA 20ed 4500-P G (FIA)	GL
Constituents 3	Total Sulphide	0.2	mg/kg	In house method GL-IN-45, based on APHA 20ed 4500-S ² - D (FIA)	GL
Constituents	Total Cyanide	0.1	mg/kg	In house method GL-IN-44, based on APHA, 20ed., 4500 CN -A&E (distillation and colorimetric)	GL
	Aluminium (AI)	1	mg/kg	In house method GL-TE-60, based on USEPA method 6010B (ICP-AES)	GL
	Arsenic (As)	0.1	mg/kg	In house method GL-TE-64 & GL-TE-66, based on USEPA method 6020 (ICP-MS)	GL
	Barium (Ba)	0.2	mg/kg	In house method GL-TE-60 & GL-TE-64, based on USEPA method 6010B (ICP-AES) and USEPA method 6020	GL
	Boron (B)	5	mg/kg	In house method GL-TE-60, based on USEPA method 6010B (ICP-AES)	GL
	Cadmium (Cd)	0.1	mg/kg	In house method GL-TE-64, based on USEPA method 6020 (ICP-MS)	GL
	Chromium (Cr)	0.2	mg/kg	In house method GL-TE-60 & GL-TE-64, based on USEPA method 6010B (ICP-AES) and USEPA method 6020	GL
Metals & Metalloids ⁵	Copper (Cu)	0.2	mg/kg	In house method GL-TE-60 & GL-TE-64, based on USEPA method 6010B (ICP-AES) and USEPA method 6020	GL
	Iron (Fe)	5	mg/kg	In house method GL-TE-60, based on USEPA method 6010B (ICP-AES)	GL
	Lead (Pb)	0.2	mg/kg	In house method GL-TE-60 & GL-TE-64, based on USEPA method 6010B (ICP-AES) and USEPA method 6020	GL
	Manganese (Mn)	1	mg/kg	In house method GL-TE-60, based on USEPA method 6010B (ICP-AES)	GL
	Mercury (Hg)	0.05	mg/kg	In house method GL-TE-64 & GL-TE-66, based on USEPA method 6020 (ICP-MS)	GL
	Nickel (Ni)	0.2	mg/kg	In house method GL-TE-60 & GL-TE-64, based on USEPA method 6010B (ICP-AES) and USEPA method 6020	GL
	Silver (Ag)	0.2	mg/kg	In house method GL-TE-64, based on USEPA method 6020 (ICP-MS)	GL
	Vanadium (V)	0.1	mg/kg	In house method GL-TE-60 & GL-TE-64, based on USEPA method 6010B (ICP-AES) and USEPA method 6020	GL
	Zinc (Zn)	0.2	mg/kg	In house method GL-TE-60 & GL-TE-64, based on USEPA method 6010B (ICP-AES) and USEPA method 6020	GL
	Polychlorinated Biphenyls (PCBs)				
	18 PCB congeners : PCB 8, 18, 28,				
	44, 52, 66, 77, 101, 105, 118, 126,	2	µg/kg	In house method GL-OR-25, based on Reference Method for the Analysis of Polychlorinated Biphenyls,	GL
	128, 138, 153, 169, 170, 180, 187			Environmental Protection Series: Report EPS 1/RM/31, March 1997, Environment Canada (GC-MS)	
	Polyaromatic Hydrocarbons (PAHs)				
	- Acenaphthene	50	µg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Acenaphthylene	50	µg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Naphthalene	60	µg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Fluorene	10	µg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
Trace Organic	- Phenanthrene	5	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
Compounds	- Anthracene	5	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
Compounds	- Fluoranthene	5	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Pyrene	5	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Benzo(a)anthracene	3	µg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Chrysene	5	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Benzo(b)fluoranthene	1	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Benzo(k)fluoranthene	1	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Benzo(a)pyrene	1	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Dibenzo(a,h)anthracene	5	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Benzo(ghi)perylene	1	μg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL
	- Indeno(1,2,3-cd)pyrene	5	µg/kg	In house method, GL-OR-15, based on USEPA method 610, 1984 (UV-FLUO)	GL

Note: 1. Birge-Ekman (0.023m²) grab / Van Veen (0.1m²) grab / Smith-McIntyre (0.1m²) grab is employed to collect sediment samples from the top 10cm of seabed.

- 2. All parameters are reported on a dry weight basis unless otherwise stated.
- 3. Determinants are reported on a wet weight basis.
- 4. Electrochemical potential (Eh) is measured 'on-site' at 3cm below the surface of freshly collected sediment samples (Reference: Handbook of Techniques for
- Aquatic Sediment Sampling. By A. Mudrock & S.D. MacKnight, 1994, CRC Press).

 5. Digestion procedure for metals and metalloids in sediment follows In house method, WC-ME-2 (3.5 hours digestion in conc. HCl/conc. HNO₃: 3:1 v/v)
- 6. MMT/EPD Marine Monitoring Team, Water Policy & Planning Group, Environmental Protection Department.
 7. GL Environmental Chemistry B Section, Environmental Chemistry & Other Scientific Services Group, Government Laboratory.
- 8. Mention of brand names and commercial products does not constitute or imply endorsement or recommendation by the Environmental Protection Department.

Table 1.4
Location of marine water and sediment monitoring stations

Water Control 5	9	Station	Loca	ation	Depth (m)
Water Control Zone	Water	Sediment	Latitude	Longitude	approx.
	TM2 TM3	TS3	22° 24.744' N 22° 26.857' N	114° 13.085' E 114° 12.181' E	4 7
	TM4	TS2	22° 25.964' N	114 12.161 E 114° 13.176' E	8
Tolo Harbour and Channel	TM5		22° 27.426' N	114° 13.456' E	4
Total Harbour and Chamie	TM6	TS4	22° 26.631' N	114° 14.506' E	12
	TM7 TM8	TS5	22° 26.907' N 22° 28.392' N	114° 16.057' E 114° 18.003' E	11 22
	*TT1	*TS7	22° 27.270' N	114° 12.717' E	6
	SM1	SS1	22° 12.738′ N	114° 13.885' E	14
	SM2	SS2	22° 13.447′ N	114° 10.691' E	14 33
	SM3 SM4		22° 13.527' N 22° 12.758' N	114° 8.980' E 114° 8.315' E	11
	SM5		22° 12.141' N	114° 6.728' E	8
	SM6	SS3	22° 11.500' N	114° 4.743' E	14
	SM7 SM9	SS4	22° 13.740' N 22° 16.420' N	114° 4.743' E 114° 4.024' E	8 8
Southern Water	SM10		22° 18.125' N	114° 1.919' E	5
Southern water	SM11	SS5	22° 15.443' N	114° 1.078' E	8
	SM12	ccc	22° 12.861' N	114° 0.869' E	7
	SM13 SM17	SS6	22° 12.957' N 22° 9.211' N	113° 57.724' E 113° 57.727' E	6 12
	SM18		22° 9.211' N	114° 4.746' E	21
	SM19		22° 9.211' N	114° 13.077' E	24
	SM20	****	22° 10.448' N	113° 52.932' E	7
	*ST1 *ST3	*SS7 *SS8	22° 12.607' N 22° 14.734' N	114° 1.345' E 114° 1.928' E	5 6
	"S13 PM1	330	22° 23.242' N	114 1.928 E 114° 17.145' E	6
	PM2		22° 22.643' N	114° 16.687' E	8
	PM3	PS3	22° 22.156' N	114° 16.910' E	13
	PM4		22° 22.940' N	114° 18.819' E	6
Down Shalker	PM6 PM7	PS5	22° 21.102' N 22° 20.453' N	114° 16.213' E 114° 17.703' E	11 17
Port Shelter	PM8	PS6	22° 19.168' N	114° 18.745' E	20
	PM9		22° 20.529' N	114° 20.196' E	15
	PM11		22° 19.240' N	114° 20.163' E	21
	*PT2 *PT3	*PS2	22° 22.798' N 22° 22.790' N	114° 16.540' E 114° 18.400' E	3 6
	*PT4	*PS4	22° 21.728' N	114° 15.879' E	5
Junk Bay	JM3	JS2	22° 17.490' N	114° 15.657' E	10
Jane Say	JM4		22° 16.873' N	114° 15.378' E	16
	DM1	DS1	22° 29.769' N	114° 0.644' E	2
Deep Bay	DM2 DM3	DS2	22° 30.454' N 22° 28.680' N	113° 59.549' E 113° 57.551' E	2 3
	DM4	DS3	22° 27.335' N	113° 55.937' E	4
	DM5	DS4	22° 25.561' N	113° 53.388' E	8
	NM1	NCO	22° 20.877′ N	114° 1.286' E	34
	NM2 NM3	NS2 NS3	22° 21.130' N 22° 21.324' N	113° 58.815' E 113° 56.783' E	11 14
North Western	NM5	NS4	22° 23.051' N	113° 53.972' E	20
	NM6	NS6	22° 19.281' N	113° 53.908' E	5
	NM8	ANC E	22° 16.695' N	113° 51.886' E	8
	*NT1 MM1	*NS5 MS1	22° 22.475' N 22° 32.984' N	114° 58.353' E 114° 14.271' E	4 6
l	MM2	MS2	22° 32.626' N	114 14.271 E 114° 16.648' E	11
	MM3	MS3	22° 33.714' N	114° 18.615' E	16
	MM4	MS4	22° 33.817' N	114° 21.483' E	18
	MM5 MM6	MS5 MS6	22° 31.233' N 22° 27 334' N	114° 23.633' E	20 12
Mire Pay	MM7	MS6 MS7	22° 27.334' N 22° 31.409' N	114° 20.997' E 114° 17.824' E	12
Mirs Bay	MM8	MS8	22° 12.021' N	114° 19.345' E	31
	MM13	MS13	22° 13.000' N	114° 26.920' E	28
	MM14	MS14 MS15	22° 17.560' N	114° 26.920' E	25
	MM15 MM16	MS15 MS16	22° 22.120' N 22° 26.670' N	114° 26.920' E 114° 26.920' E	24 22
	MM17	MS17	22° 30.192' N	114° 20.960' E	17
	MM19		22° 15.921' N	114° 19.411' E	28
	WM1	WS2	22° 15.044' N	114° 7.363' E	35
Wastern Buffer	WM2 WM3	WS1	22° 17.074' N 22° 19.203' N	114° 5.730' E 114° 5.826' E	13 20
Western Buffer	WM4	WSI	22° 20.940' N	114° 4.256' E	26
	*WT1		22° 14.584' N	114° 9.588' E	7
	*WT3		22° 14.900' N	114° 8.770' E	10
	EM1	ES4	22° 16.506' N	114° 15.335' E	16
Eastern Buffer	EM2 EM3	ES1 ES2	22° 15.732' N 22° 14.237' N	114° 15.971' E 114° 16.144' E	21 21
	*ET1	*ES3	22° 16.203' N	114° 14.624' E	6
	*ET2	*ES5	22° 17.078' N	114° 13.783' E	12
	VM1		22° 17.280' N	114° 13.839' E	38
	VM2	VS3	22° 17.862' N 22° 17.631' N	114° 12.619' E 114° 12.526' E	12 8
	VM4	V33	22° 17.860' N	114° 11.654' E	12
	VM5		22° 17.266' N	114° 10.510' E	11
		VS5	22° 17.077' N	114° 10.600' E	8
	VM6	VSC	22° 17.371′ N	114° 9.665' E 114° 8.416' E	14 10
	VM7 VM8	VS6	22° 17.771' N 22° 17.564' N	114° 8.416' E 114° 7.175' E	10 11
Victoria Harbour	VM12	VS9	22° 19.757' N	114° 7.278' E	14
	VM14	VS10	22° 21.935' N	114° 6.527' E	11
	VM15	W 10.3.0	22° 18.579' N	114° 8.539' E	13
	*VT2	*VS12	22° 17.194' N	114° 11.304' E	5
	*VT3 *VT4	*VS13 *VS14	22° 17.448' N 22° 18.734' N	114° 14.250' E 114° 12.814' E	5 6
	*VT8	*VS17	22° 21.360' N	114° 6.867' E	5
	*VT10	*VS19	22° 18.590' N	114° 9.430' E	5
	*VT11	*VS20	22° 18.981' N	114° 11.814' E	6
	*VT12	*VS21	22° 19.429' N	114° 8.587' E	5

Note: 1. All locations are based on WGS84 datum

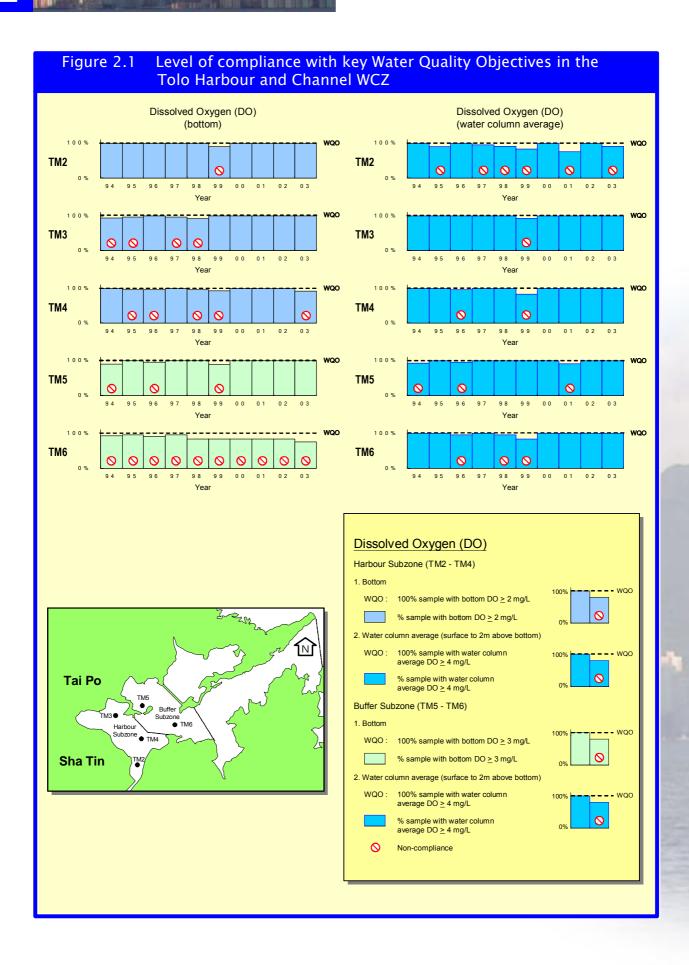
^{2.} Water quality and sediment monitoring stations in typhoon shelters are marked with an asterisk *

Chapter 2 - Tolo Harbour and Channel Water Control Zone

Water Quality in 2003

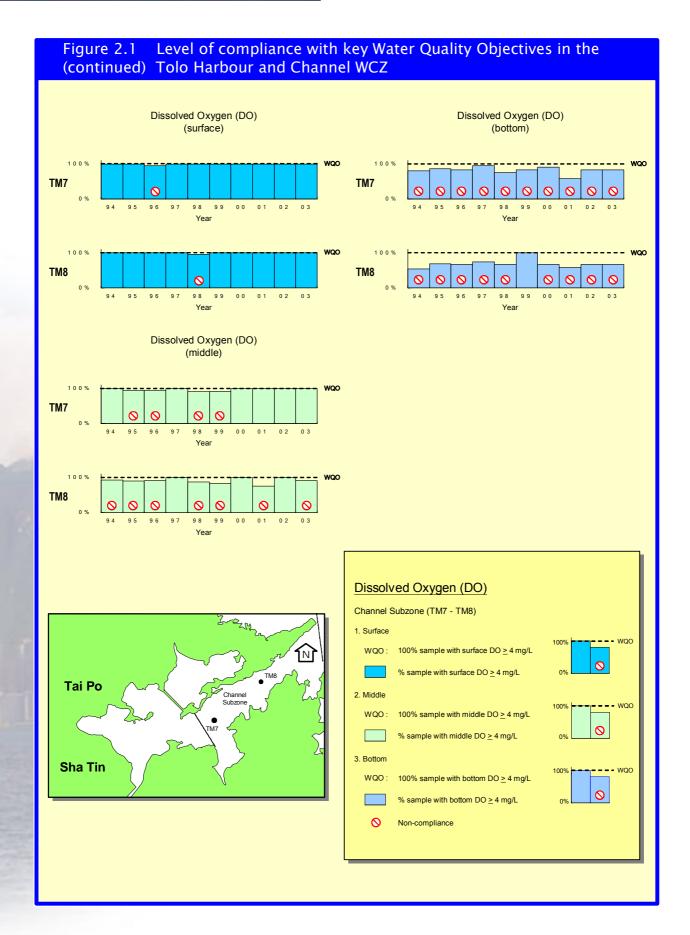
- 2.1 The Tolo Harbour and Channel Water Control Zone (WCZ) is a semi-enclosed bay with a gradient of water quality from the more enclosed and densely populated inner Harbour Subzone to the outer Channel Subzone opening to Mirs Bay. A summary of the 2003 water quality data for the Tolo Harbour and Channel WCZ is shown in Table 2.1.
- In 2003, the gradual decline in nitrogen in Tolo Harbour occurred over the past few years has continued. The annual mean *E. coli*, ammonia nitrogen (NH₄-N), total inorganic nitrogen (TIN), total nitrogen and orthophosphate phosphorus in the Tolo Harbour and Channel WCZ have reached their minimum levels in 10 years.
- After a widespread and significant decrease in chlorophyll-a in Tolo Harbour in 2002, the levels at various stations increased by 1.0-3.4mg/L (23-89%) in 2003. Overall, the chlorophyll-a level in the Harbour remained largely stable in the past decade, despite the changes in nitrogen and phosphorus nutrients in the water.
- In 2003, the depth-averaged and the bottom dissolved oxygen (DO) in Tolo Harbour have decreased by 0.8mg/L (12%) and 0.6mg/L (10%) respectively. This was, however, within the range of natural fluctuation. The frequency of bottom hypoxia (i.e. DO<2mg/L) was maintained at a low level (3.7%). In 2003, the mean bottom DO in the harbour was maintained at 4.7-6.3 mg/L, above the level needed to sustain fish and other forms of marine life. Lower bottom DO levels occurred more often in Tolo Channel than in the Inner Harbour under stratification conditions.
- 2.6 Temperature and salinity stratification is commonly observed in Tolo Channel (TM6-TM8) during the warm months (May-September) under stable weather conditions. The phenomenon generally reduces vertical mixing of the water column and prevents replenishment of DO in the bottom layer. Figure 2.4 shows the vertical temperature, salinity and DO profiles of a typical stratification occurring during the summer of 2003.
- 2.5 In 2003, the *E. coli* bacterial levels in the Inner Harbour (TM2 & TM3) were low (15-18 cfu/100mL) showing a further improvement of bacteriological water quality. The *E. coli* level at TM2 (near Shatin) was the lowest ever recorded.

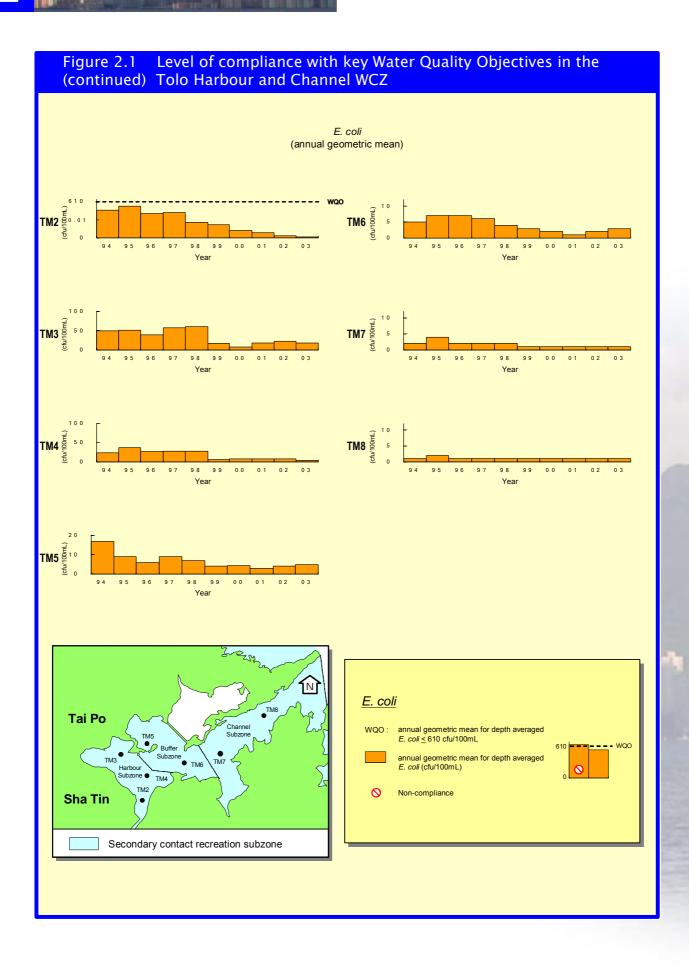
TOLO HARBOUR & CHANNEL WCZ

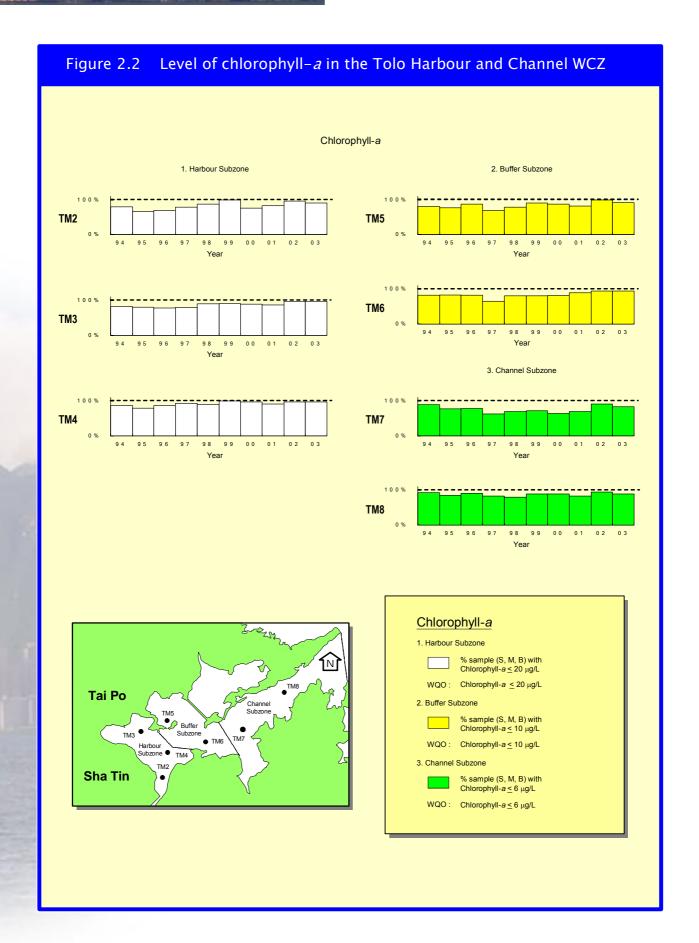


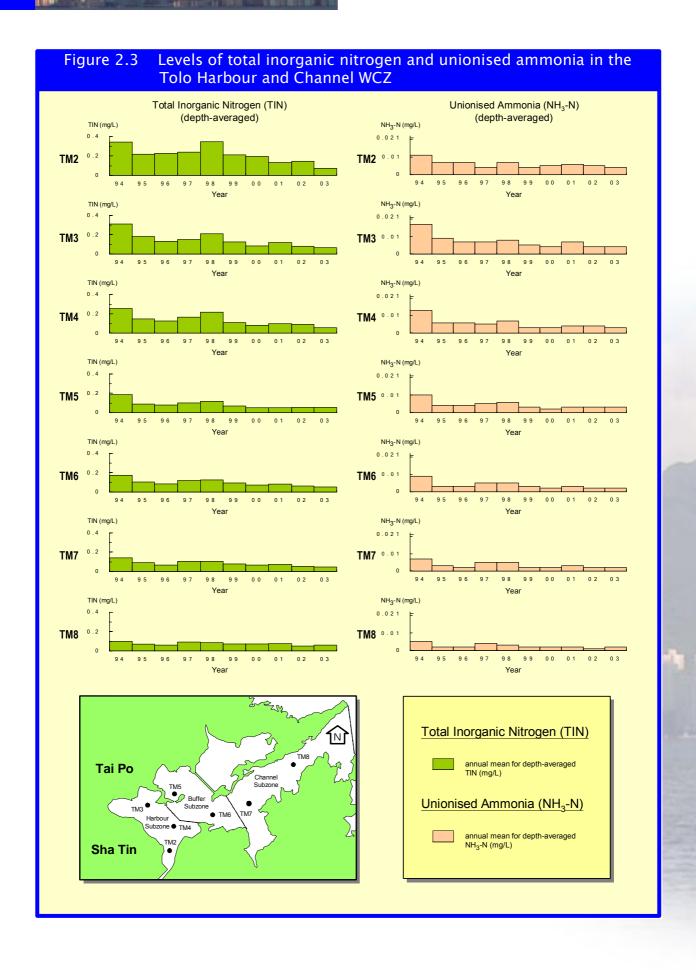
Compliance with Water Quality Objectives (WQOs)

- 2.7 Figure 2.1 shows the compliance with Water Quality Objectives (WQOs) in the Tolo Harbour and Channel WCZ in 2003 and the previous nine years. Due to the reduction of DO, there was a decrease in the compliance rate for the DO objective from 81% in 2002 to 63% in 2003. Only two stations (TM 3 & TM5) fully met the DO objective.
- 2.8 As in the previous years, all sampling stations in the WCZ achieved 100% compliance with the *E. coli* WQO indicating that the harbour was of good bacteriological quality, suitable for secondary contact recreational uses.
- Being a semi-enclosed bay with weak tidal flushing, Tolo Harbour is generally susceptible to algal blooms. In 2003, 92% of the samples complied with the chlorophyll-a WQO, comparable to that in 2002 (Figure 2.2).
- 2.10 Figure 2.3 shows the annual means total inorganic nitrogen (TIN) and unionised ammonia (NH₃-N). The annual mean TIN and NH₃-N levels in 2003 were low, in the ranges of 0.05-0.07 mg/L and 0.002-0.004mg/L respectively. Both parameters exhibited a decreasing gradient from the inner part of the harbour to the outer channel.


Long-term Water Quality Trends


- 2.11 Due to eutrophication and frequent occurrence of red tides in Tolo Harbour in the 1980s, the Government implemented a Tolo Harbour Action Plan (THAP) to reduce pollution and nutrient loading in the harbour. The abatement measures included: eliminating livestock pollution; restoring old landfill; enforcing the Water Pollution Control Ordinance; exported effluents out of the harbour and extending sewer networks to rural villages.
- As a result of the implementation of the THAP, the nutrient enrichment problem in Tolo Harbour has been effectively controlled. Significant long-term decreases in organic pollutants (BOD₅), Kjeldahl nitrogen, total nitrogen and total phosphate have been observed (Table 2.2).
- 2.13 To further control pollution sources in the harbour catchment, the Government has constructed public sewers for 26 villages in 2003 and another 10 villages will be provided with sewerage by 2005. These measures would help further improve water quality and restore the ecological health of Tolo Harbour.




TOLO HARBOUR & CHANNEL WCZ

TOLO HARBOUR & CHANNEL WCZ

TOLO HARBOUR & CHANNEL WCZ

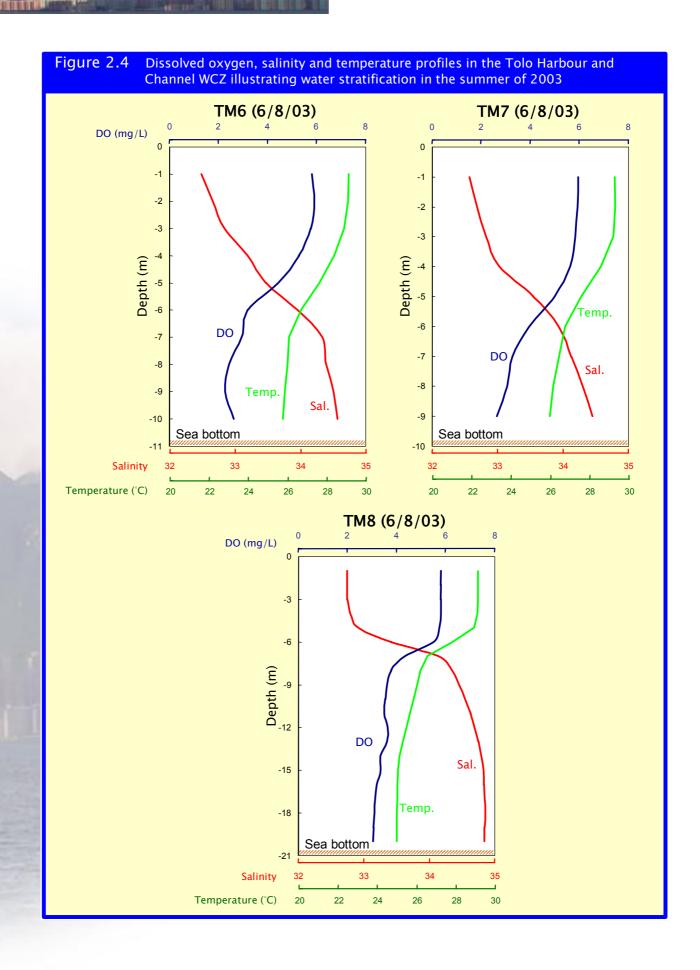


Table 2.1
Summary water quality statistics of the Tolo Harbour and Channel WCZ in 2003

		1	larbour Subzon	ie	Buffer S	ubzone	Channel	Subzone
Parameter		TM2	TM3	TM4	TM5	TM6	TM7	TM8
Number of samples		12	12	12	12	12	12	12
Temperature (°C)		24.3	24.3	24.1	24.5	23.7	23.8	23.4
Temperature (C)		(16.7 - 29.0)	(16.6 - 28.9)	(16.6 - 28.7)	(16.5 - 29.6)	(16.6 - 28.3)	(16.6 - 28.5)	(16.6 - 28.3)
Salinity		31.3	31.8	31.7	31.3		32.3	32.7
Sammy .		(28.5 - 33.5)	(28.7 - 33.4)	(29.3 - 33.5)	, ,	(30.8 - 34.3)	(29.9 - 34.1)	(30.5 - 34.4)
Dissolved Oxygen (mg/L)		6.3	6.3	6.3			5.7	5.3
73. (3.)		(3.4 - 8.9)	(4.4 - 8.2)	(4.7 - 8.3)		, ,	(4.1 - 7.1)	(3.9 - 7.3)
	Bottom	6.3	5.8	5.7			5.4	4.7
		(3.2 - 8.1)	(2.2 - 8.1)	(1.8 - 8.3)	, ,	. ,	(3.1 - 7.2)	(1.9 - 7.3)
Dissolved Oxygen (% Saturation)		89 (51 - 120)	90 (67 - 111)	90 (70 - 107)			81 (63 - 96)	75 (58 - 92)
		90	81	79			(63 - 96)	(58 - 92)
	Bottom	(47 - 125)	(34 - 109)	(27 - 104)			(46 - 98)	(28 - 92)
		8.2	8.3	8.3	, ,	. ,	8.2	8.2
pH		(8.0 - 8.4)	(8.1 - 8.4)	(8.1 - 8.4)			(8.1 - 8.5)	(8.0 - 8.4)
		2.0	2.1	2.4	, ,	, ,	3.1	3.3
Secchi Disc Depth (m)		(0.4 - 3.0)	(1.1 - 2.9)	(1.5 - 3.3)			(1.0 - 5.0)	(1.5 - 4.8)
		7.1	6.6	6.2	, ,	. ,	6.1	7.1
Turbidity (NTU)		(2.3 - 10.2)	(2.2 - 9.3)	(2.1 - 8.0)		(1.9 - 10.9)	(0.9 - 8.9)	(4.4 - 8.6)
		4.1	5.5	2.3	, ,	, ,	2.2	3.2
Suspended Solids (mg/L)		(2.4 - 8.4)	(1.1 - 34.3)	(1.4 - 4.2)	(1.3 - 86.9)	(1.2 - 6.8)	(1.2 - 4.6)	(2.0 - 4.8)
5 1 5 1 1 10 5 1	((1)	2.5	2.4	2.0	2.2	1.4	1.1	0.9
5-day Biochemical Oxygen Demand	(mg/L)	(1.6 - 4.7)	(1.5 - 4.2)	(1.4 - 3.0)	(1.3 - 5.3)	(1.0 - 2.7)	(0.4 - 1.5)	(0.3 - 1.5)
Ammonio Nitrogon (mg/L)		0.05	0.05	0.04	12 12 24.5 23.7 28.7) (16.5 - 29.6) (16.6 - 28.7 31.3 32.4 31.5) (27.3 - 33.3) (30.8 - 34.7 6.1 5.5 3.3) (4.7 - 7.6) (3.7 - 7.5 6.1 4.7 3.3) (4.8 - 7.8) (1.9 - 7.5 87 78 07) (74 - 116) (56 - 95) 87 65 04) (72 - 120) (28 - 95) 8.2 8.2 8.4 (8.0 - 8.6) (8.1 - 8.4 2.3 2.9 3.3) (1.0 - 3.4) (1.5 - 5.4 9.1 6.4 3.0) (5.1 - 16.8) (1.9 - 10.5 11.8 2.6 3.2) (1.3 - 86.9) (1.2 - 6.8 3.2) (1.3 - 86.9) (1.2 - 6.8 3.3) (0.01 - 0.10) (0.01 - 0.0 3 0.003 0.002 0.007) (<0.01 - 0.10) (0.01 - 0.0 0.01 (0.01 - 0.01) (0.01 - 0.0 0.03) (<0.01 - 0.01) (<0.01 - 0.0 0.03) (<0.01 - 0.01) (<0.01 - 0.0 0.03) (<0.01 - 0.01) (<0.01 - 0.0 0.03) (0.01 - 0.012) (0.01 - 0.0 0.03) (0.01 - 0.012) (0.01 - 0.0 0.03) (0.01 - 0.012) (0.01 - 0.0 0.03) (0.01 - 0.012) (0.01 - 0.0 0.01 (0.01 - 0.012) (0.01 - 0.0 0.03) (0.18 - 0.38) (0.15 - 0.2 0.12) (0.01 - 0.01) (<0.01 - 0.01 0.01) (<0.01 - 0.01) (<0.01 - 0.01 0.01) (<0.01 - 0.01) (<0.01 - 0.01 0.01) (<0.01 - 0.01) (<0.01 - 0.01 0.01) (0.01 - 0.01) (0.01 - 0.0 0.02) (<0.01 - 0.01) (<0.01 - 0.0 0.03) (0.18 - 0.38) (0.15 - 0.2 0.32) (0.18 - 0.40) (0.15 - 0.2 0.33) (1.6 - 25.0) (1.5 - 8.2 0.34) (1.6 - 25.0) (1.5 - 8.2 0.35) (1.380) (1.65) 0.36) (1.380) (1.65) 0.37) (1.380) (1.65)	0.03	0.03	0.03
Ammonia Nitrogen (mg/L)		(0.03 - 0.10)	(0.01 - 0.15)	(0.01 - 0.10)		(0.01 - 0.06)	(0.01 - 0.05)	(0.01 - 0.06)
Unionised Ammonia (mg/L)		0.004	0.004	0.003	0.003	0.002	0.002	0.002
Official Sea Ammonia (mg/L)		(0.002 - 0.007)	(<0.001 - 0.012)	(<0.001 - 0.007)	(<0.001 - 0.012)	(0.001 - 0.004)	(<0.001 - 0.004)	(<0.001 - 0.004)
Nitrite Nitrogen (mg/L)		<0.01	0.01	0.01	<0.01	0.01	0.01	0.01
Nuite Nii Ogen (mg/L)		(<0.01 - 0.02)	(<0.01 - 0.02)	(<0.01 - 0.03)	(<0.01 - 0.01)	(<0.01 - 0.05)	(<0.01 - 0.04)	(<0.01 - 0.07)
Nitrate Nitrogen (mg/L)		0.01	0.01	0.01	0.01		0.01	0.02
Tribate Tribogen (mg/2)		(<0.01 - 0.04)	(<0.01 - 0.03)	(<0.01 - 0.02)	, ,	(<0.01 - 0.03)	(<0.01 - 0.02)	(<0.01 - 0.04)
Total Inorganic Nitrogen (mg/L)		0.07	0.07	0.05			0.05	0.06
roun morganio rina ogon (mg/ 2)		(0.03 - 0.14)	(0.01 - 0.19)	(0.01 - 0.12)	, ,	(0.01 - 0.10)	(0.01 - 0.09)	(0.02 - 0.15)
Total Kjeldahl Nitrogen (mg/L)		0.29	0.27	0.23			0.17	0.15
3 (3 /		(0.23 - 0.36)	(0.19 - 0.43)	(0.19 - 0.30)	, ,	,	(0.12 - 0.24)	(0.11 - 0.25)
Total Nitrogen (mg/L)		0.30	0.28	0.24			0.19	0.18
,		(0.23 - 0.37)	(0.19 - 0.47)	(0.19 - 0.32)	, ,	,	(0.13 - 0.25)	(0.12 - 0.36)
Orthophosphate Phosphorus (mg/L)		<0.01 (<0.01 - 0.01)	<0.01 (<0.01 - 0.02)	<0.01 (<0.01 - 0.01)			<0.01 (<0.01 - 0.01)	0.010 (0.01 - 0.02)
		0.03	0.03	0.03			0.03	0.02
Total Phosphorus (mg/L)		(0.02 - 0.05)	(0.02 - 0.05)	(0.02 - 0.04)			(0.02 - 0.04)	(0.02 - 0.04)
		0.8	0.6	0.02 - 0.04)	, ,	, ,	0.6	0.02 - 0.04)
Silica (as SiO ₂) (mg/L)		(0.1 - 1.4)	(0.1 - 1.2)	(0.3 - 1.1)			(0.1 - 1.2)	(0.2 - 1.7)
		11.2	9.7	6.5		, ,	4.3	3.7
Chlorophy II- a (µg/L)		(1.0 - 30.5)	(2.4 - 32.2)	(2.9 - 10.3)		(1.5 - 8.2)	(1.9 - 6.8)	(1.2 - 13.7)
		15	18	4	, ,	, ,	1	1
E. coli (cfu/100mL)		(5 - 110)	(1 - 780)	(1 - 60)			(1 - 25)	(1 - 6)
Eggal Califorma (af./400ml.)		110	92	17		, ,	3	2
Faecal Coliforms (cfu/100mL)		(35 - 1200)	(2 - 9800)	(2 - 430)	(1 - 2400)	(1 - 600)	(1 - 230)	(1 - 30)

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for *E. coli* and faecal coliforms which are annual geometric means.

^{3.} Data in brackets indicate the ranges.

TOLO HARBOUR & CHANNEL WCZ

Table 2.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Tolo Harbour and Channel WCZ, 1986 - 2003

Monitoring Station		TM2	TM3	TM4	TM5	TM6	TM7	TM8
Monitoring Pariod		1986 I	1986 I	1986 I	1986 I	1986 I	1986 I	1986 I
Monitoring Period		2003	2003	2003	2003	2003	2003	2003
Parameter	Water Depth Surface	7	71	71	71	71	7	71
Temperature (°C)	Middle	NA	7	7	NA	ä	ä	ä
•	Bottom	7	7	7	7	7	7	7
	Average Surface	71	7	71	71	7	7	7
Salinity	Middle	NA	-	-	NA	-	-	-
	Bottom Average	-	-	-	-	-	-	-
	Surface	7	7	7	7	7	7	N.
Dissolved Oxygen (mg/L)	Middle	NA	77	-	NA	7	-	-
	Bottom Average	7	71	71	-	7	7	-
	Surface	-	2	2	2	7	7	7
Dissolved Oxygen (%)	Middle	NA	7	7	NA	7	_	-
	Bottom Average	7	7	71	71	71	7	7
	Surface	-	-	7	7	7	7	-
рН	Middle Bottom	NA	-	-	NA	-	-	-
	Average	-		-	n R	-		
Secchi disc depth (m)		-	-	-	-	71	-	-
Turbidity (NTU)	Surface Middle	- ΝΔ	7	7	7 NA	7		7
raibiaity (NTO)	Bottom	NA -	7	7	NA 7	7	7	7
	Average	-	-	71	71	71	71	71
Suspended Solids (mg/L)	Surface Middle	NA	-	-	- NA	-		7
Suspended Sonds (mg/E)	Bottom	-	-	-	-	-	-	-
	Average	-	-	-	-	-	-	-
Total volatile solids (mg/L)	Surface Middle	NA		-	NA	-	-	n N
Total Volutile Solids (Ing/E)	Bottom	-	-	7	-	2	-	
	Average	-	-	-	-	7	-	7
5-day Biochemical Oxygen Demand (mg/L)	Surface Middle	NA	n R	n n	NA	- 7	- 3	n R
,	Bottom	-	-	-	-	-	-	7
	Average Surface	<u>u</u>	7	7	7	7		7
Ammonia nitrogen (mg/L)	Middle	NA	-		NA			
3 . 3, .	Bottom	-	7	-	-	-	-	-
	Average Surface	7	צ	-	-	-	-	-
Nitrite nitrogen (mg/L)	Middle	NA	2	<u>.</u>	NA	<u>u</u>	<u>.</u>	- 1
	Bottom	5.	2	7		2	2	-
	Average Surface	<u>u</u>	7	–	7	צ		7
Nitrate nitrogen (mg/L)	Middle	NA	2	2	NA	7	2	
	Bottom	Ä	7	7	7	7	-	-
	Average Surface	7	צ	7	7	7	-	
Total inorganic nitrogen (mg/L)	Middle	NA	7	-	NA	-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-
	Bottom	7	7	-	-	-	-	-
	Average Surface	<u>u</u>	7	7	3	7	2	7
Total Kjeldahl nitrogen (mg/L)	Middle	NA	7	7	NA	7	7	2
	Bottom Average	L	n R	n R	n R	n R		2
	Surface	7	7	7	7	2		7
Total nitrogen (mg/L)	Middle	NA	2	2	NA	2		7
	Bottom Average	n n	R R	n R	n R	n R	7	<u>.</u>
	Surface	7	7	7	7	2		-
Orthophosphate phosphorus (mg/L)	Middle	NA	7	7	NA	-	-	-
	Bottom Average	n R	n R	.	n R	.	<u>.</u>	
	Surface	7	7	7	7	2		Ŋ
Total phosphorus (mg/L)	Middle Bottom	NA S	n R	n R	NA	-		-
	Average	7	7	7	n R	<u> </u>		<u>u</u>
	Surface	-	-	-	71	-	-	-
Silica (mg/L)	Middle Bottom	NA -	-	-	NA -	-	-	-
	Average	-	-	-	71	-	-	-
Chlaramhull a (var./L)	Surface	-	-	-	-	-	-	-
Chlorophyll– <i>a</i> (µg/L)	Middle Bottom	NA -	-	-	NA -	-	-	-
	Average	-	-	-	-		-	
F. coli(cfu/100ml)	Surface	3	-	-	-	-	-	-
E. coli (cfu/100mL)	Middle Bottom	NA 3	-	n n	NA -		-	
	Average	, u	-	Ž.	-	Я	N N	-
Faecal coliforms (cfu/100mL)	Surface Middle	- NIA	77	-	7 NA	-	-	-
raccar comornis (ciu/ roomic)	Bottom	NA -	-	-	NA 7	-	-	-
	Average	_	_	-	7	-	-	-

Note 1. Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05

^{2. -} indicates no significant trend is detected3. NA (Not Applicable) indicates the measurement was not made due to shallow water

^{4. 7} represents a significant increase over time

^{5. 3} represents a significant decrease over time

CHAPTER 3

SOUTHERN WATER CONTROL ZONE

Chapter 3 - Southern Water Control Zone

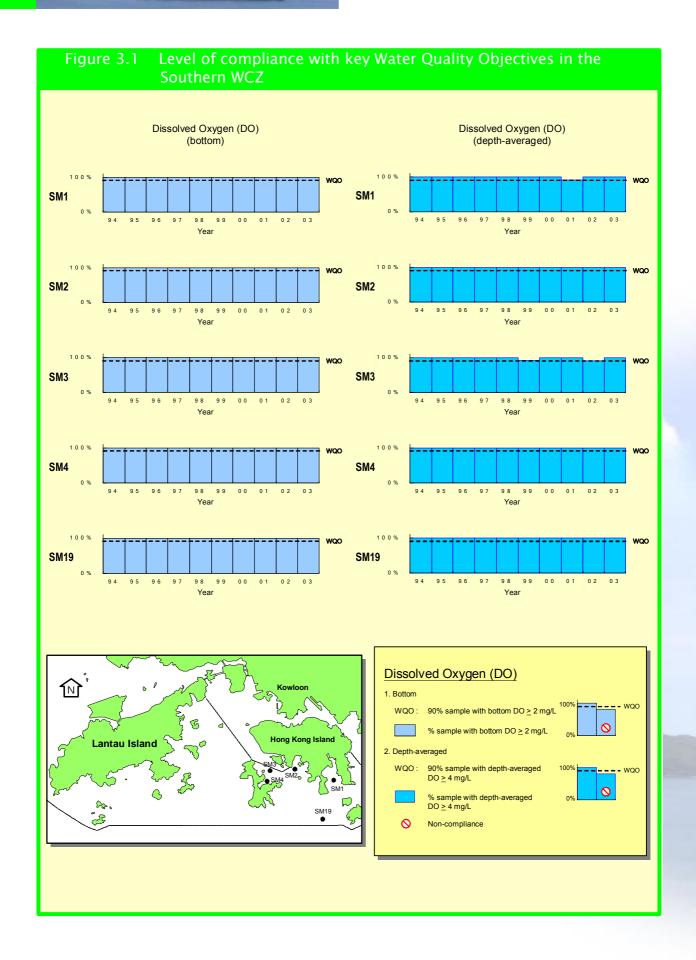
Water Quality in 2003

- 3.1 The Southern Water Control Zone (WCZ) is largely an open water affected by Pearl River flow, local discharges and marine works in the southern part of Hong Kong Island (Figure 1.8). The effect of the Pearl River is generally stronger in the northern and western parts of the WCZ and gradually diminishes towards the eastern end. A summary of the 2003 water quality data from 15 monitoring stations in the Southern WCZ is shown in Table 3.1.
- 3.2 There was a widespread decrease of nitrogen in the Southern WCZ in 2003. The mean levels of ammonia nitrogen, total inorganic nitrogen (TIN) and total nitrogen in the WCZ were lowered by 0.009 mg/L (18%), 0.068 mg/L (33%) and 0.075 mg/L (22%) respectively. Silica has also decreased by about 16%. At the same time, a general reduction of chlorophyll-a concentration was seen in the WCZ with the exception of SM9-SM12 along the eastern coast of Lantau Island.
- 3.3 The levels of orthophosphate phosphorus (PO₄-P) and total phosphorus (TP) in the WCZ in 2003 were largely similar to those in 2002. As in other parts of Hong Kong, there was a decrease in dissolved oxygen (DO) in the whole WCZ by around 0.7mg/L (10%) in 2003. A widespread increase in salinity (by 1.0-5.6%) was also observed during the year.
- 3.4 A significant rise of sewage bacteria was found at the northern station SM9 near the Stonecutters Island Sewage Treatment Works (SCISTW) outfall in 2002. This, however, was not observed in 2003: the annual mean E.coli at SM9 dropped from the record high level of 290 cfu/100mL in 2002 to 190 cfu/100mL in 2003. Similar reduction was also found in the neighbouring area, at SM7 and SM10.

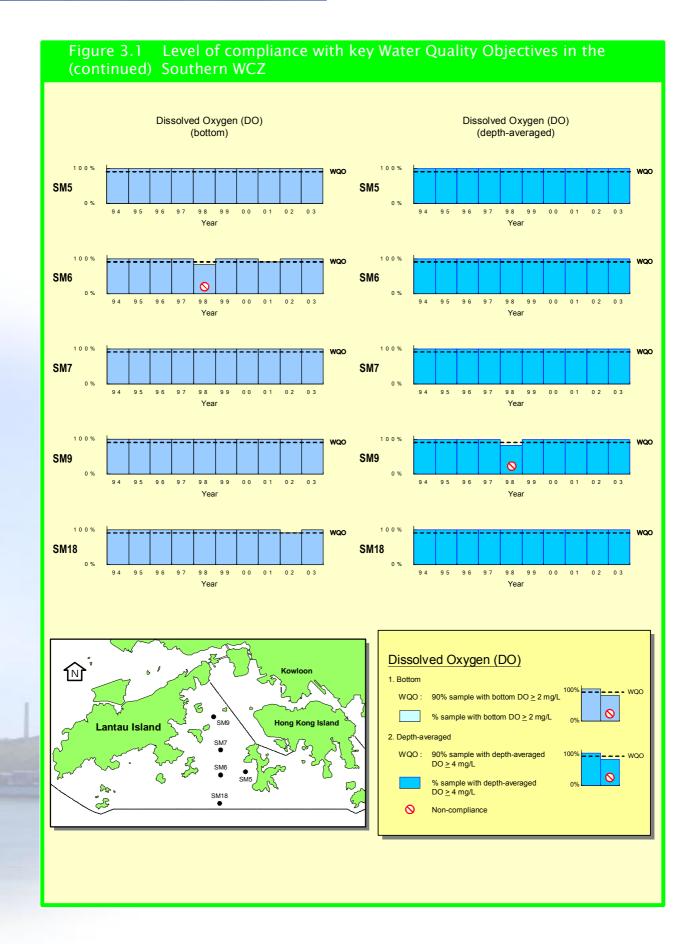
Compliance with Water Quality Objectives

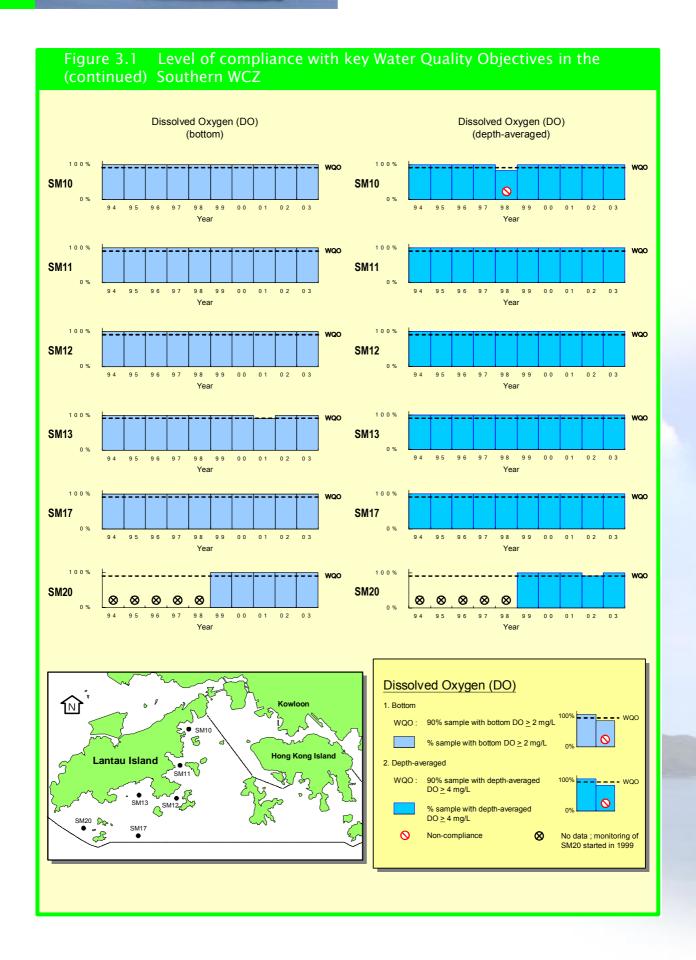
- 3.5 The compliance of the Southern WCZ with the key Water Quality Objectives i.e. dissolved oxygen, unionised ammonia, TIN and E. coli between 1994 and 2003 is illustrated in Figure 3.1. Similar to 2002, full compliance (100%) with the WQOs for DO and unionised ammonia was achieved at all stations in 2003.
- 3.6 As there was a widespread decrease of nitrogen in the Southern WCZ, the overall compliance rate for the TIN WQO in the Southern WCZ has increased from 13% in 2002 to 44% in 2003. The majority of stations which complied with the TIN WQO were located in the eastern

SOUTHERN WCZ

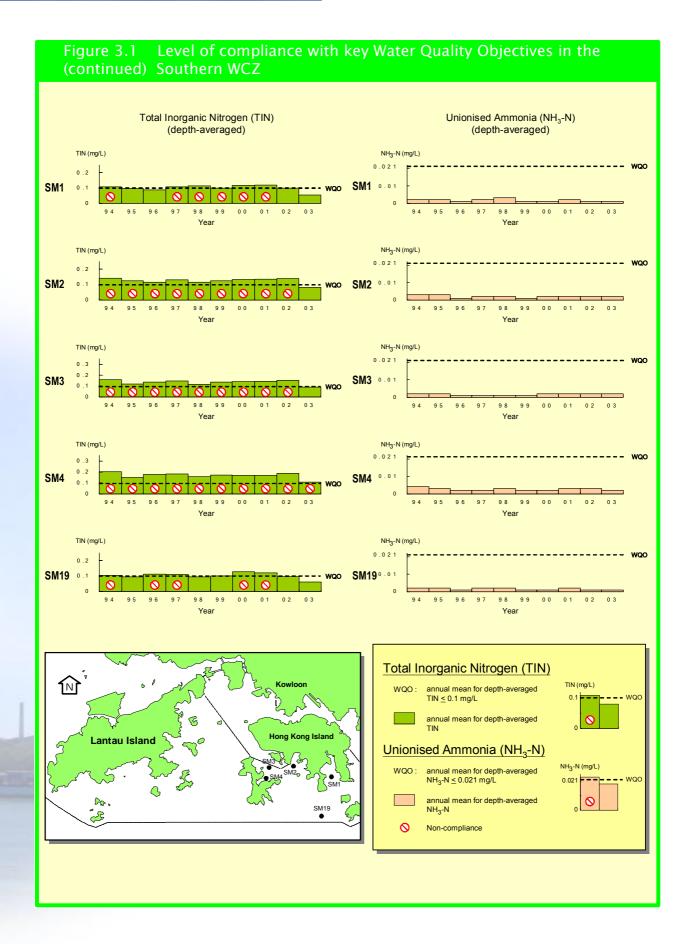


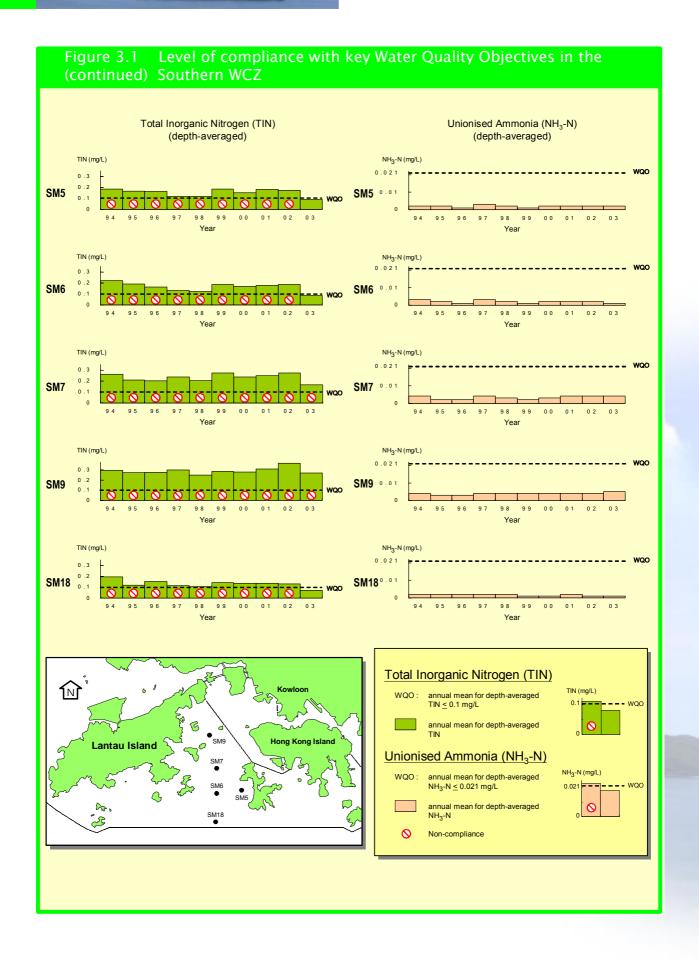
part of the WCZ where influence from the Pearl River flow was minimal.

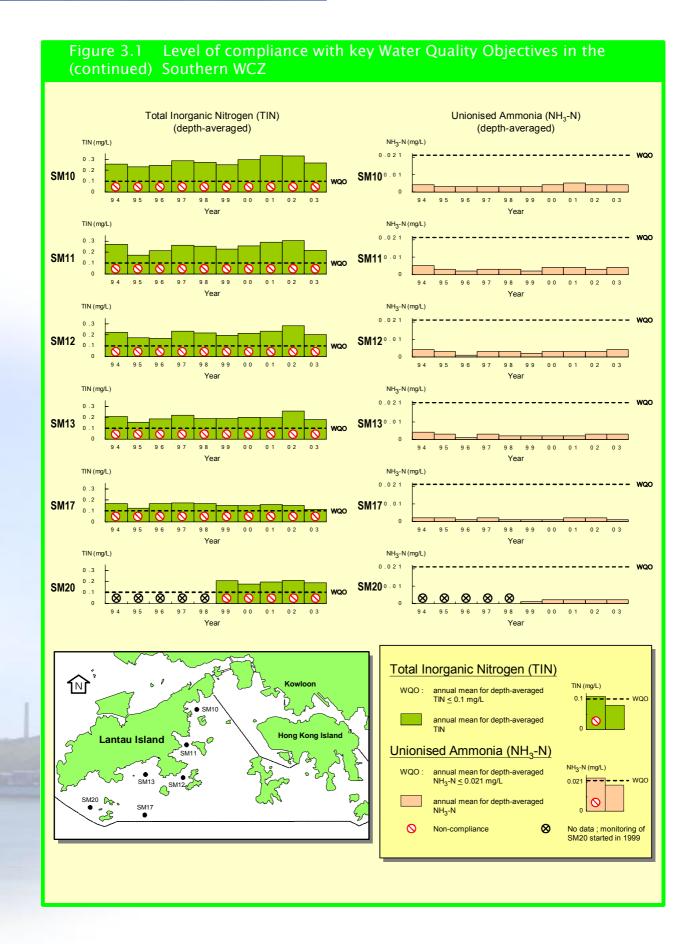

3.7 All the monitoring stations located within the secondary contact recreation subzones in the Southern water (i.e. SM1, SM2, SM10 and SM11) have achieved full compliance (100%) with the *E. coli* objective in 2003, indicating that the water was suitable for wind surfing, boating and other recreational activities.

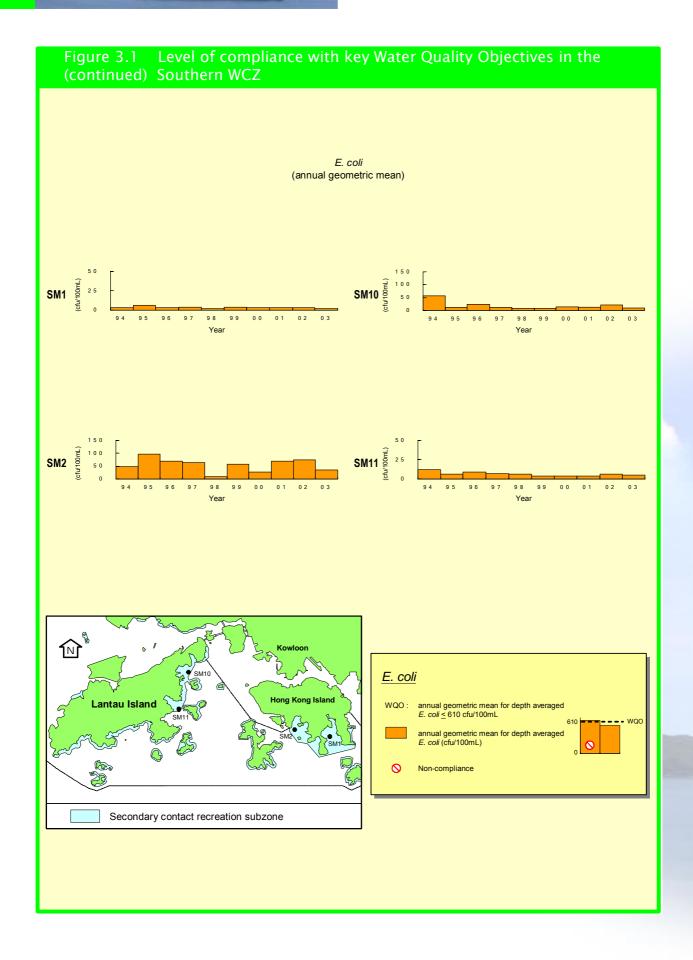

Long-term Water Quality Trends

- Between 1986 and 2003, significant increases in inorganic nitrogen, notably NO₂-N, NO₃-N and TIN, were found at the eastern coast of Lantau Island (SM10-13) (Table 3.2 and Figure 3.2). On the other hand, decreasing trends in total Kjeldahl nitrogen and total nitrogen were detected in two areas: a) South coast of Hong Kong Island (SM1-3) and b) Southern edge of the WCZ (SM17-19). The ammonia levels in Southern water remained largely stable during the same period.
- 3.9 Together with the long-term increases in nitrogenous nutrients, the Southern WCZ has also experienced a decline in total phosphorus, mainly in two areas: a) south of Hong Kong Island (SM1-4) and b) along the southern edge of the Southern WCZ (SM17-19) (Figure 3.2). Despite the changes in nitrogen and phosphorus nutrients, the silica and chlorophyll-a levels in the WCZ remained relatively stable in the past 18 years.
- The level of *E. coli* bacteria in the Southern WCZ has remained largely low and stable with a few exceptions including the stations SM2, SM4, SM7 and SM9 showed increasing trends (Table 3.2 and Figure 3.2). While the increase of *E. coli* at SM9 may be related to the SCISTW outfall discharges, the increase of *E. coli* at SM4 could indicate increasing pollution from Sok Kwu Wan in Lamma Island. Under the Outlying Island Sewerage Master Plan, the Government has plans to provide public sewage infrastructure to prevent any deterioration of water quality in the area.









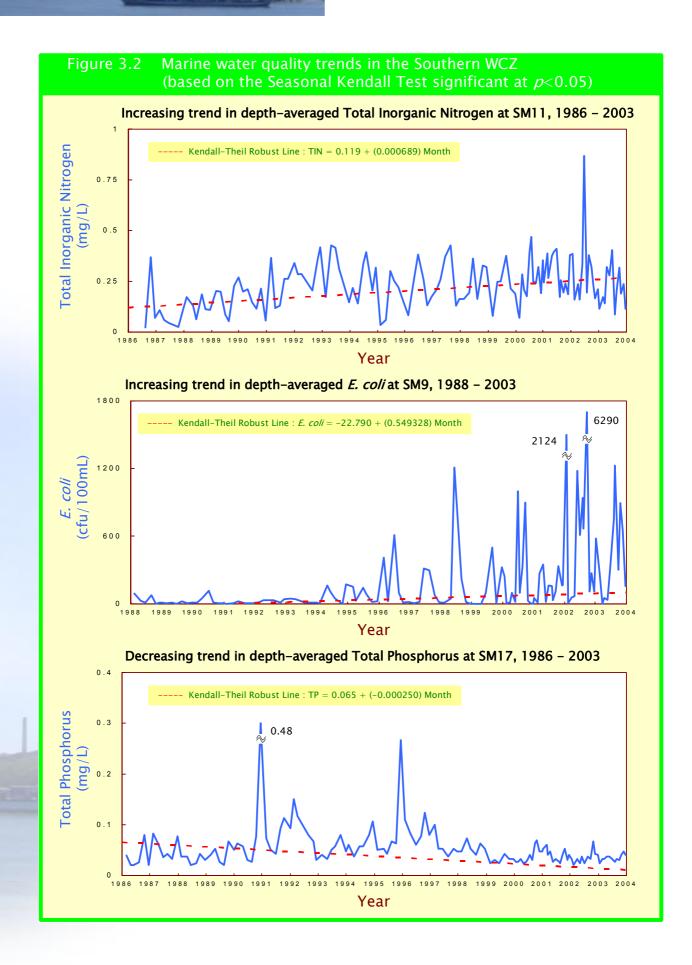


Table 3.1 Summary water quality statistics of the Southern WCZ in 2003

		Но	ng Kong Island (Sοι	ıth)	East Lamm	ia Channel
Param eter Param eter		SM1	SM2	SM19	SM3	SM4
Number of samples		12	12	12	12	12
		23.2	23.4	23.1	23.4	23.5
Temperature (°C)		(16.5 - 27.8)	(16.8 - 27.9)	(16.2 - 27.8)	(16.9 - 27.9)	(17.0 - 27.9)
0.15.31		33.0	32.8	33.0	32.9	32.6
Salinity		(31.4 - 34.0)	(31.4 - 34.0)	(32.1 - 34.0)	(31.5 - 33.9)	(30.5 - 33.8)
Discolved Overson (mg/L)		6.0	5.8	5.9	5.8	5.8
Dissolved Oxygen (mg/L)		(4.9 - 7.3)	(4.1 - 7.6)	(4.7 - 7.4)	(4.5 - 7.7)	(4.3 - 7.5)
	Bottom	5.9	5.6	5.7	5.6	5.7
	DOMOITI	(3.8 - 7.6)	(3.6 - 7.6)	(3.7 - 7.4)	(3.0 - 7.7)	(3.7 - 7.4)
Dissolved Oxygen (% Saturation)		85	81	83	82	82
bissolved exygen (% catalation)		(75 - 93)	(62 - 95)	(69 - 99)	(67 - 97)	(65 - 94)
	Bottom	82	79	79	78	81
	Bottom	(56 - 94)	(53 - 95)	(54 - 92)	(45 - 96)	(54 - 93)
pН		8.2	8.2	8.2	8.2	8.2
		(8.0 - 8.4)	(8.0 - 8.4)	(8.0 - 8.4)	(8.0 - 8.3)	(8.0 - 8.4)
Secchi Disc Depth (m)		3.0	2.4	2.8	2.7	2.4
2.00 2.0pu. ()		(1.8 - 5.9)	(1.8 - 4.5)	(1.4 - 6.0)	(1.8 - 5.0)	(1.8 - 4.0)
Turbidity (NTU)		8.8	9.0	9.1	9.6	8.2
		(3.6 - 16.7)	(5.2 - 15.7)	(5.9 - 12.5)	(5.6 - 18.9)	(5.3 - 12.0)
Suspended Solids (mg/L)		5.3	5.5	4.9	6.0	4.5
		(1.2 - 15.3)	(1.7 - 13.5)	(1.1 - 9.6)	(1.3 - 18.8)	(1.0 - 7.6)
5-day Biochemical Oxygen Deman	d (ma/L)	0.7	0.8	0.7	0.9	0.9
, , , , , , , , , , , , , , , , , , , ,	3 /	(0.1 - 1.7)	(0.4 - 1.4)	(0.4 - 1.2)	(0.4 - 2.2)	(0.4 - 1.8)
Ammonia Nitrogen (mg/L)		0.02	0.02	0.02	0.03	0.04
0 (0 /		(0.01 - 0.03)	(0.01 - 0.04)	(0.01 - 0.04)	(0.01 - 0.05)	(0.01 - 0.08)
Unionised Ammonia (mg/L)		0.001	0.002	0.001	0.002	0.002
, ,		(<0.001 - 0.004)	(<0.001 - 0.005)	(<0.001 - 0.004)	(<0.001 - 0.004)	(0.001 - 0.006)
Nitrite Nitrogen (mg/L)		0.01	0.01	0.01	0.01	0.02
- · · · /		(<0.01 - 0.05)	(<0.01 - 0.07)	(<0.01 - 0.06)	(<0.01 - 0.08)	(<0.01 - 0.09)
Nitrate Nitrogen (mg/L)		0.03	0.04	0.03	0.05	0.05
		(<0.01 - 0.09) 0.05	(<0.01 - 0.13)	(<0.01 - 0.10) 0.06	(<0.01 - 0.15) 0.09	(<0.01 - 0.20)
Total Inorganic Nitrogen (mg/L)		(0.01 - 0.15)	0.08 (0.01 - 0.21)	(0.01 - 0.15)	(0.09 - 0.24)	0.11 (0.03 - 0.31)
		0.11	0.13	0.10	0.13	0.14
Total Kjeldahl Nitrogen (mg/L)		(0.07 - 0.17)	(0.09 - 0.21)	(0.07 - 0.15)	(0.10 - 0.17)	(0.10 - 0.22)
		0.14	0.19	0.15	0.19	0.21
Total Nitrogen (mg/L)		(0.08 - 0.26)	(0.10 - 0.32)	(0.07 - 0.25)	(0.12 - 0.37)	(0.11 - 0.41)
		<0.01	<0.01	<0.01	<0.01	0.010
Orthophosphate Phosphorus (mg/L)		(<0.01 - 0.01)	(<0.01 - 0.01)	(<0.01 - 0.02)	(0.01 - 0.02)	(<0.01 - 0.02)
		0.02	0.02	0.02	0.02	0.02
Total Phosphorus (mg/L)		(0.02 - 0.03)	(0.02 - 0.02)	(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.03)
0.00		0.5	0.6	0.6	0.6	0.6
Silica (as SiO ₂) (mg/L)		(0.2 - 1.1)	(0.2 - 1.3)	(0.2 - 1.2)	(0.2 - 1.4)	(0.2 - 1.6)
011		1.7	2.1	1.6	2.0	2.6
Chlorophy II- $a (\mu g/L)$		(0.8 - 6.2)	(0.9 - 9.4)	(0.8 - 3.5)	(0.8 - 7.3)	(1.0 - 12.7)
F 15 (-f-)(4001)		2	35	1	15	21
E. coli (cfu/100mL)		(1 - 4)	(2 - 350)	(1 - 2)	(1 - 110)	(1 - 58)
Faecal Coliforms (cfu/100mL)		3	72	1	30	49
raecai Comonna (Ciu/100mil)		(1 - 11)	(6 - 590)	(1 - 3)	(2 - 130)	(3 - 170)

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

3. Data in brackets indicate the ranges.

SOUTHERN WCZ

Table 3.1 (continued) Summary water quality statistics of the Southern WCZ in 2003

			1	West Lamma Channe	l	
Param eter Param eter		SM5	SM6	SM7	SM9	SM18
Number of samples		12	12	12	12	12
Tamparahira (90)		23.7	23.5	23.6	23.7	23.4
Temperature (°C)		(16.8 - 28.2)	(16.9 - 28.1)	(17.0 - 28.2)	(17.9 - 27.8)	(16.4 - 28.0)
Salinity		32.1	32.4	31.8	31.4	32.8
Callinty		(28.1 - 34.0)	(30.1 - 34.0)	(27.5 - 34.0)	(26.9 - 33.8)	(31.2 - 34.1)
Dissolved Oxygen (mg/L)		6.3	6.2	6.0	5.7	5.9
		(5.2 - 8.4)	(5.4 - 7.2)	(4.7 - 7.8)	(4.0 - 7.3)	(4.6 - 7.4)
	Bottom	6.2	5.8	6.0	5.5	5.6
		(5.1 - 7.9)	(2.7 - 7.3) 88	(4.7 - 7.6)	(3.8 - 7.3) 81	(2.9 - 7.4)
Dissolved Oxygen (% Saturation)		90		85 (70, 117)		84
		(73 - 125) 88	(75 - 106) 81	(70 - 117) 85	(60 - 105) 77	(69 - 103) 78
	Bottom	(69 - 118)	(40 - 94)	(70 - 114)	(55 - 99)	(43 - 93)
		8.3	8.2	8.2	8.2	8.2
pH		(8.0 - 8.6)	(8.0 - 8.5)	(8.0 - 8.5)	(7.9 - 8.3)	(8.0 - 8.5)
		2.1	2.3	1.9	1.9	2.5
Secchi Disc Depth (m)		(0.5 - 3.1)	(1.3 - 3.0)	(1.0 - 2.7)	(1.0 - 2.9)	(1.5 - 6.7)
T 1:10 AITH		9.9	9.0	10.5	10.8	9.6
Turbidity (NTU)		(3.6 - 17.2)	(4.0 - 14.3)	(4.8 - 15.5)	(7.1 - 14.0)	(5.0 - 17.0)
Constant Calida (may)		6.6	5.7	8.2	9.7	5.6
Suspended Solids (mg/L)		(2.2 - 14.7)	(1.9 - 12.0)	(4.7 - 13.9)	(4.8 - 25.3)	(1.1 - 15.0)
5-day Biochemical Oxygen Demand	l (ma/l)	0.9	0.9	1.1	0.8	0.7
5-day biochemical Oxygen bemand	ı (mg/L)	(0.4 - 2.6)	(0.5 - 2.0)	(0.6 - 3.0)	(0.4 - 1.2)	(0.3 - 1.5)
Ammonia Nitrogen (mg/L)		0.02	0.02	0.05	0.09	0.02
Anniona Wilogon (mg/L)		(0.01 - 0.05)	(0.01 - 0.04)	(0.01 - 0.15)	(0.03 - 0.19)	(0.01 - 0.04)
Unionised Ammonia (mg/L)		0.002	0.001	0.004	0.005	0.001
omoniosa 7 mmonia (mg/2)		(<0.001 - 0.006)	(<0.001 - 0.005)	(0.001 - 0.009)	(0.002 - 0.010)	(<0.001 - 0.006)
Nitrite Nitrogen (mg/L)		0.01	0.01	0.02	0.04	0.01
		(<0.01 - 0.06)	(<0.01 - 0.06)	(<0.01 - 0.11)	(0.01 - 0.14)	(<0.01 - 0.06)
Nitrate Nitrogen (mg/L)		0.06	0.05	0.09	0.15	0.04
		(<0.01 - 0.23)	(<0.01 - 0.14)	(<0.01 - 0.24)	(0.02 - 0.46)	(<0.01 - 0.14)
Total Inorganic Nitrogen (mg/L)		0.09	0.09	0.16 (0.03 - 0.36)	0.27 (0.12 - 0.64)	0.07 (0.02 - 0.19)
		(0.02 - 0.28) 0.14	(0.01 - 0.21) 0.13	0.20	0.22	0.11
Total Kjeldahl Nitrogen (mg/L)		(0.08 - 0.32)	(0.08 - 0.21)	(0.10 - 0.34)	(0.17 - 0.29)	(0.06 - 0.18)
		0.21	0.19	0.31	0.40	0.17
Total Nitrogen (mg/L)		(0.08 - 0.45)	(0.10 - 0.36)	(0.11 - 0.49)	(0.25 - 0.80)	(0.06 - 0.33)
		<0.01	<0.01	0.012	0.020	<0.01
Orthophosphate Phosphorus (mg/L)		(<0.01 - 0.01)	(<0.01 - 0.01)	(<0.01 - 0.02)	(0.01 - 0.03)	(<0.01 - 0.01)
Total Dhaanharua (~~~/!)		0.02	0.02	0.03	0.04	0.02
Total Phosphorus (mg/L)		(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.04)	(0.03 - 0.06)	(0.02 - 0.03)
Silica (as SiO) (mg/L)		0.5	0.6	0.6	1.0	0.6
Silica (as SiO ₂) (mg/L)		(0.2 - 1.3)	(0.2 - 1.2)	(0.1 - 1.8)	(0.4 - 2.7)	(0.2 - 1.3)
Chlorophy II-a (µg/L)		3.3	3.8	5.2	4.1	2.2
Chilorophy II-a (µg/L)		(0.8 - 12.8)	(0.8 - 13.0)	(1.1 - 23.0)	(0.6 - 10.3)	(1.0 - 6.9)
E. coli (cfu/100mL)		1	2	20	190	1
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(1 - 7)	(1 - 25)	(1 - 2100)	(1 - 1200)	(1 - 6)
Faecal Coliforms (cfu/100mL)		3	4 (4 42)	42	380	2
		(1 - 43)	(1 - 43)	(2 - 3300)	(5 - 2700)	(1 - 8)

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

3. Data in brackets indicate the ranges.

Table 3.1 (continued)

Summary water quality statistics of the Southern WCZ in 2003

		Lantau Isl	and (East)	La	antau Island (Sou	th)	Soko Islands
Param eter Param eter		SM10	SM11	SM12	SM13	SM17	SM20
Number of samples		12	12	12	12	12	12
Townserture (°C)		23.7	23.8	23.7	23.7	23.4	23.7
Temperature (°C)		(17.1 - 28.4)	(17.3 - 28.5)	(17.6 - 28.4)	(17.7 - 28.4)	(17.7 - 28.1)	(17.8 - 28.2)
Salinity		30.7	31.1	31.4	31.4	32.5	31.3
Saminy		(26.0 - 33.7)	(27.7 - 33.8)	(29.0 - 33.8)	(28.1 - 33.8)	(30.4 - 34.1)	(27.1 - 33.8)
Dissolved Oxygen (mg/L)		6.6	7.0	6.2	6.6	6.2	6.2
Dissolved Oxygen (mg/L)		(5.2 - 9.4)	(5.6 - 9.3)	(5.4 - 7.8)	(5.5 - 7.9)	(4.7 - 8.2)	(4.5 - 7.8)
	Bottom	6.7	6.7	6.0	6.5	5.5	5.9
	Dottom	(5.3 - 9.5)	(5.4 - 9.2)	(5.3 - 7.7)	(5.4 - 7.7)	(3.4 - 8.1)	(3.9 - 7.4)
Dissolv ed Oxygen (% Saturation)		93	100	88	94	87	88
		(75 - 142)	(79 - 140)	(73 - 119)	(82 - 121)	(70 - 105)	(66 - 117)
	Bottom	94	95	86	92	77	84
		(77 - 142)	(79 - 140)	(72 - 117)	(79 - 106)	(50 - 103)	(58 - 95)
pH		8.2	8.2	8.2	8.2	8.2	8.2
		(8.0 - 8.3)	(7.9 - 8.4)	(8.0 - 8.4)	(8.0 - 8.4)	(8.0 - 8.4)	(8.0 - 8.4)
Secchi Disc Depth (m)		1.5	1.6	1.8	1.9	1.8	1.7
		(0.5 - 2.4)	(0.5 - 3.0)	(1.0 - 2.9)	(0.5 - 2.8)	(0.5 - 3.0)	(0.5 - 3.0)
Turbidity (NTU)		12.3	12.2	11.9	11.8	13.2	12.7
		(4.5 - 17.7) 18.7	(3.6 - 36.9) 10.0	(3.9 - 19.9)	(5.3 - 24.5) 10.8	(5.3 - 32.6)	(3.9 - 24.8) 9.7
Suspended Solids (mg/L)		(5.9 - 107.8)	(5.2 - 41.7)	(5.0 - 20.0)	(2.5 - 27.3)	10.8 (3.1 - 36.0)	(3.5 - 24.3)
		1.2	1.3	(5.0 - 20.0)	0.9	(3.1 - 36.0)	(3.5 - 24.5)
5-day Biochemical Oxygen Demand (m	ng/L)	(0.5 - 2.7)	(0.4 - 2.7)	(0.3 - 2.2)	(0.3 - 1.8)	(0.2 - 1.5)	(0.2 - 1.8)
		0.08	0.07	0.06	0.05	0.02	0.04
Ammonia Nitrogen (mg/L)		(0.02 - 0.17)	(0.02 - 0.17)	(0.02 - 0.14)	(0.01 - 0.12)	(0.01 - 0.05)	(0.01 - 0.10)
		0.004	0.004	0.004	0.003	0.001	0.002
Unionised Ammonia (mg/L)		(0.001 - 0.007)	(0.001 - 0.007)	(0.001 - 0.006)	(0.001 - 0.006)	(<0.001 - 0.003)	(<0.001 - 0.004)
		0.04	0.03	0.03	0.03	0.02	0.03
Nitrite Nitrogen (mg/L)		(<0.01 - 0.14)	(0.01 - 0.11)	(<0.01 - 0.10)	(<0.01 - 0.11)	(<0.01 - 0.07)	(<0.01 - 0.10)
		0.15	0.11	0.11	0.10	0.07	0.12
Nitrate Nitrogen (mg/L)		(0.03 - 0.45)	(0.03 - 0.27)	(0.02 - 0.24)	(0.01 - 0.31)	(<0.01 - 0.21)	(0.01 - 0.41)
		0.26	0.21	0.20	0.18	0.11	0.19
Total Inorganic Nitrogen (mg/L)		(0.10 - 0.61)	(0.09 - 0.40)	(0.09 - 0.34)	(0.07 - 0.43)	(0.01 - 0.29)	(0.04 - 0.52)
		0.25	0.25	0.21	0.20	0.13	0.17
Total Kjeldahl Nitrogen (mg/L)		(0.15 - 0.36)	(0.16 - 0.30)	(0.17 - 0.27)	(0.14 - 0.26)	(0.08 - 0.20)	(0.12 - 0.26)
T (1 N); (1)		0.44	0.39	0.35	0.33	0.22	0.32
Total Nitrogen (mg/L)		(0.19 - 0.95)	(0.25 - 0.61)	(0.21 - 0.51)	(0.17 - 0.59)	(0.09 - 0.41)	(0.13 - 0.66)
Orthophoophoto Dhearhania (mail.)		0.016	0.015	0.014	0.011	<0.01	0.010
Orthophosphate Phosphorus (mg/L)		(<0.01 - 0.03)	(<0.01 - 0.03)	(<0.01 - 0.02)	(<0.01 - 0.02)	(0.01 - 0.02)	(<0.01 - 0.02)
Total Phosphorus (mg/L)		0.04	0.04	0.03	0.03	0.03	0.03
rotal i nospilorus (mg/L)		(0.02 - 0.11)	(0.02 - 0.05)	(0.02 - 0.05)	(0.02 - 0.05)	(0.02 - 0.04)	(0.02 - 0.04)
Silica (as SiO) (mg/L)		0.9	0.8	0.8	0.8	0.7	0.9
Silica (as SiO ₂) (mg/L)		(0.3 - 2.7)	(0.3 - 2.2)	(0.4 - 1.9)	(0.4 - 2.2)	(0.2 - 1.7)	(0.3 - 2.5)
Chlorophy II-a (µg/L)		8.7	9.9	6.7	5.8	3.5	4.4
Omorophy II-a (µg/L)		(0.7 - 20.0)	(0.9 - 26.3)	(1.1 - 18.7)	(0.9 - 18.0)	(0.8 - 10.2)	(0.9 - 14.4)
E. coli (cfu/100mL)		9	5	16	5	1	2
L. John (Jidi Toomit)		(1 - 140)	(1 - 450)	(1 - 320)	(1 - 120)	(1 - 3)	(1 - 43)
Faecal Coliforms (cfu/100mL)		16	11	32	7	2	3
, ,		(1 - 170)	(2 - 710)	(1 - 660)	(1 - 220)	(1 - 11)	(1 - 72)

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for *E. coli* and faecal coliforms which are annual geometric means.

^{3.} Data in brackets indicate the ranges.

Table 3.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Southern WCZ, 1986 - 2003

Monitoring Station		SM1	SM2	SM3	SM4	SM5	SM6	SM7	SM9
Monitoring Period		1986 I	1988 I						
		2003	2003	2003	2003	2003	2003	2003	2003
Parameter	Water Depth Surface		_	71	_	71	71	71	71
Temperature (°C)	Middle	-	-	7	71	71	71	7	7
	Bottom Average	-	77	7	7	7	71	7	7
	Surface	-		-		-	-	-	7
Salinity	Middle	-	-	-	-	-	-	-	-
	Bottom Average	-	-	-	-	-	-	-	-
	Surface	7	-	7	7	7	-	-	-
Dissolved Oxygen (mg/L)	Middle	-	-	-	-	-	<u>.</u>	-	-
	Bottom Average			-	<u>.</u>	-	n n	-	-
	Surface	7	-	7	7	-	-	-	-
Dissolved Oxygen (%)	Middle Bottom	-	-	-	-	-	-	-	-
	Average	-	-	-	-	-	-	-	-
-11	Surface	-	-	-	-	-	-	-	-
рН	Middle Bottom	-	-	-		-	-	-	-
	Average	-	-	-	-	-	-	-	-
Secchi disc depth (m)	Surface	-	-	-	-	-	-	-	-
Turbidity (NTU)	Middle	7	7	7	7	7	7	7	7
, , ,	Bottom	71	77	7	7	71	7	7	7
	Average Surface	71	71	71	71	71	71	71	7
Suspended Solids (mg/L)	Middle			-	-	-	-	-	-
-	Bottom	-	-	-	-	-	71	-	-
	Average Surface		-	<u>u</u>	4	-	-	-	-
Total volatile solids (mg/L)	Middle	-	7		7	-	-	-	-
	Bottom	-	-	-	-	-	-	-	-
	Average Surface	7	7	7	- 4	-	-	-	-
5-day Biochemical Oxygen Demand (mg/L)	Middle	-	-	-	-	-	-	-	-
	Bottom Average	-	-	-	-	-	-	-	-
	Surface	-	-	-	-	-	-	-	-
Ammonia nitrogen (mg/L)	Middle	-	-	-	-	-	-	-	-
	Bottom Average	-		-		-	-		-
	Surface	71		-		-	-	-	-
Nitrite nitrogen (mg/L)	Middle	71	-	-	-	-	-	-	-
	Bottom Average	-	-	-	-	-	-	-	-
	Surface	-	-	-	-	-	-	-	-
Nitrate nitrogen (mg/L)	Middle Bottom	7	-	-	-	-	-	-	-
	Average	-		-		-	-	-	-
	Surface	-	-	-	-	-	-	-	-
Total inorganic nitrogen (mg/L)	Middle Bottom	-	-	-	-	-	-	-	-
	Average	-	-	-	-	-	-	-	-
Tabal Kialdahi aitaa aan (aan (1)	Surface		7	7	7	-	-	-	-
Total Kjeldahl nitrogen (mg/L)	Middle Bottom	n n	n R	n R	n R	-	-	-	-
	Average	2	2	2	2	-	-	-	-
Total nitrogen (mg/L)	Surface	-	-	-	-	-	-	-	-
Total nitrogen (mg/L)	Middle Bottom	7	n R	, u	-	-	-	-	-
	Average	7	7	Ξ	-	-	-	-	-
Orthophosphate phosphorus (mg/L)	Surface Middle	-	-	-	-	-	-	-	-
Orthophosphate phosphorus (hig/L)	Bottom	-	-	-		-		-	-
	Average	-	-	-	-	-	-	-	-
Total phosphorus (mg/L)	Surface Middle	7	7	n R	<u>.</u>	-	-	-	7
Total phosphorus (mg/L)	Bottom	<u>u</u>	3	-	-	-	-	-	<u>u</u>
	Average	Ä	7	7	Ä	-	-	-	7
Silica (mg/L)	Surface Middle	-	-	-		-	-	_	-
	Bottom	-	-	-	-	-	-	-	-
	Average Surface	- 7	-	-	-	-	-	-	-
Chlorophyll– a (µg/L)	Middle	7	-	-	-	7	-	-	-
, , , , ,	Bottom	-	-	-	-	-	-	-	-
	Average Surface	-	71	-	71	-	-	71	71
<i>E. coli</i> (cfu/100mL)	Middle	-	7	-	7	-	-	-	7
	Bottom	-	-	-	7	-	-	7	7
	Average Surface	-	7	71	7	-	-	7	7
		-				-	-		
Faecal coliforms (cfu/100mL)	Middle Bottom	-	7	-	7	7	-	7	7

^{1.} Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05 2. – indicates no significant trend is detected 3. NA (Not Applicable) indicates the measurement was not made due to shallow water 4. Test applied to past 18 years' data from each monitoring station unless stated otherwise

^{5.} SM20 has five years' data only, which is insufficient to perform Seasonal Kendall Test
6. ♂ represents a significant increase over time
7. ▶ represents a significant decrease over time

Table 3.2 (continued)

Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Southern WCZ, 1986 - 2003

Monitoring Station		SM10	SM11	SM12	SM13	SM17	SM18	SM19
Monitoring Period		1986 I	1986 I	1986 I	1986 I	1989 I	1989 I	1989 I
	W . D .!	2003	2003	2003	2003	2003	2003	2003
Parameter	Water Depth Surface	71	71	-	-	71	71	-
Temperature (°C)	Middle	NA	7		7	-	7	-
	Bottom Average	7	7	7	71	7	7 7	71
Callada	Surface	-	-	-	-	-	-	-
Salinity	Middle Bottom	NA -	-	-	-	-	-	-
	Average	-	-	-	-	-	-	-
Dissolved Oxygen (mg/L)	Surface Middle	NA	- 4	n R	- 4	y V	-	n R
, g , _ /	Bottom	-	-	-	2	-	7	-
	Average Surface	-	-	צ	n n	- 2	7	7
Dissolved Oxygen (%)	Middle	NA	-			-	-	-
	Bottom Average	-	-	-	-	-	-	-
	Surface	-	-	Ä	-	-	-	-
рН	Middle Bottom	NA	-	n R	n R	-	-	-
	Average	-	-	y .	-	-		-
Secchi disc depth (m)	Surface	-	-	-	-	-	-	-
Turbidity (NTU)	Middle	7 NA	7	7	7	7	7	7
	Bottom Average	71	71	71	71	71	71	71
	Surface	77	71	7	7	71	71	71
Suspended Solids (mg/L)	Middle	NA	7	71	71	-	-	-
	Bottom Average	71	7	7	7	7	7	7
	Surface	-	-	-	-	-	-	-
Total volatile solids (mg/L)	Middle Bottom	NA -	-	-	-	-	-	-
	Average	-	-	-	-	-	-	-
5-day Biochemical Oxygen Demand (mg/L)	Surface Middle	- NA	-	-	-	-	- -	-
3-day biochemical Oxygen Demand (mg/L)	Bottom	-	<u> </u>	-	<u>u</u>	-	-	-
	Average Surface	-	-	-	-	-	-	-
Ammonia nitrogen (mg/L)	Middle	NA	-	-		-		
3 . 3, .	Bottom	-	-	-	-	7	-	-
	Average Surface	7	71	71	71	71		-
Nitrite nitrogen (mg/L)	Middle	NA	71	71	71	-	-	-
	Bottom Average	7	7	7	7	-	-	-
No. 1. 1. 7. 45	Surface	71	7	7	7	-	-	-
Nitrate nitrogen (mg/L)	Middle Bottom	NA 7	7	7	7	-	-	-
	Average	71	7	7	7	-	-	-
Total inorganic nitrogen (mg/L)	Surface Middle	7 NA	7	7	7	-	-	-
Total morganic introgen (mg/L)	Bottom	7	7	71	7	-	<u>u</u>	-
	Average Surface	71	7	7	7	-	-	-
Total Kjeldahl nitrogen (mg/L)	Middle	NA	Ī	-	-	2	2	2
	Bottom	-	-	-	-	7	7	7
	Average Surface	- 7	-	-	-	- 2	n R	7
Total nitrogen (mg/L)	Middle	NA	-	-	-	3	7	3
	Bottom Average	-	-	-	-	n R	n R	n R
Oork and a substant and a substant (1)	Surface	-	-	-	-	7	7	-
Orthophosphate phosphorus (mg/L)	Middle Bottom	NA -	-	-		- 4	-	-
	Average	-	-	-	-	7	-	-
Total phosphorus (mg/L)	Surface Middle	NA	- 2	-	-	n R	n R	n R
	Bottom	-	-	-	-	2	2	7
	Average Surface	7	-	-	-	- 7	7	7
Silica (mg/L)	Middle	NA	-	-	_	-	<u>2</u>	
	Bottom	-	-	-	-	-	-	-
	Average Surface	-	-	-	-	7	7	7
Chlorophyll– <i>a</i> (µg/L)	Middle	NA	-	-	-	-	-	-
	Bottom Average	-	-	-	-	-	-	-
5 (!/-ft: (100::-1)	Surface	Ä	Ä	-	-	-	-	-
E. coli (cfu/100mL)	Middle Bottom	NA -	-	-	71	-	-	-
	Average	-	-	-	-	-	-	-
Faecal coliforms (cfu/100mL)	Surface Middle	- NA	-	-	7	-	-	-
. acca. comornis (cra/ roome)	Bottom	- 1477	-	-	7	-	-	-
	Average	-	-	-	71	-	-	

- 1. Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05 2. indicates no significant trend is detected 3. NA (Not Applicable) indicates the measurement was not made due to shallow water 4. Test applied to past 18 years' data from each monitoring station unless stated otherwise
- 5. SM20 has five years' data only, which is insufficient to perform Seasonal Kendall Test
 6. 7 represents a significant increase over time
 7. № represents a significant decrease over time

4

Chapter 4 - Port Shelter Water Control Zone

Water Quality in 2003

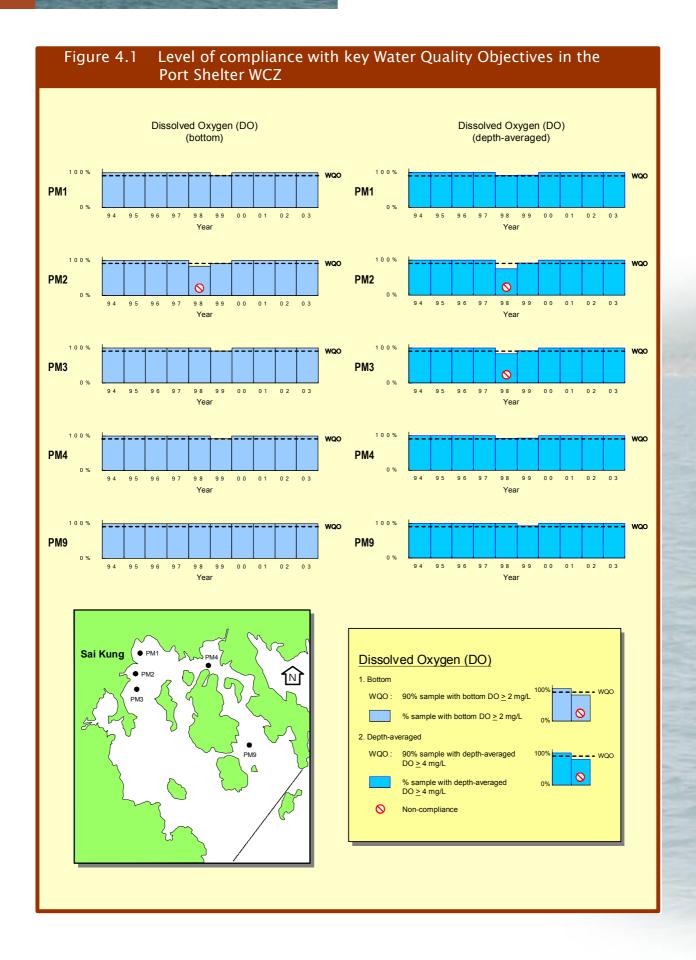
- 4.1 The water quality in the Port Shelter Water Control Zone (WCZ) is amongst the best in the territory with high dissolved oxygen (DO), low turbidity, nutrients and *E. coli* bacteria. The water quality at different monitoring stations in the Port Shelter WCZ is fairly uniform, slightly better in the outer part of the bay. The whole of Mirs Bay is a gazetted secondary recreational water. A summary of the 2003 water quality data is shown in Tables 4.1.
- 4.2 Similar to other Hong Kong waters, the Port Shelter WCZ experienced a moderate decrease of DO by 0.6 mg/L (10%) in 2003. The annual mean DO levels at nine monitoring stations ranged from 5.8 mg/L to 6.0 mg/L which were the lowest in ten years. Of all the stations, only the decrease of DO at the inner most PM1 was statistically significant.
- 4.3 The levels of pollutants in the Port Shelter WCZ were largely similar to those 2002, however, a notable decrease in nitrogen (NH₄-N, TKN, TN) was observed at all stations in the bay. The annual mean total nitrogen (TN), total inorganic nitrogen (TIN), total phosphorus (TP) and orthophosphate phosphorus (PO₄-P) mostly reached their lowest levels in the past decade. Despite the reduction in nutrients, the averaged chlorophyll-a content (indicating algal biomass) in the Port Shelter WCZ has increased by around 0.3 μ g/L (17%) in 2003. The increases at PM1 (by 50%) and PM4 (by 34%), located in the inner parts of the bay, were higher than other stations in the WCZ (Figure 4.2).

Compliance with Water Quality Objectives

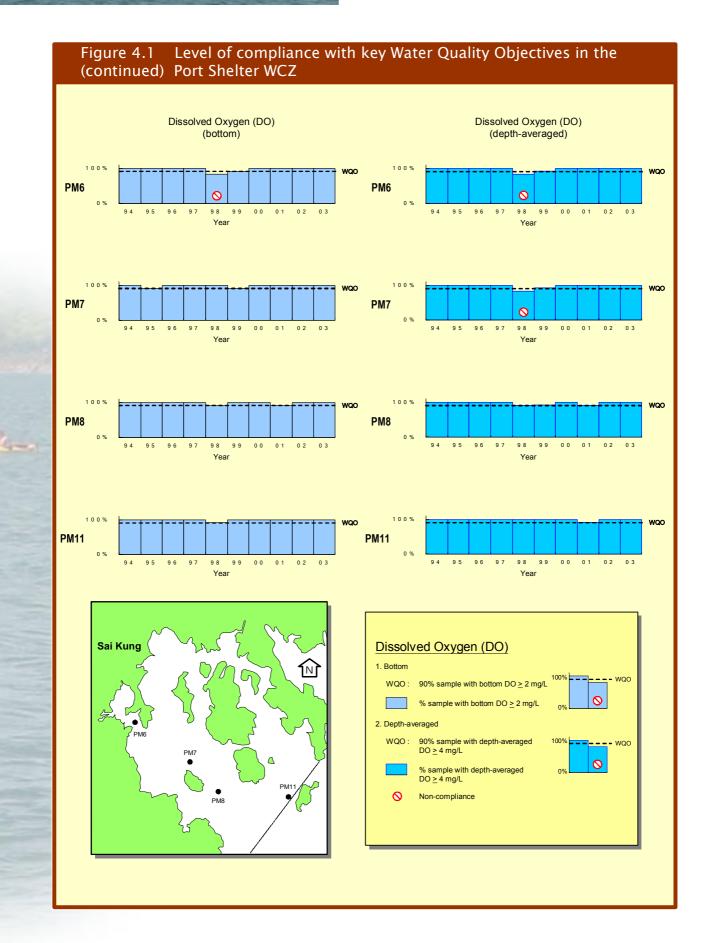
4.4 The Port Shelter WCZ has the best WQO compliance record amongst all the WCZs. Figure 4.1 shows that the Port Shelter WCZ has fully achieved its Water Quality Objectives (WQOs) in 2003. With the exception of 1998 (an El Niño year), the WCZ has complied with all the WQOs in the past decade.

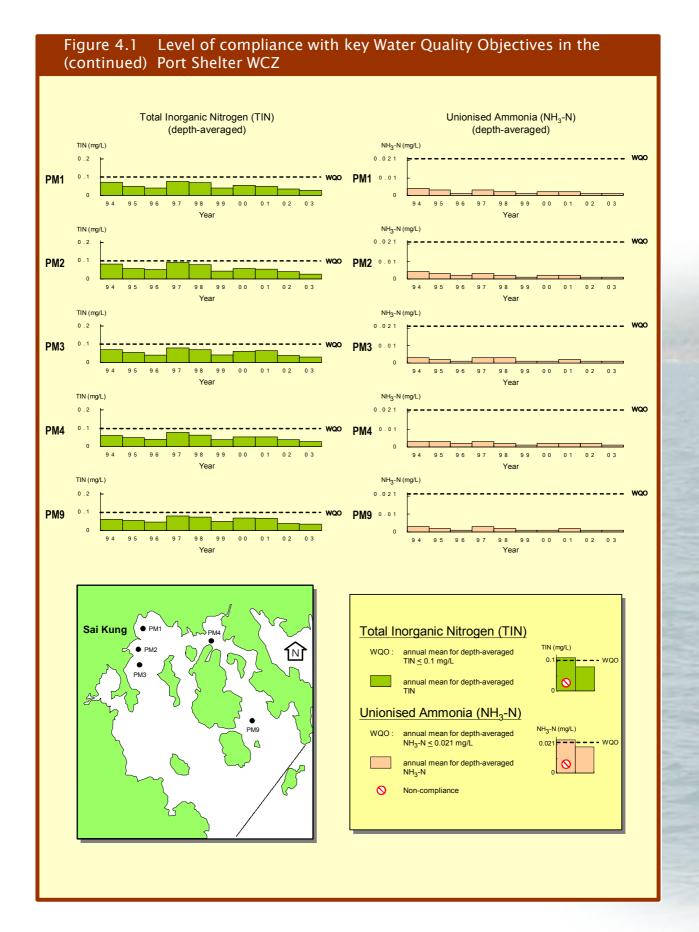
Long-term Water Quality Trends

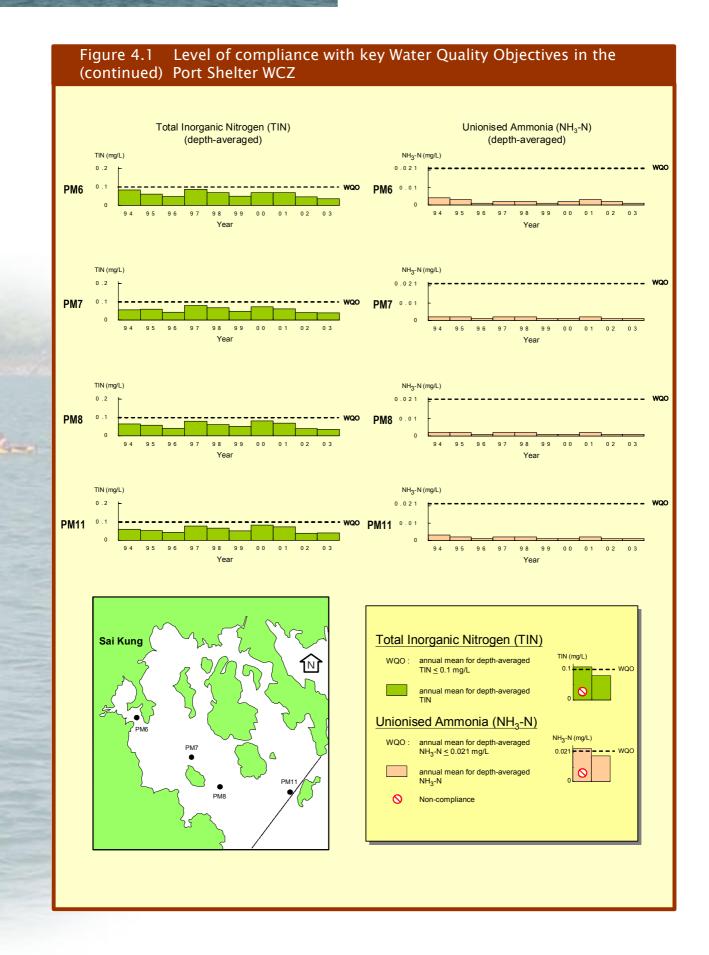
4.5 Despite the increase of population in the catchment, the water quality of Port Shelter has shown pleasing improvement since the mid-1980s, with decreasing trends in total nitrogen, total phosphorus, *E. coli* bacteria at the inner bay (stations PM2 and PM5) (Table 4.2 and Figure 4.3). This could be attributed to the pollution control measures implemented, including enforcement

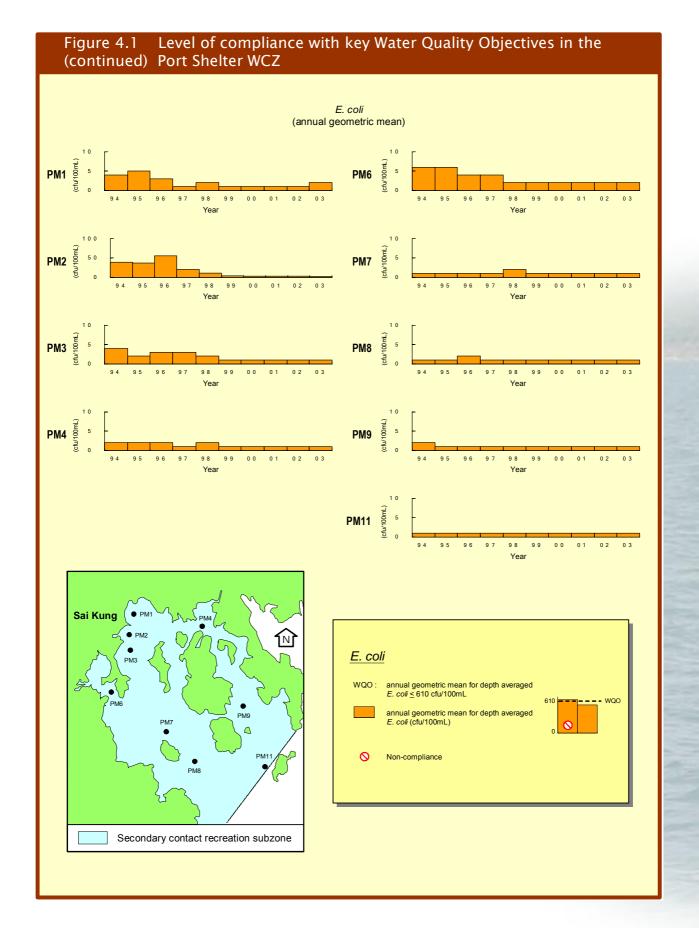


PORT SHELTER WCZ


of Water Pollution Control Ordinance, upgrading of the Sai Kung Sewage Treatment Works and provision of sewerage to villages. These efforts would need to be continued in order to preserve the precious water environment of Port Shelter.


in it was


PORT SHELTER WCZ



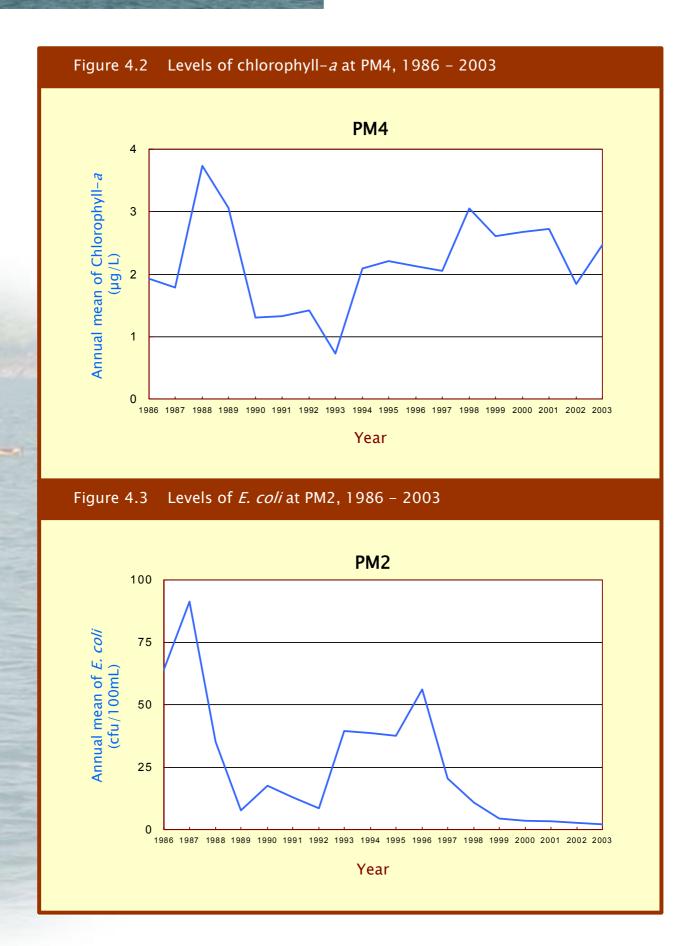


Table 4.1 Summary water quality statistics of the Port Shelter WCZ in 2003

		Inner Po	rt Shelter		Hebe Haven
Parameter	PM1	PM2	PM3	PM4	PM6
Number of samples	12	12	12	12	12
•	23.4	23.5	23.3	23.3	23.4
Геmperature (°С)	(16.8 - 28.6)	(16.7 - 29.5)	(16.6 - 28.5)	(16.6 - 28.8)	(16.8 - 28.5)
Dallait.	32.8	32.8	33.0	32.9	32.9
Salinity	(30.1 - 34.4)	(30.6 - 34.4)	(31.0 - 34.0)	(30.3 - 34.2)	(30.9 - 34.3)
Dissolved Oxygen (mg/L)	5.8	6.0	6.0	5.8	5.8
Dissolved Oxygen (mg/L)	(4.7 - 6.9)	(4.8 - 7.6)	(4.7 - 7.6)	(4.4 - 6.7)	(4.6 - 7.3)
R	ottom 5.7	6.0	5.7	5.8	5.4
	(3.3 - 7.2)	(3.8 - 7.8)	(3.1 - 7.5)	(3.4 - 6.9)	(3.1 - 7.4)
Dissolved Oxygen (% Saturation)	83	85	85	83	81
, , , , , , , , , , , , , , , , , , , ,	(72 - 91)	(72 - 96)	(70 - 96)	(68 - 93)	(70 - 93)
В	ottom 80	85	79	81	76
	(47 - 93)	(55 - 98)	(44 - 94)	(51 - 97)	(44 - 93)
Н	8.2	8.2	8.2	8.2	8.2
	(8.1 - 8.4)	(8.0 - 8.4) 4.0	(8.1 - 8.4) 4.3	(8.0 - 8.3)	(8.0 - 8.4)
Secchi Disc Depth (m)	(2.0 - 5.0)	(1.7 - 6.5)	(2.3 - 7.0)	(2.0 - 3.6)	(2.2 - 6.0)
	6.2	5.8	5.8	6.6	6.4
Turbidity (NTU)	(2.1 - 9.2)	(2.1 - 10.3)	(1.1 - 10.6)	(2.9 - 10.0)	(2.6 - 12.4)
	2.2	1.6	1.6	3.4	2.5
Suspended Solids (mg/L)	(1.2 - 4.1)	(0.6 - 4.5)	(0.6 - 4.6)	(0.8 - 7.9)	(0.8 - 4.9)
-	0.0	0.8	0.7	0.8	0.8
5-day Biochemical Oxygen Demand (mg/	(0.3 - 1.2)	(0.2 - 1.2)	(0.1 - 1.2)	(0.3 - 1.4)	(0.2 - 1.4)
Ammonia Nitragon (mg/L)	0.02	0.02	0.02	0.01	0.02
Ammonia Nitrogen (mg/L)	(0.01 - 0.05)	(0.01 - 0.06)	(0.01 - 0.06)	(0.01 - 0.04)	(0.01 - 0.03)
Jnionised Ammonia (mg/L)	0.001	0.001	0.001	0.001	0.001
Shionised Ammonia (mg/L)	(<0.001 - 0.003)	(<0.001 - 0.003)	(<0.001 - 0.003)	(<0.001 - 0.002)	(<0.001 - 0.003)
Nitrite Nitrogen (mg/L)	0.01	<0.01	0.01	0.01	0.01
traite i traegeri (mg/ _/	(<0.01 - 0.03)	(<0.01 - 0.01)	(<0.01 - 0.02)	(<0.01 - 0.02)	(<0.01 - 0.03)
Nitrate Nitrogen (mg/L)	0.01	0.01	0.01	0.01	0.01
31 (31)	(<0.01 - 0.02)	(<0.01 - 0.02)	(<0.01 - 0.02)	(<0.01 - 0.03)	(<0.01 - 0.03)
Total Inorganic Nitrogen (mg/L)	0.03	0.03	0.03	0.03	0.04
	(0.01 - 0.07)	(0.01 - 0.07)	(0.01 - 0.07)	(0.01 - 0.06)	(0.01 - 0.10)
Total Kjeldahl Nitrogen (mg/L)	0.12 (0.09 - 0.16)	0.11 (0.08 - 0.21)	0.11 (0.07 - 0.20)	0.12 (0.09 - 0.16)	0.11 (0.07 - 0.14)
	0.13	0.12	0.13	0.13	0.13
Гotal Nitrogen (mg/L)	(0.09 - 0.19)	(0.08 - 0.22)	(0.09 - 0.21)	(0.09 - 0.19)	(0.08 - 0.21)
	<0.01	<0.01	<0.01	<0.01	<0.01
Orthophosphate Phosphorus (mg/L)	(<0.01 - 0.02)	(<0.01 - 0.01)	(<0.01 - 0.01)	(<0.01 - 0.01)	(<0.01 - 0.01)
Fold Discourse (co.//)	0.02	0.02	0.02	0.02	0.02
Total Phosphorus (mg/L)	(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.03)
Cilian (an CiO) (may))	0.6	0.6	0.6	0.6	0.6
Silica (as SiO ₂) (mg/L)	(0.1 - 1.1)	(0.1 - 1.1)	(0.1 - 1.1)	(0.1 - 1.1)	(0.2 - 1.2)
Chlorophy II-a (µg/L)	2.6	2.1	1.9	2.5	2.0
	(1.0 - 5.4)	(1.1 - 3.3)	(0.7 - 3.9)	(0.7 - 5.5)	(0.8 - 3.6)
E. coli (cfu/100mL)	2	2	1	1	2
2. con (old footile)	(1 - 9)	(1 - 15)	(1 - 3)	(1 - 2)	(1 - 5)
Faecal Coliforms (cfu/100mL)	3	6	2	2	4
(/	(1 - 39)	(1 - 250)	(1 - 8)	(1 - 5)	(1 - 37)

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

3. Data in brackets indicate the ranges.

Table 4.1 (continued)

Summary water quality statistics of the Port Shelter WCZ in 2003

		Outer Po	rt Shelter	Rocky Harbour	Bluff Island
Param eter Param eter		PM7	PM8	PM9	PM11
Number of samples		12	12	12	12
T(80)		23.2	23.1	22.9	22.9
Temperature (°C)		(16.4 - 28.4)	(16.5 - 27.9)	(16.5 - 28.5)	(16.4 - 27.8)
Salinity		33.1	33.3	33.2	33.3
Callinty		(31.9 - 34.3)	(32.4 - 34.4)	(32.0 - 34.7)	(32.5 - 34.5)
Dissolved Oxygen (mg/L)		5.8	6.0	5.9	5.8
,31 (3.7		(4.3 - 7.2)	(4.4 - 7.4)	(4.6 - 7.1)	(4.6 - 7.3)
	Bottom	5.6	5.7	5.8	5.6
		(2.6 - 7.5) 82	(3.4 - 7.8) 84	(3.5 - 7.2) 83	(3.7 - 7.2) 82
Dissolved Oxygen (% Saturation)		(63 - 93)	(65 - 95)	(67 - 93)	(67 - 90)
		78	80	80	78
	Bottom	(36 - 94)	(48 - 98)	(50 - 93)	(52 - 91)
		8.2	8.2	8.2	8.2
pH		(8.1 - 8.4)	(8.1 - 8.4)	(8.1 - 8.4)	(8.1 - 8.4)
		5.2	6.0	4.7	5.3
Secchi Disc Depth (m)		(3.0 - 7.3)	(3.0 - 9.3)	(2.8 - 7.3)	(2.7 - 8.0)
T		6.5	6.7	6.5	6.5
Turbidity (NTU)		(2.8 - 11.4)	(3.5 - 11.9)	(3.6 - 10.6)	(3.5 - 9.7)
Suspended Solids (mg/L)		1.9	2.3	2.3	2.3
Suspended Solids (mg/L)		(0.5 - 4.1)	(0.8 - 6.9)	(0.7 - 4.9)	(1.2 - 4.4)
5-day Biochemical Oxygen Demar	nd (ma/L)	0.6	0.5	0.7	0.6
o-day biochemical Oxygen bemai	id (ilig/L)	(0.1 - 1.2)	(0.1 - 1.0)	(0.3 - 1.1)	(0.3 - 1.1)
Ammonia Nitrogen (mg/L)		0.01	0.01	0.02	0.01
rumonia rutogon (mg/2)		(0.01 - 0.03)	(0.01 - 0.02)	(0.01 - 0.03)	(0.01 - 0.02)
Unionised Ammonia (mg/L)		0.001	0.001	0.001	0.001
3 ,		(<0.001 - 0.003)	(<0.001 - 0.001)	(<0.001 - 0.002)	(<0.001 - 0.002)
Nitrite Nitrogen (mg/L)		0.01	0.01	0.01	0.01
		(<0.01 - 0.03)	(<0.01 - 0.03)	(<0.01 - 0.03)	(<0.01 - 0.03)
Nitrate Nitrogen (mg/L)		0.02	0.01	0.01	0.02
		(<0.01 - 0.05) 0.04	(<0.01 - 0.04) 0.03	(<0.01 - 0.04) 0.04	(<0.01 - 0.05) 0.04
Total Inorganic Nitrogen (mg/L)		(0.01 - 0.08)	(0.01 - 0.06)	(0.01 - 0.08)	(0.01 - 0.08)
		0.10	0.09	0.10	0.09
Total Kjeldahl Nitrogen (mg/L)		(0.07 - 0.15)	(0.06 - 0.12)	(0.07 - 0.13)	(0.07 - 0.13)
		0.13	0.11	0.12	0.11
Total Nitrogen (mg/L)		(0.09 - 0.19)	(0.08 - 0.16)	(0.07 - 0.20)	(0.07 - 0.18)
Outhorn boards to Dhoon board (as all)		<0.01	<0.01	<0.01	<0.01
Orthophosphate Phosphorus (mg/L)		(0.01 - 0.01)	(0.01 - 0.01)	(0.01 - 0.01)	(0.01 - 0.01)
Total Phosphorus (mg/L)		0.02	0.02	0.02	0.02
Total Filospilolus (IIIg/L)		(0.02 - 0.02)	(0.02 - 0.02)	(0.02 - 0.02)	(0.02 - 0.02)
Silica (as SiO ₂) (mg/L)		0.6	0.6	0.6	0.6
ollica (as SiO ₂) (ilig/L)		(0.1 - 1.1)	(0.2 - 0.9)	(0.2 - 1.0)	(0.2 - 1.0)
Chlorophy II-a (µg/L)		1.5	1.4	1.7	1.5
(pg/L)		(0.7 - 3.1)	(0.7 - 2.3)	(0.7 - 4.0)	(0.8 - 2.7)
E. coli (cfu/100mL)		1	1	1	1
		(1 - 1)	(1 - 1)	(1 - 1)	(1 - 1)
Faecal Coliforms (cfu/100mL)		1	1	1	1
, ,		(1 - 3)	(1 - 2)	(1 - 8)	(1 - 1)

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

3. Data in brackets indicate the ranges.

Table 4.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Port Shelter WCZ, 1986 - 2003

Monitoring Station		PM1	PM2	PM3	PM4	PM6	PM7	PM8	PM9	PM11
Monitoring Period		1986 I	1986 I	1986 I	1986 I	1986 I	1988 I	1986 I	1986 <u> </u>	1986 I
	Water Danth	2003	2003	2003	2003	2003	2003	2003	2003	2003
Parameter	Water Depth Surface	71	71	71	71	71	71	71	71	_
Temperature (°C)	Middle	7	71	7	71	71	7	71	7	-
	Bottom	7	7	7	7	7	7	7		-
	Average Surface	7	7	7	7	7	7	7	7	-
Salinity	Middle	-	-	-	-	-	-	-	-	_
Summey	Bottom	_	-	-	-	_	-	-	-	_
	Average	-	-	-	-	-	-	-	-	-
D: 1 10 (//)	Surface	7	7	7	7	7	7	7	7	7
Dissolved Oxygen (mg/L)	Middle	-	-	-	-	-	-	-	-	-
	Bottom Average	-	-	-	-	-	-	-	-	-
	Surface	Ä	7	7	N.	N.	7	N.	2	7
Dissolved Oxygen (%)	Middle	-	_	-	_		_	_	_	_
,3	Bottom	71	71	7	71	-	71	-	-	-
	Average	-	-	-	-	-	-	-	-	-
	Surface	7	-	-	-	7	-	-	-	-
pH	Middle	-	-	-	-	7	-	-	-	-
	Bottom Average	-	-	-	-	.	-	-	-	-
Secchi disc depth (m)	Average					7				_
secent disc depth (iii)	Surface	71	71	71	71	71	7	71	71	7
Turbidity (NTU)	Middle	7	7	ä	7	7	7	7	7	ä
,	Bottom	77	71	77	71	71	71	71	71	7
	Average	77	7	7	71	77	7	7	7	7
6 1 16 11 ((1)	Surface	-	-	7	-	7	-	7	-	-
Suspended Solids (mg/L)	Middle	-	-	7	-	7	-	-	_	_
	Bottom Average	-	-	-	-	.	-	-		7
	Surface		7	- 4	7	7				
Total volatile solids (mg/L)	Middle	N N	Ž.	2	Ž.	Z .	_	-	-	_
	Bottom		7	-	2		-	-	-	_
	Average	7	7	2	2	2	7	7	7	-
	Surface	-	7	-	-	7	-	-	-	-
5-day Biochemical Oxygen Demand (mg/L)	Middle	-	-	-	-	-	-	-	-	-
	Bottom	-	-	-	-	-	-	-	-	-
	Average	-	-	-	-	7	-	-	-	-
Ammonia nitrogen (mg/L)	Surface Middle	-	-	-	-	-	-	-	-	-
Allillollia liitiogeli (liig/L)	Bottom	- 1			- 1	- 1				<u>u</u>
	Average		_	-			_		_	
	Surface	-	-	-	-	-	-	-	-	-
Nitrite nitrogen (mg/L)	Middle	-	-	-	-	-	-	-	-	-
	Bottom	-	-	-	-	-	-	-		-
	Average	-	-	-	-	-	-	-	-	-
Nitrata nitragan (mg/L)	Surface Middle	-	-	-	-	-	-	-	-	-
Nitrate nitrogen (mg/L)	Bottom		-	-	-	-	-	-	1986 19	-
	Average	- 1	-						-	-
	Surface		-		-		-		-	_
Total inorganic nitrogen (mg/L)	Middle	-	-	-	-	-	-	-	86 1986 1986 1987 1987 1987 1988 198	-
3 3 7 3, 7	Bottom	-	-	-	-	-	-	-	1986 1986 2003 7	-
	Average	-	-	-	-	-	-	-	-	-
-	Surface	7	7	7	7	7	-	-		-
Total Kjeldahl nitrogen (mg/L)	Middle	7		7		7	7	7		-
	Bottom Average	7	Ä	-	7	n n	n R	7		-
	Surface	7	Z Z	צ	7	7	-	-		-
Total nitrogen (mg/L)	Middle	Ž.	-	-	-	Ž.	2	2		_
9 (9) =)	Bottom	2	2	-	2	2	-	2		-
	Average	7	4	7	7	7	4	2	4	-
	Surface	-	-	-	-	-	-	-	-	7
Orthophosphate phosphorus (mg/L)	Middle	-	-	-	-	-	-	-	-	7
	Bottom	-	-	-	-	-	-	-	-	7
	Average Surface	7	-	-	-	2	-	-	-	7
Total phosphorus (mg/L)	Middle	-	-	-	-	7	-	-	-	, a
rr	Bottom	2	-	-	-	Ž.	-	-	-	2
	Average	7	7	2	-	7	-	-	-	7
	Surface	-	-	-	-	-	-	-	-	-
Silica (mg/L)	Middle	-	-	-	-	-	-	-	-	-
	Bottom	7	-	-	-	-	-	-	-	-
	Average Surface	-	-	-	-	-	-	-	-	-
Chlorophyll-a (µg/L)	Middle	-	-	71	-	-	-	-	-	-
oo.opiijii u (µg/L/	Bottom		7	7	7	-	-	7	71	
	Average		-	-	-	-	-	-	-	_
	Surface	-	7	-	-	7	-	-	-	_
<i>E. coli</i> (cfu/100mL)	Middle	-	7	-	-	2	-	-	-	-
	Bottom	-	7	-	-	-	-	-	-	-
	Average	7	7	7	-	7	-	-	-	-
Faceal soliforms (sfu /1001)	Surface	-	-	-	-	-	-	-	-	-
Faecal coliforms (cfu/100mL)	Middle Bottom	-	-	-	-	7	-	-	-	-
	Average	-	-	-	-	-	-	-	-	-

1. Results of the Seasonal Kendall Test shown are statistically significant at $\it p < 0.05$

^{2. -} indicates no significant trend is detected3. Test applied to past 18 years' data from each monitoring station unless stated otherwise

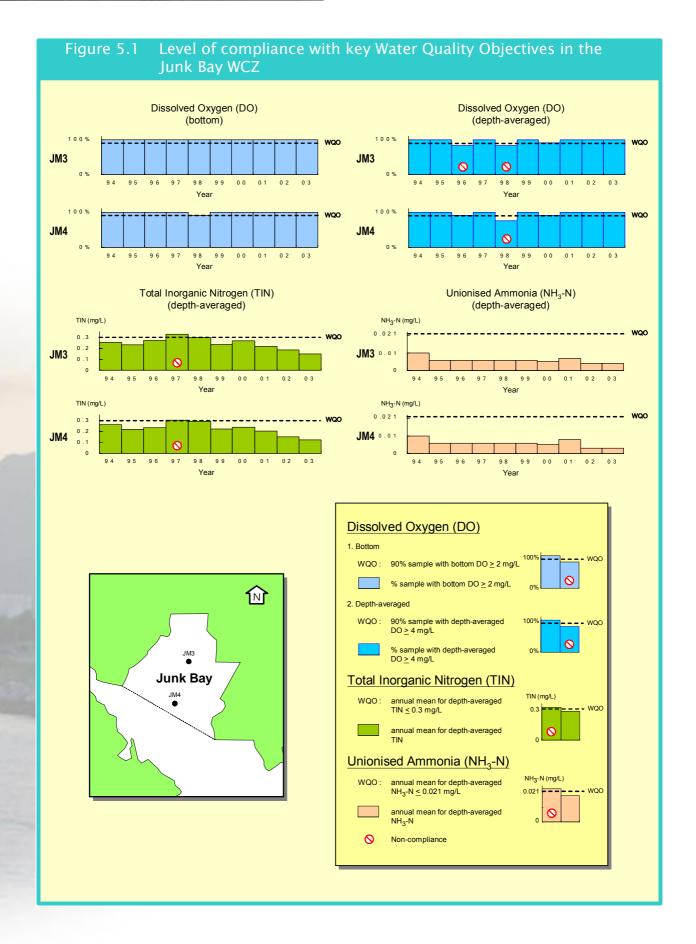
^{4. 7} represents a significant increase over time 5. 3 represents a significant decrease over time

JUNK BAY **CHAPTER 5** WATER CONTROL ZONE

Chapter 5 - Junk Bay Water Control Zone

Water Quality in 2003

- 5.1 The water quality in the Junk Bay Water Control Zone (WCZ) is influenced by the flow from Victoria Harbour. Since the commissioning of the Harbour Area Treatment Scheme (HATS) Stage I in 2002, major pollution sources (outfalls of Tseung Kwan O and Chai Wan Sewage Treatment Works) have been removed and the water quality of Junk Bay has experienced a marked improvement. In 2003, this improvement was sustained. A summary of water quality data is shown in Table 5.1.
- In 2003, the levels of *E. coli*, ammonia nitrogen (NH₄-N), total inorganic nitrogen (TIN), total nitrogen and total phosphorus in Junk Bay fell to their lowest levels in 10 years. A remarkable decrease of *E. coli* was found at the two monitoring stations, JM3 (by 54%) and JM4 (by 64%), as compared to that in the previous year. This could be attributed to the reduction of sewage pollution in the area due to HATS Stage I improvement.
- 5.3 The depth-averaged and bottom dissolved oxygen (DO) in Junk Bay have decreased by 0.4mg/L (6%) and 0.7mg/L (11%) respectively in 2003. This might be largely due to natural fluctuation which was observed widely in other parts of Hong Kong waters.


Compliance with Water Quality Objectives (WQOs)

5.4 Figure 5.1 shows that the stations JM3 and JM4 in Junk Bay fully (100%) complied with the key WQOs: dissolved oxygen, unionised ammonia and total inorganic nitrogen in 2003.

Long-term Water Quality Trends

- 5.5 Similar to 2002, the increasing trends of *E. coli* and nitrate nitrogen in the outer Junk Bay (JM4) which was evident in previous years, have been arrested (Table 5.2). In addition, long-term decreases in nutrients such as total Kjeldahl nitrogen started to emerge in 2003.
- 5.6 Notable decline in two sewage-related parameters: ammonia nitrogen and *E. coli* were also observed in Junk Bay over the last 10 years (Figure 5.2).

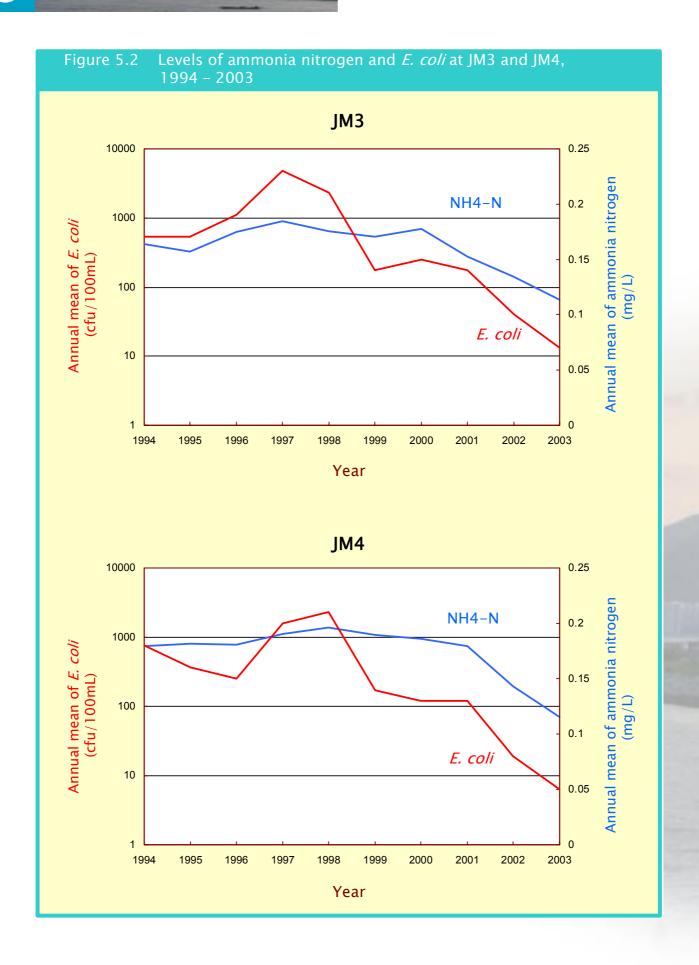


Table 5.1 Summary water quality statistics of the Junk Bay WCZ in 2003

	Junk Bay				
Param eter	JM3	JM4			
Number of samples	12	12			
Temperature (°C)	23.1	22.9			
Temperature (C)	(17.2 - 27.2)	(17.1 - 27.0)			
Salinity	32.9	33.1			
	(30.9 - 33.9)	(32.2 - 33.8)			
Dissolved Oxygen (mg/L)	6.1	5.9			
,	(4.9 - 7.8)	(4.4 - 8.1)			
Bottom	5.7 (3.9 - 7.9)	5.6 (3.2 - 7.9)			
	86	83			
Dissolved Oxygen (% Saturation)	(72 - 115)	(66 - 102)			
	80	78			
Bottom	(55 - 101)	(46 - 100)			
	8.1	8.1			
рН	(7.9 - 8.3)	(7.9 - 8.3)			
Coooki Dina Donth (m)	2.7	2.8			
Secchi Disc Depth (m)	(1.5 - 4.0)	(1.6 - 3.7)			
Turbidity (NTU)	7.3	8.1			
Turblancy (1410)	(3.2 - 11.5)	(5.4 - 11.0)			
Suspended Solids (mg/L)	3.6	7.3			
3 (g/ _)	(1.7 - 5.8)	(1.7 - 38.7)			
5-day Biochemical Oxygen Demand (mg/L)	1.1	1.1			
	(0.4 - 3.1)	(0.4 - 3.1)			
Ammonia Nitrogen (mg/L)	0.07	0.05			
	(0.01 - 0.19) 0.004	(0.01 - 0.12) 0.003			
Unionised Ammonia (mg/L)	(0.001 - 0.006)	(0.001 - 0.005)			
	0.02	0.02			
Nitrite Nitrogen (mg/L)	(<0.01 - 0.06)	(<0.01 - 0.06)			
Alle C Alle C (II)	0.06	0.05			
Nitrate Nitrogen (mg/L)	(0.02 - 0.12)	(0.01 - 0.10)			
Total Inorganic Nitrogen (mg/L)	0.15	0.12			
Total inorganic ivillogen (mg/L)	(0.09 - 0.27)	(0.05 - 0.20)			
Total Kjeldahl Nitrogen (mg/L)	0.20	0.17			
Total Tyoldan Thiogon (mg/2)	(0.13 - 0.30)	(0.12 - 0.22)			
Total Nitrogen (mg/L)	0.28	0.24			
5 (5)	(0.17 - 0.41)	(0.14 - 0.36)			
Orthophosphate Phosphorus (mg/L)	0.017 (0.01 - 0.03)	0.015 (0.01 - 0.02)			
	0.03	0.03			
Total Phosphorus (mg/L)	(0.02 - 0.04)	(0.02 - 0.04)			
	0.6	0.6			
Silica (as SiO ₂) (mg/L)	(0.1 - 1.0)	(0.2 - 1.0)			
Obligation (cont.)	3.9	3.4			
Chlorophy II-a (μg/L)	(0.6 - 11.5)	(0.6 - 11.4)			
E. coli (cfu/100mL)	65	71			
L. Coll (GIU/ TOOTTL)	(2 - 640)	(12 - 730)			
Faecal Coliforms (cfu/100mL)	140	170			
V /	(3 - 1600)	(51 - 1700)			

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

3. Data in brackets indicate the ranges.

Table 5.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Junk Bay WCZ, 1986 – 2003

Monitoring Station		JM3 1986	JM4 1980
Monitoring Period			
Parameter	Water Depth	2003	200
	Surface	71	7
Temperature (°C)	Middle	7	7
	Bottom Average	7	7
	Surface	7	7
Salinity	Middle	_	_
· · · · · · · · · · · · · · · · · · ·	Bottom	-	-
	Average	-	-
Bissaluad Outron (may (L)	Surface	7	7
Dissolved Oxygen (mg/L)	Middle Bottom	-	-
	Average		
	Surface	-	-
Dissolved Oxygen (%)	Middle	-	-
	Bottom	-	-
	Average Surface	-	-
рΗ	Middle		- 1
511	Bottom	_	
	Average	-	-
Secchi disc depth (m)		-	-
Turbidity (NTII)	Surface	7	7
Turbidity (NTU)	Middle Bottom	7	7
	Average	7	7
	Surface	-	- "
Suspended Solids (mg/L)	Middle	-	-
	Bottom	-	-
	Average	-	-
Total valatile solids (mg/L)	Surface	7	7
Total volatile solids (mg/L)	Middle Bottom	n n	7
	Average	7	<u>.</u>
	Surface	-	-
5-day Biochemical Oxygen Demand (mg/L)	Middle	-	-
	Bottom	-	-
	Average	-	-
A	Surface	-	-
Ammonia nitrogen (mg/L)	Middle Bottom	-	-
	Average		
	Surface	-	-
Nitrite nitrogen (mg/L)	Middle	-	-
	Bottom	-	-
	Average	-	-
Nitrata nitragan (mg/L)	Surface Middle	-	-
Nitrate nitrogen (mg/L)	Bottom		
	Average	_	_
	Surface	-	-
Total inorganic nitrogen (mg/L)	Middle	-	-
	Bottom	-	-
	Average	-	-
Total Kieldahl nitrogen (mg/L)	Surface Middle	-	-
Total Kjeldahl nitrogen (mg/L)	Bottom	<u>.</u>	
	Average	Ž.	, L
	Surface	-	-
Гotal nitrogen (mg/L)	Middle	-	-
	Bottom	-	-
	Average Surface	7	-
Orthophosphate phosphorus (mg/L)	Middle		
pospacc phosphoras (mg/L)	Bottom	-	-
	Average	-	-
Tabal also and amore (or a (1)	Surface	-	-
Total phosphorus (mg/L)	Middle Bottom	-	7
	Average	-	-
	Surface		
Silica (mg/L)	Middle	-	_
. 5	Bottom	-	-
	Average	-	-
Chlaranhull a (us (1)	Surface	-	-
Chlorophyll– <i>a</i> (µg/L)	Middle Bottom	-	-
	Average	-	-
	Surface		
<i>E. coli</i> (cfu/100mL)	Middle	-	-
,	Bottom	-	-
	Average	-	-
5	Surface	7	7
Faecal coliforms (cfu/100mL)	Middle Bottom	-	-
			_

Note $\,\,$ 1. Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05

 $[\]ensuremath{\text{2.}}\xspace$ - indicates no significant trend is detected

^{3. 7} represents a significant increase over time 4. 2 represents a significant decrease over time

CHAPTER 6 WATER CONTROL ZONE

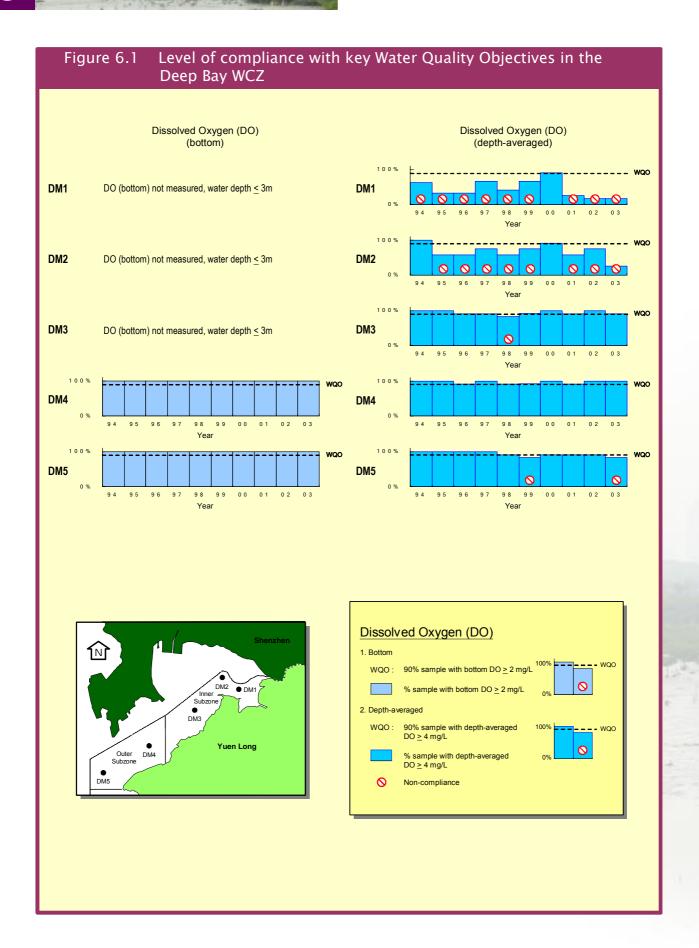
Chapter 6 - Deep Bay Water Control Zone

Water Quality in 2003

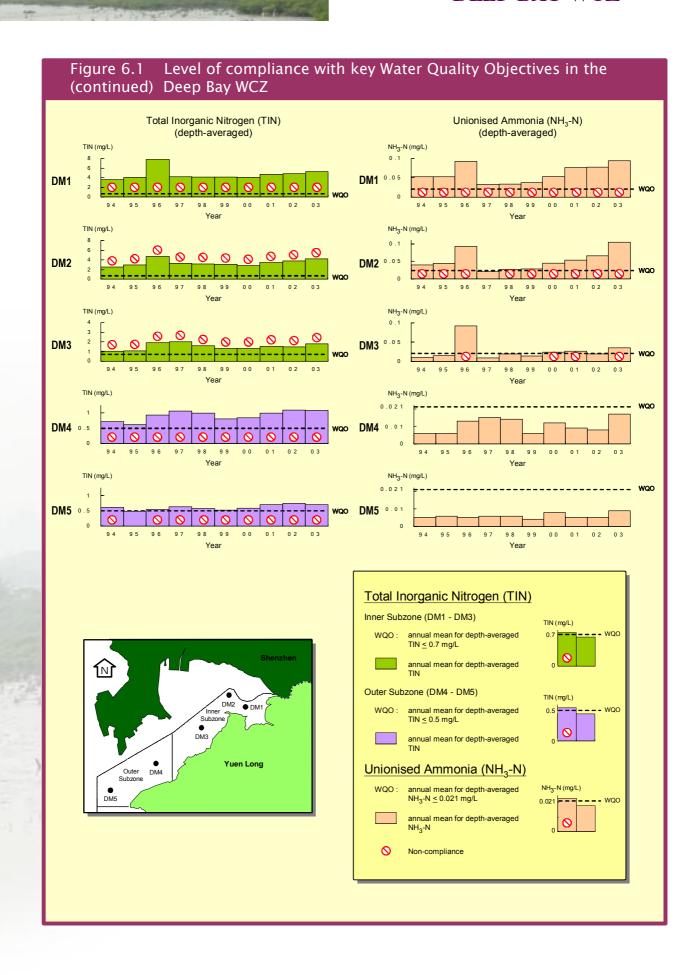
- Deep Bay is a shallow and sediment-laden water body in the north western part of New Territories bordering Shenzhen. On the Hong Kong side, seven major rivers, tributaries and nullahs (River Indus, River Ganges, River Beas, Kam Tin River, Yuen Long Creek, Fairview Park Nullah and Tin Shui Wai Nullah) drain into inner part of the bay, whereas a number of minor streams flow into the outer bay.
- 6.2 The data from EPD's river monitoring programme indicate that the water quality of the major rivers and nullahs in the Inner Deep Bay catchment is generally poor mainly due to pollution by unsewered villages and livestock farms. The minor streams, on the other hand, are largely pristine and free from anthropogenic impact.
- 6.3 The Inner Deep Bay has the poorest water quality in open marine waters, characterised by high ammonia and low dissolved oxygen (DO). The pollution-related parameters e.g. 5-day Biochemical Oxygen Demand (BOD_5), suspended solids and nitrogenous nutrients show a distinct increasing gradient from the outer part towards the inner part of the bay.
- A summary of the 2003 marine water quality data is shown in Table 6.1. The levels of nitrogenous compounds in Deep Bay were the highest in the territory. The averaged ammonia nitrogen (NH₄-N) and total inorganic nitrogen (TIN) concentrations in Inner Deep Bay (DM1, 2 and 3) were 2.9 mg/L and 3.8 mg/L respectively, which were 13-19% higher than those in 2002. Lower levels of NH₄-N and TIN (0.26 mg/L and 0.89 mg/L respectively) were found in Outer Deep Bay (DM4 and 5), farther away from the pollution sources.
- Similar to other marine waters in Hong Kong, the mean DO at different stations in Deep Bay has decreased by 0.5-0.8 mg/L (8-15%) in 2003, reaching their lowest levels in 10 years. The BOD₅ concentration in the Deep Bay WCZ (averaged 2.6 mg/L) was the highest in the territory, signifying the extent of organic pollution in the bay. In 2003, ortho-phosphate phosphorus has increased by 22% (0.04 mg/L) and E. coli bacteria by 43% as compared with those in 2002.

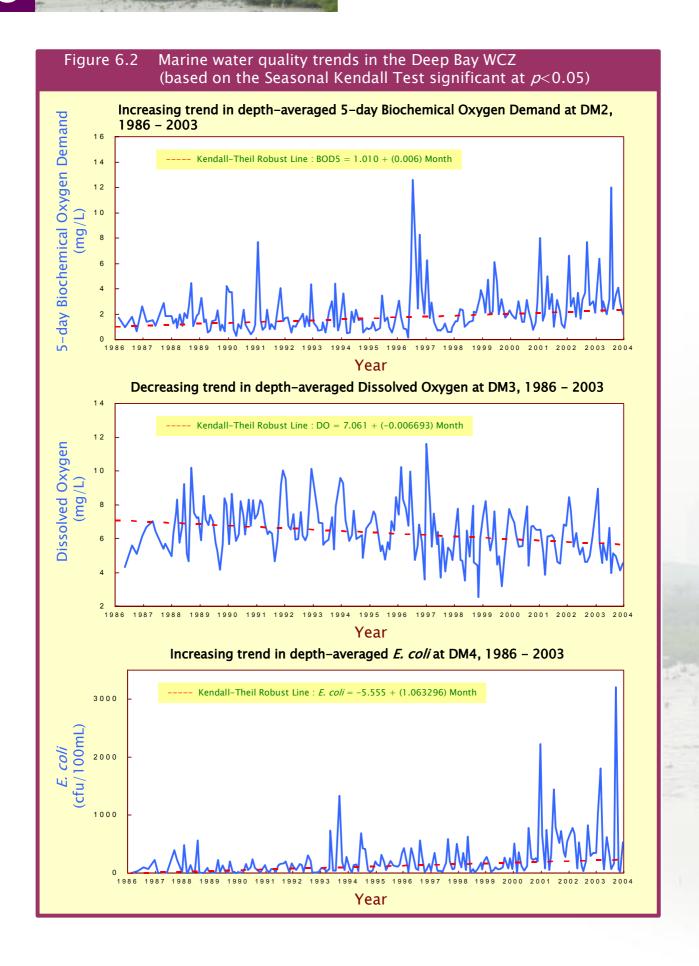
Compliance with Water Quality Objectives

6.6 In 2003, the Inner Bay stations DM1 and DM2 and the outer bay station DM5 failed to comply with the Water Quality Objective (WQO) for DO (Figure 6.1). The overall WQO


DEEP BAY WCZ

compliance at DM1 and DM2 were 17% and 25% respectively.


- 6.7 The Deep Bay WCZ has not met the WQO for total inorganic nitrogen (TIN) since 1996 (Figure 6.1). The TIN at various stations exceeded the WQO level by a very large margin (41%-655%). The persistent high level of TIN and non-compliance with the WQO highlight the seriousness of the nutrient pollution problem in Deep Bay.
- All the Inner Deep Bay stations (DM1, DM2 and DM3) failed to comply with the WQO for unionised ammonia in 2003. It is noted that Inner Deep Bay was the only marine water in the territory which could not meet the objective. This is an environmental concern as high level of unionized ammonia is known to be toxic to aquatic life.


Long-term Water Quality Trends

- 6.9 Long-term monitoring data indicate that all monitoring stations in Deep Bay have shown significant increases in ammonia nitrogen and total inorganic nitrogen since the mid 80s (Table 6.2). In 2003, the station DM2 also experienced a rise in BOD₅, indicating increased organic matter in the water (Figure 6.2).
- 6.10 The whole of Deep Bay experienced a significant decline in the DO level, and with the exception of DM1, there has also been a rise in *E. coli*, signifying increasing faecal pollution from human and animal sources (Table 6.2 and Figures 6.2).
- 6.11 In summary, Deep Bay is facing serious pollution problems including nutrient and organic enrichment, hypoxia, ammonia toxicity and bacterial contamination. They are threatening the sensitive ecosystem in the bay.
- 6.12 To tackle pollution problems in Deep Bay, the Hong Kong Special Administrative Region (HKSAR) and Shenzhen have taken actions to reduce pollution loadings under the Deep Bay Water Pollution Control Joint Implementation Programme. On the Hong Kong side, EPD enforces the relevant pollution control legislation and implements the Livestock Waste Control Scheme and various Sewerage Master Plans (SMPs).
- Under the Yuen Long and Kam Tin SMP, sewerage has been planned for 41 unsewered villages in the Yuen Long areas. New sewerage for another 38 villages in the North District under the North District SMP was being planned for 2010. In addition, a consultancy study would start at the end of 2004 to formulate a sewerage strategy for the remaining unsewered villages/areas in the northwestern New Territories. The study was scheduled to be completed in 2006.

DEEP BAY WCZ

DEEP BAY WCZ

Table 6.1 Summary water quality statistics of the Deep Bay WCZ in 2003

			Inner Deep Bay		Outer Deep Bay			
Parameter Parameter		DM1	DM2	DM3	DM4	DM5		
Number of samples		12	12	12	12	12		
T(%O)		24.1	24.2	24.3	24.3	24.4		
Temperature (°C)		(17.6 - 31.8)	(17.6 - 31.6)	(17.0 - 30.6)	(16.5 - 30.1)	(16.7 - 29.0)		
Salinity		16.4	18.2	21.0	23.4	27.1		
Callinty		(6.8 - 23.7)	(7.6 - 25.6)	(10.3 - 29.3)	(14.0 - 32.4)	(20.4 - 33.2)		
Dissolved Oxygen (mg/L)		2.9	3.6	5.3	5.5	5.3		
		(2.1 - 5.2)	(2.7 - 5.2)	(4.0 - 9.0)	(4.2 - 9.9)	(3.3 - 9.8)		
	Bottom	NM	NM	NM	5.5	5.1		
		38	48	71	(3.4 - 10.0) 75	(2.7 - 10.0) 72		
Dissolved Oxygen (% Saturation)		(26 - 65)	(35 - 65)	(55 - 108)	(59 - 117)	(47 - 120)		
		NM	(35 - 05) NM	NM	74	71		
	Bottom	INIVI	TAIVI	MIVI	(49 - 118)	(40 - 122)		
		7.6	7.8	8.0	8.0	8.1		
pH		(7.1 - 7.9)	(7.5 - 8.4)	(7.6 - 8.2)	(7.6 - 8.4)	(7.5 - 8.6)		
O and Disco Death ()		0.3	0.4	0.8	1.0	1.4		
Secchi Disc Depth (m)		(0.1 - 0.5)	(0.1 - 0.8)	(0.5 - 1.5)	(0.5 - 1.8)	(0.5 - 2.1)		
Turkidita (NITII)		51.8	42.1	27.7	23.6	18.6		
Turbidity (NTU)		(24.2 - 143)	(17.1 - 158.7)	(8.4 - 74.9)	(12.2 - 46.6)	(10.9 - 29.4)		
Suspended Solids (mg/L)		59.8	42.8	26.1	21.2	11.0		
Suspended Solids (Hig/L)		(23.0 - 220)	(14.0 - 190)	(4.2 - 90.0)	(5.9 - 36.1)	(2.8 - 20.0)		
5-day Biochemical Oxygen Deman	d (ma/L)	4.7	4.0	1.8	1.3	1.1		
5-day Biochemical Oxygen Demand (mg/L)		(2.0 - 13.0)	(2.0 - 12.0)	(0.8 - 2.9)	(0.7 - 2.5)	(0.6 - 2.4)		
Ammonia Nitrogen (mg/L)		4.51	3.42	0.91	0.33	0.18		
		(0.71 - 7.90)	(0.97 - 5.40)	(0.04 - 2.30)	(0.07 - 0.69)	(0.03 - 0.45)		
Unionised Ammonia (mg/L)		0.095	0.105	0.035	0.017	0.009		
(0)		(0.028 - 0.239)	(0.037 - 0.257)	(0.002 - 0.098)	(0.004 - 0.050)	(0.001 - 0.017)		
Nitrite Nitrogen (mg/L)		0.33	0.33	0.22	0.15	0.10		
		(0.17 - 0.73) 0.44	(0.21 - 0.67) 0.48	(0.07 - 0.33) 0.67	(0.06 - 0.32) 0.60	(0.04 - 0.23) 0.43		
Nitrate Nitrogen (mg/L)		(0.12 - 1.10)	(0.20 - 1.10)	(0.19 - 1.20)	(0.17 - 1.15)	(0.12 - 0.87)		
		5.29	4.23	1.79	1.08	0.70		
Total Inorganic Nitrogen (mg/L)		(2.00 - 8.35)	(2.28 - 5.91)	(0.86 - 2.88)	(0.56 - 1.61)	(0.31 - 1.15)		
		5.54	4.20	1.19	0.53	0.33		
Total Kjeldahl Nitrogen (mg/L)		(1.00 - 9.50)	(1.30 - 6.50)	(0.26 - 2.70)	(0.28 - 0.86)	(0.17 - 0.56)		
T (1 N); (/ /)		6.32	5.01	2.07	1.28	0.85		
Total Nitrogen (mg/L)		(2.29 - 9.95)	(2.61 - 7.09)	(1.19 - 3.28)	(0.67 - 1.91)	(0.48 - 1.34)		
Orthophophoto Dhoophorus (mg/L)		0.443	0.373	0.139	0.064	0.040		
Orthophosphate Phosphorus (mg/L)		(0.14 - 0.67)	(0.14 - 0.51)	(0.05 - 0.29)	(0.01 - 0.11)	(0.02 - 0.05)		
Total Phosphorus (mg/L)		0.61	0.48	0.18	0.10	0.06		
Total Thospholas (mg/L)		(0.21 - 0.92)	(0.21 - 0.69)	(0.07 - 0.36)	(0.07 - 0.14)	(0.05 - 0.08)		
Silica (as SiO ₂) (mg/L)		6.2	5.4	3.9	3.2	2.2		
(ao o.o ₂ / (3 / - /		(3.1 - 9.2)	(2.1 - 8.1)	(1.8 - 6.2)	(1.5 - 5.7)	(0.9 - 4.2)		
Chlorophy II-a (µg/L)		7.1	5.0	3.5	2.4	2.0		
1 7 · W 0 · /		(0.8 - 36.0)	(0.7 - 25.0)	(0.4 - 17.0)	(0.5 - 10.2)	(0.5 - 4.8)		
E. coli (cfu/100mL)		3800	2200	100	260	540		
,		(170 - 220000)	(77 - 200000)	(11 - 520)	(17 - 3200)	(150 - 2600)		
Faecal Coliforms (cfu/100mL)		8300 (380 - 420000)	4400 (370 - 360000)	190 (49 - 790)	490 (39 - 5300)	1100 (470 - 5400)		
		(300 - 420000)	(310-300000)	(43 - 130)	(00-2000)	(410 - 3400)		

- Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).
 - 2. Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

 3. Data in brackets indicate the ranges.

 - 4. NM not measured

Table 6.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Deep Bay WCZ, 1986 – 2003

Monitoring Station		DM1	DM2	DM3	DM4	DM5
		1986	1986	1986	1986	1991
Monitoring Period		1 2003	1 2003	1 2003	1 2003	1 2003
Parameter	Water Depth	2003	2003	2003	2003	2003
Temperature (°C)	Surface Middle	NA.	NA	NA	- NA	-
, p	Bottom	NA	NA	NA	71	-
	Average Surface	7	7	-	-	-
Salinity	Middle Bottom	NA NA	NA NA	NA NA	NA	-
	Average	7	7	-	-	-
Dissolved Oxygen (mg/L)	Surface Middle	NA	NA	NA	NA	n R
	Bottom	NA	NA	NA	7	7
	Average Surface	n n	7	n n	n R	n R
Dissolved Oxygen (%)	Middle Bottom	NA	NA	NA	NA	7
	Average	NA Y	NA 3	NA 3	Ä	<u>.</u>
рН	Surface Middle	NA	NA	NA	NA	7
ρπ	Bottom	NA	NA	NA	7	
Secchi disc depth (m)	Average	7	7	7	7	-
	Surface		7	7		7
Turbidity (NTU)	Middle Bottom	NA NA	NA NA	NA NA	NA -	7
	Average	-	7	-	-	7
Suspended Solids (mg/L)	Surface Middle	7 NA	7 NA	NA	- NA	-
	Bottom	NA	NA	NA	-	-
	Average Surface	71	-	-	-	-
Total volatile solids (mg/L)	Middle Bottom	NA NA	NA NA	NA NA	NA	-
	Average	-	-	-	-	-
5-day Biochemical Oxygen Demand (mg/L)	Surface Middle	- NA	7 NA	- NA	- NA	-
au, bioeneimeu. Oxygen beimana (mg/2)	Bottom	NA	NA	NA	7	-
	Average Surface	71	7	71	71	71
Ammonia nitrogen (mg/L)	Middle	NA	NA	NA	NA	7
	Bottom Average	NA 7	NA 7	NA 7	7	7
Nitrite nitrogen (mg/L)	Surface Middle	- NA	7 NA	7	71	71
Mitrite introgen (ing/L)	Bottom	NA	NA	NA NA	NA 7	7
	Average Surface	-	7	7	7	7
Nitrate nitrogen (mg/L)	Middle	NA	NA	NA	NA	-
	Bottom Average	NA -	NA	NA 7	7	-
Tabal in a grant a gitua a a g (a a g (l)	Surface	71	7	7	71	71
Total inorganic nitrogen (mg/L)	Middle Bottom	NA NA	NA NA	NA NA	NA 7	-
	Average	7	7	71	71	71
Total Kjeldahl nitrogen (mg/L)	Surface Middle	NA	7 NA	NA	NA	-
	Bottom Average	NA 7	NA 7	NA	-	-
_ , , , , , , , , , , , , , , , , , , ,	Surface	7	7	7	71	-
Total nitrogen (mg/L)	Middle Bottom	NA NA	NA NA	NA NA	NA -	-
	Average	7	7	7	-	-
Orthophosphate phosphorus (mg/L)	Surface Middle	NA	NA	NA	- NA	-
3, 7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	Bottom	NA	NA	NA	71	-
	Average Surface	<u>.</u>	-	-	-	2
Total phosphorus (mg/L)	Middle Bottom	NA	NA	NA	NA	7
	Average	NA Y	NA -	NA -	-	n R
Silica (mg/L)	Surface Middle	- NA	7 NA	- NA	- NA	- :
5ca (111 g / E/	Bottom	NA NA	NA	NA	-	-
	Average Surface	-	7	-	-	7
Chlorophyll– a (μ g/L)	Middle	NA	NA	NA	NA	7
	Bottom Average	NA -	NA -	NA -	-	7
E coli(cfu/100ml)	Surface	-	71	71	7	7 7 7 7
E. coli (cfu/100mL)	Middle Bottom	NA NA	NA NA	NA NA	NA 7	7
	Average Surface	-	7	7	71	7
Faecal coliforms (cfu/100mL)	Middle	NA	NA	NA	7 NA	7
	Bottom	NA	NA	NA	71	7

1. Results of the Seasonal Kendall Test shown are statistically significant at $\it p < 0.05$

^{2. –} indicates no significant trend is detected
3. NA (Not Applicable) indicates the measurement was not made due to shallow water
4. Test applied to past 18 years' data from each monitoring station unless stated otherwise

^{5. 7} represents a significant increase over time 6. 3 represents a significant decrease over time

Chapter 7 - Mirs Bay Water Control Zone

Water Quality in 2003

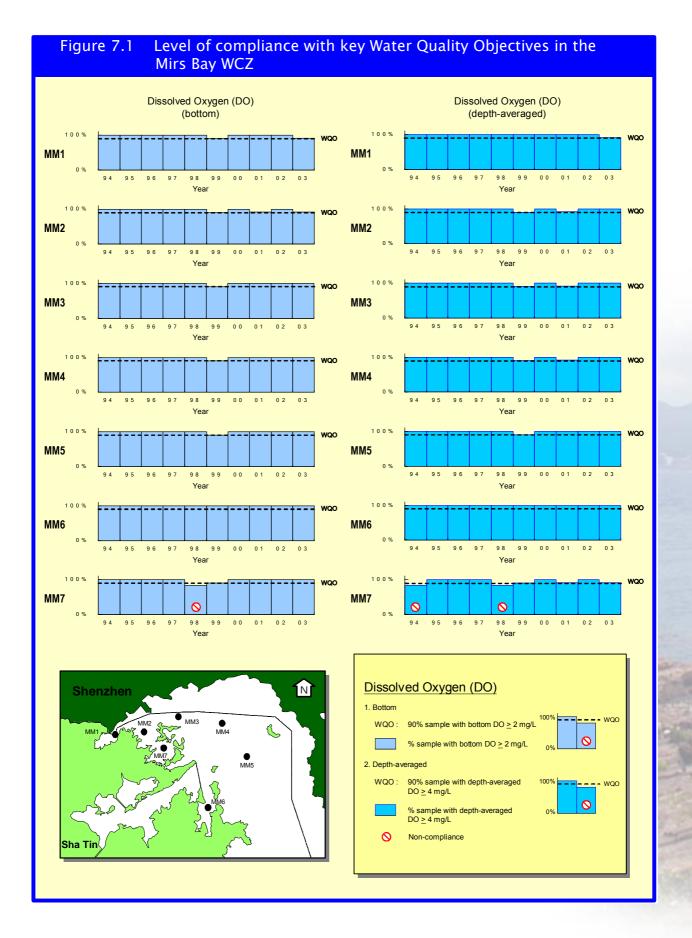
- 7.1 The Mirs Bay Water Control Zone (WCZ) is located in the eastern part of the Hong Kong under substantial oceanic influence. It has a very good and stable water quality, with high dissolved oxygen (DO), low turbidity, *E. coli* and nutrients. The water in the semi-enclosed Starling Inlet is subjected to impact of the Sha Tau Kok town and has slightly higher levels of pollutants than the rest of the WCZ. A total of 14 marine stations were monitored in 2003, and a summary of the water quality data of the Mirs Bay WCZ is shown in Table 7.1.
- 7.2 Similar to other marine waters in the territory, the DO in Mirs Bay has experienced a general decrease (an average of 0.7 mg/L (11%)) in 2003. The reduction of DO in the southern part of the bay (MM8, MM13-16 and MM19) was less (by 0.4-0.6 mg/L) than in the northern part and within Starling Inlet (by 0.8-1.2 mg/L) where the water circulation was more restricted.
- The levels of inorganic nutrients in the Mirs Bay WCZ in 2003 were largely similar to those in 2002. Total inorganic nitrogen (TIN), ammonia nitrogen and $E.\ coli$ in Starlet Inlet (MM1) continued to decrease indicating a further reduction of domestic sewage pollution in the area and an improvement of water quality. On the other hand, the level of chlorophyll-a at MM1 was found to have increased by $4.4\mu g/L$ (68%) and an elevation of BOD₅ (by 24%) and SS (by 72%) was also observed.

Compliance with Water Quality Objectives

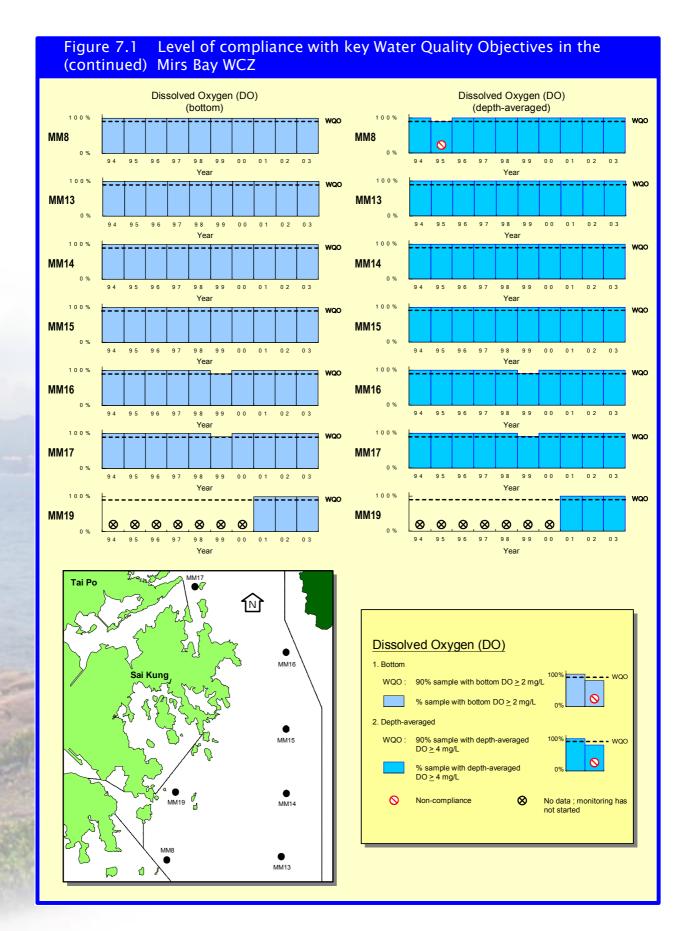
- 7.4 Similar to Port Shelter, the Mirs Bay WCZ has an excellent record of Water Quality Objective (WQO) compliance. Full (100%) compliance with the key WQOs was achieved in the WCZ for the fifth consecutive year since 1999 (Figure 7.1).
- 7.5 The secondary contact recreation subzones within Mirs Bay include Crooked Harbour (MM2), Long Harbour (MM6) and Double Haven (MM7). These waters have very low E. coli counts (≤ 2 E. coli/100mL) and fully complied with the bacterial objective in 2003 (Figure 7.1).

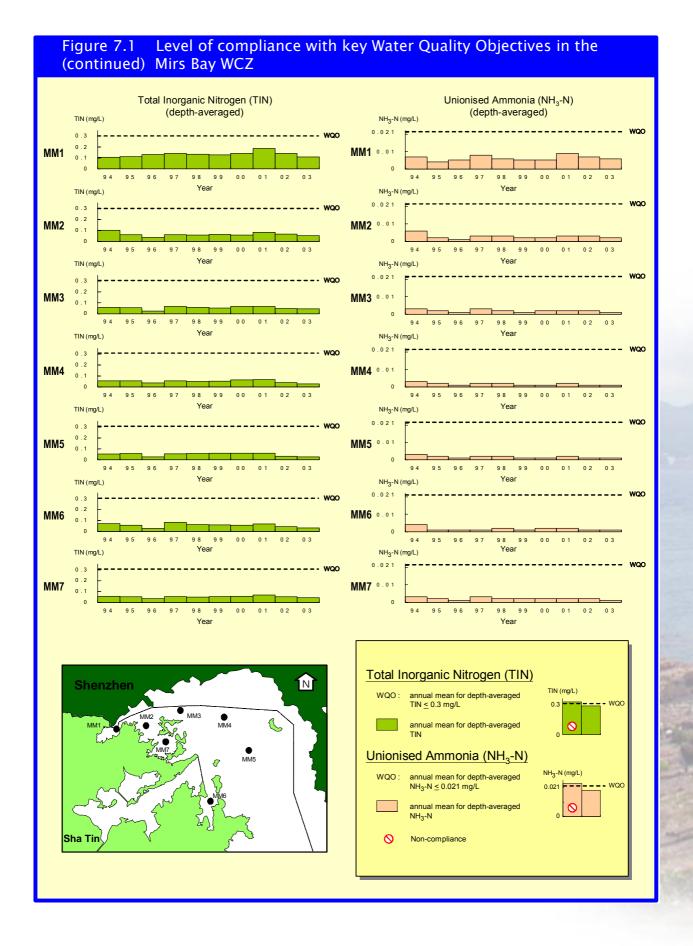
Long-term Water Quality Trends

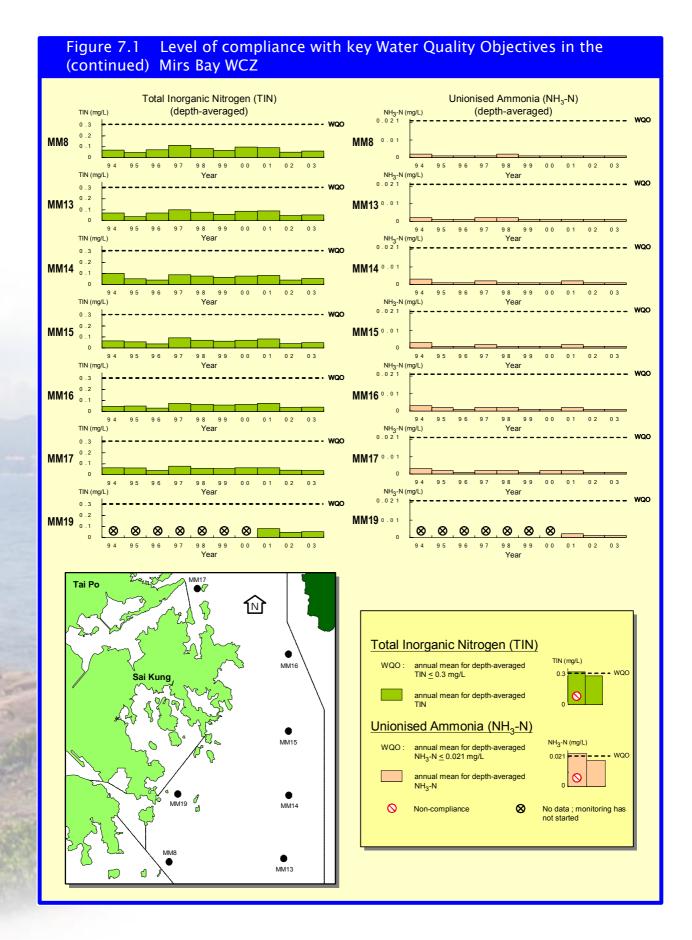
7.6 The water quality in the Mirs Bay WCZ has remained largely pristine in the past decade with significant reductions in many nutrient-related parameters (Table 7.2). Significant long-term

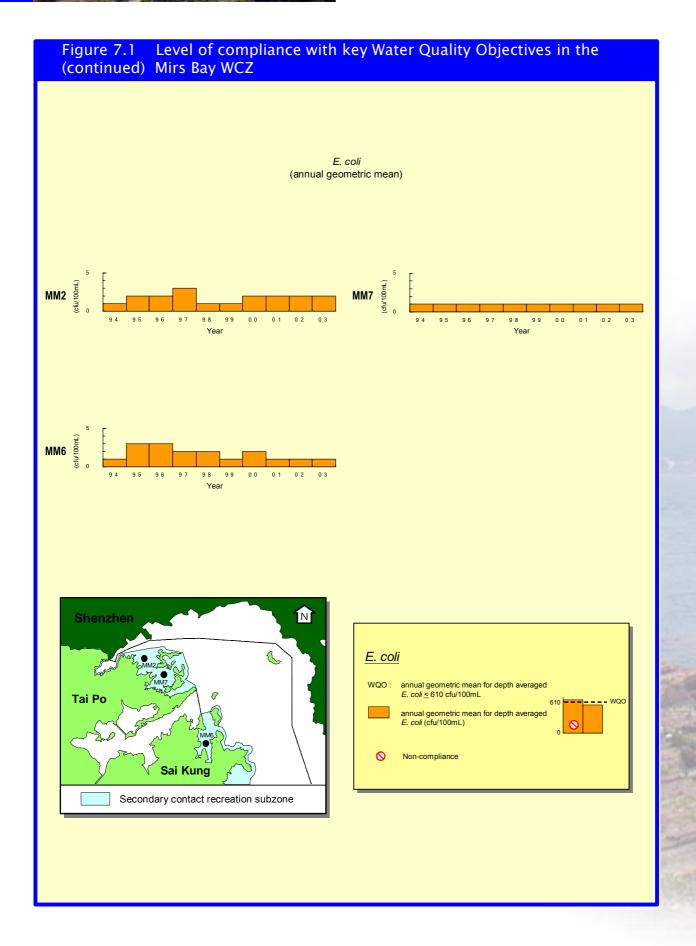

MIRS BAY WCZ

decreases of total phosphorus (including orthophosphate phosphorus) and total nitrogen (including ammonia nitrogen) were detected at many stations in the WCZ between 1986 and 2003 (Figure 7.2). Some reduction in silica was also noted but it was less widespread than that for phosphorus and nitrogen (Figure 7.2). On the other hand, the chlorophyll-a levels in the northern (MM1-5 and MM7) and southern parts (MM8 and MM13) of the bay showed a significant long-term increase, indicating enhanced algal productivity despite the reduced availability of inorganic nutrients in the water.


7.7 To preserve the good water quality and ecology of Mirs Bay, the Government would continue to provide sewerage to unsewered populated areas in the catchment. Under the North District Sewerage Master Plan (SMP), there was a plan to construct the Pak Hok Lam trunk sewer to serve 10 villages in the Sha Tau Kok area. The implementation programme of this SMP was currently under review.







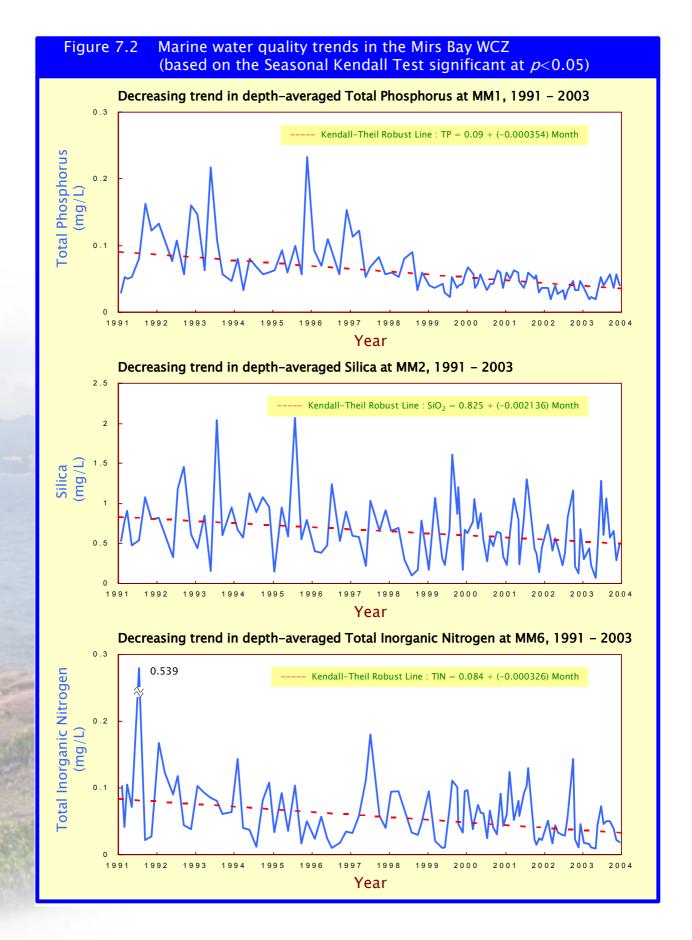


Table 7.1 Summary water quality statistics of the Mirs Bay WCZ in 2003

Parameter Number of samples Temperature (°C) Salinity		MM1 12	MM2	MM7	MM17	MM3	MM4	MARKE
Temperature (°C)		12					IN IN T	MM5
, , ,			12	12	12	12	12	12
, , ,		24.6	24.1	23.9	23.6	23.7	23.6	23.5
Salinity		(16.6 - 28.9)	(16.5 - 28.3)	(16.5 - 28.2)	(16.6 - 27.8)	(16.4 - 27.8)	(16.6 - 27.9)	(16.6 - 27.9)
		31.9	32.7	32.8	33.1	33.0	33.2	33.2
		(28.5 - 33.1)	(31.1 - 33.6)	(31.5 - 34.0)	(32.0 - 34.4)	(31.9 - 34.2)	(32.2 - 34.5)	(32.5 - 34.5)
Dissolved Oxygen (mg/L)		6.1	5.8	5.6	5.9	5.7	5.8	5.9
		(4.0 - 7.7) 5.7	(4.2 - 7.2) 5.2	(3.8 - 7.3) 5.1	(4.7 - 7.6) 5.5	(4.5 - 7.0) 5.5	(4.6 - 7.0) 5.7	(4.8 - 7.0) 5.7
	Bottom	5.7 (1.7 - 7.1)	(1.9 - 7.5)	(2.3 - 7.2)	(3.0 - 7.8)	(3.4 - 7.2)	(3.8 - 7.1)	(4.0 - 7.2)
		88	82	81	83	81	83	84
Dissolved Oxygen (% Saturation)		(59 - 114)	(56 - 102)	(58 - 105)	(70 - 98)	(67 - 95)	(69 - 96)	(66 - 95)
		81	73	72	76	78	80	79
	Bottom	(25 - 105)	(27 - 96)	(34 - 102)	(42 - 99)	(50 - 93)	(55 - 97)	(56 - 92)
		8.3	8.3	8.3	8.2	8.3	8.2	8.2
pH		(8.0 - 8.6)	(8.0 - 8.6)	(8.0 - 8.6)	(8.0 - 8.5)	(8.0 - 8.5)	(8.0 - 8.5)	(8.0 - 8.5)
O - I' D' - D - II ()		2.1	3.5	4.1	5.3	3.3	4.8	5.5
Secchi Disc Depth (m)		(1.3 - 3.5)	(2.6 - 5.0)	(2.7 - 6.5)	(2.3 - 11.0)	(2.3 - 4.5)	(3.0 - 6.5)	(2.8 - 9.0)
T LIP (ALTH)		9.7	6.5	5.7	6.0	7.1	6.2	6.3
Turbidity (NTU)		(3.0 - 19.3)	(1.7 - 9.8)	(1.5 - 7.9)	(2.8 - 9.6)	(2.2 - 11.0)	(1.8 - 9.1)	(2.9 - 8.8)
Consequent Calida (caralla)		8.1	2.9	2.7	2.0	3.3	2.1	2.3
Suspended Solids (mg/L)		(1.9 - 28.3)	(1.0 - 7.6)	(0.8 - 13.3)	(0.9 - 4.7)	(0.9 - 10.5)	(0.8 - 4.5)	(0.7 - 5.4)
5-day Biochemical Oxygen Demand (m	ng/L)	2.0	1.1	1.2	0.9	0.9	0.8	0.9
3-day biochemical Oxygen bemand (ii	ig/L)	(0.5 - 3.3)	(0.4 - 1.9)	(0.6 - 3.2)	(0.2 - 2.9)	(0.3 - 1.6)	(0.4 - 1.3)	(0.5 - 2.2)
Ammonia Nitrogen (mg/L)		0.08	0.03	0.02	0.02	0.02	0.01	0.01
Ammonia Milogen (mg/L)		(0.01 - 0.20)	(0.01 - 0.04)	(0.01 - 0.08)	(0.01 - 0.05)	(0.01 - 0.03)	(0.01 - 0.03)	(0.01 - 0.02)
Unionised Ammonia (mg/L)		0.006	0.002	0.001	0.001	0.001	0.001	0.001
omonisca rumnoma (mg/L)		(0.002 - 0.013)	(0.001 - 0.003)	(<0.001 - 0.004)	(<0.001 - 0.002)	(0.001 - 0.002)	(<0.001 - 0.002)	(<0.001 - 0.002)
Nitrite Nitrogen (mg/L)		0.01	0.01	0.01	0.01	0.01	0.01	0.01
Trible Tribogen (mg/L)		(<0.01 - 0.04)	(<0.01 - 0.08)	(<0.01 - 0.10)	(<0.01 - 0.05)	(<0.01 - 0.09)	(<0.01 - 0.02)	(<0.01 - 0.02)
Nitrate Nitrogen (mg/L)		0.02	0.01	0.01	0.01	0.01	0.01	0.01
g, <u></u> ,		(<0.01 - 0.04)	(<0.01 - 0.04)	(<0.01 - 0.04)	(<0.01 - 0.03)	(<0.01 - 0.06)	(<0.01 - 0.03)	(<0.01 - 0.02)
Total Inorganic Nitrogen (mg/L)		0.11	0.05	0.04	0.04	0.04	0.03	0.03
1 1.31 (3.)		(0.02 - 0.28)	(0.02 - 0.15)	(0.01 - 0.14)	(0.01 - 0.08)	(0.01 - 0.16)	(0.01 - 0.06)	(0.01 - 0.05)
Total Kjeldahl Nitrogen (mg/L)		0.28	0.14	0.15	0.11	0.12	0.11	0.10
		(0.14 - 0.43)	(0.11 - 0.18)	(0.09 - 0.36)	(0.06 - 0.17)	(0.08 - 0.19)	(0.08 - 0.14)	(0.07 - 0.15)
Total Nitrogen (mg/L)		0.31 (0.16 - 0.51)	0.17	0.17	0.13 (0.06 - 0.21)	0.15 (0.08 - 0.33)	0.12	0.12
		0.012	(0.11 - 0.26) <0.01	(0.10 - 0.40) <0.01	(0.06 - 0.21)	(0.08 - 0.33)	(0.08 - 0.17) <0.01	(0.07 - 0.19) <0.01
Orthophosphate Phosphorus (mg/L)		(<0.01 - 0.03)	(<0.01 - 0.02)	(<0.01 - 0.02)	<0.01 (<0.01 - 0.01)	(<0.01 - 0.02)	(0.01 - 0.01)	(<0.01 - 0.01)
		0.04	0.02	0.03	0.02	0.02	0.02	0.02
Total Phosphorus (mg/L)		(0.02 - 0.06)	(0.02 - 0.03)	(0.02 - 0.09)	(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.03)
		0.6	0.5	0.6	0.6	0.6	0.5	0.5
Silica (as SiO ₂) (mg/L)		(0.1 - 1.5)	(0.1 - 1.3)	(0.1 - 1.2)	(0.1 - 1.1)	(0.1 - 1.7)	(0.1 - 0.8)	(0.1 - 1.0)
		11.0	3.4	2.8	1.9	2.8	2.1	2.0
Chlorophy II- a (µg/L)		(1.2 - 28.4)	(1.3 - 7.1)	(1.0 - 7.1)	(1.0 - 5.0)	(1.1 - 6.2)	(1.0 - 5.0)	(1.2 - 4.6)
5 " / 5 / 400 1)		48	2	1	1	2	1	1
E. coli (cfu/100mL)		(3 - 470)	(1 - 48)	(1 - 1)	(1 - 2)	(1 - 29)	(1 - 2)	(1 - 2)
Faccal Coliforms (of //100ml)		110	3	1	1	3	1	1
Faecal Coliforms (cfu/100mL)		(9 - 920)	(1 - 100)	(1 - 2)	(1 - 3)	(1 - 83)	(1 - 3)	(1 - 12)

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

3. Data in brackets indicate the ranges.

MIRS BAY WCZ

Table 7.1 (continued)

Summary water quality statistics of the Mirs Bay WCZ in 2003

		Ninepin	Waglan	Mirs Bay	N	lirs Bay (Centra	ıl)	Long Harbour
Parameter		Group MM19	IsaInd MM8	(South) MM13	MM14	MM15	MM16	MM6
Number of samples		12	12	12	12	12	12	12
		23.1	23.3	23.5	23.2	23.1	23.1	23.6
Temperature (°C)		(16.7 - 27.9)	(16.7 - 28.0)	(16.3 - 28.1)	(16.3 - 27.6)	(16.4 - 27.7)	(16.4 - 27.8)	(16.2 - 28.0)
C-li-it.		33.5	33.4	33.4	33.4	33.4	33.4	32.9
Salinity		(32.8 - 34.4)	(32.2 - 34.1)	(31.5 - 34.4)	(32.3 - 34.3)	(32.6 - 34.5)	(32.7 - 34.7)	(31.8 - 34.2)
Dissolved Oxygen (mg/L)		5.9	5.9	6.0	6.0	6.0	6.2	5.8
Dissolved Oxygen (mg/L)		(4.4 - 7.0)	(4.4 - 7.0)	(5.0 - 7.2)	(4.7 - 7.4)	(4.8 - 7.1)	(4.9 - 7.8)	(4.6 - 7.1)
	Bottom	5.6	5.5	5.7	5.8	5.8	5.8	5.8
	Dottom	(3.6 - 7.0)	(4.1 - 6.9)	(4.1 - 7.0)	(4.4 - 7.2)	(4.2 - 7.3)	(3.5 - 7.8)	(4.0 - 8.7)
Dissolved Oxygen (% Saturation)		84	83	86	85	85	87	82
,		(63 - 91)	(63 - 99)	(72 - 93)	(68 - 94)	(70 - 93)	(72 - 99)	(68 - 100)
	Bottom	78 (51, 02)	78 (59.00)	(61 04)	(62, 04)	81 (FO 07)	81	81 (60, 442)
		(51 - 92) 8.2	(58 - 90) 8.2	(61 - 94) 8.2	(62 - 91) 8.2	(59 - 97) 8.2	(49 - 103) 8.2	(60 - 112) 8.2
pH		(8.0 - 8.4)	(8.0 - 8.4)	(8.0 - 8.4)	(8.0 - 8.4)	(8.0 - 8.4)	(8.0 - 8.3)	(8.0 - 8.4)
		3.1	3.5	4.8	4.6	4.7	5.0	5.3
Secchi Disc Depth (m)		(2.1 - 4.0)	(2.0 - 6.0)	(1.5 - 13.0)	(2.0 - 10.0)	(2.5 - 8.0)	(3.0 - 10.0)	(3.2 - 8.0)
4		8.1	9.6	8.5	9.0	8.5	7.1	5.7
Turbidity (NTU)		(5.8 - 10.6)	(6.0 - 16.4)	(4.2 - 12.7)	(5.3 - 14.9)	(5.0 - 13.9)	(4.2 - 9.7)	(2.7 - 7.7)
Constant Calida (assett)		4.0	4.9	4.4	4.8	4.1	2.8	1.4
Suspended Solids (mg/L)		(1.3 - 8.1)	(1.9 - 7.0)	(2.0 - 9.3)	(1.4 - 9.0)	(1.2 - 7.0)	(1.0 - 4.7)	(0.9 - 2.6)
E day Biochamical Ovygon Domand	(ma/L)	0.6	0.6	0.5	0.6	0.6	0.7	1.1
5-day Biochemical Oxygen Demand (mg/L)		(0.3 - 1.2)	(0.3 - 1.0)	(0.2 - 1.1)	(0.1 - 1.3)	(0.1 - 1.3)	(0.3 - 1.1)	(0.5 - 3.0)
Ammonia Nitrogen (mg/L)		0.01	0.01	0.01	0.01	0.01	0.01	0.02
Anniona Willogen (mg/L)		(0.01 - 0.02)	(0.01 - 0.02)	(0.01 - 0.02)	(0.01 - 0.02)	(0.01 - 0.02)	(0.01 - 0.02)	(0.01 - 0.04)
Unionised Ammonia (mg/L)		0.001	0.001	0.001	0.001	0.001	0.001	0.001
(g, 2)		(<0.001 - 0.002)	(<0.001 - 0.002)	(<0.001 - 0.002)	(<0.001 - 0.001)	(<0.001 - 0.002)	(<0.001 - 0.001)	(<0.001 - 0.002)
Nitrite Nitrogen (mg/L)		0.01	0.01	0.01	0.01	0.01	0.01	0.01
		(<0.01 - 0.03) 0.03	(<0.01 - 0.03) 0.04	(<0.01 - 0.02) 0.03	(<0.01 - 0.03) 0.03	(<0.01 - 0.02) 0.03	(<0.01 - 0.02) 0.02	(<0.01 - 0.04)
Nitrate Nitrogen (mg/L)		(<0.01 - 0.12)	(<0.01 - 0.11)	(<0.01 - 0.10)	(<0.01 - 0.11)	(<0.01 - 0.12)	(<0.01 - 0.05)	0.01 (<0.01 - 0.02)
		0.05	0.06	0.05	0.05	0.05	0.04	0.03
Total Inorganic Nitrogen (mg/L)		(0.01 - 0.14)	(0.02 - 0.13)	(0.01 - 0.13)	(0.01 - 0.14)	(0.01 - 0.14)	(0.01 - 0.07)	(0.01 - 0.07)
		0.10	0.10	0.09	0.09	0.09	0.10	0.12
Total Kjeldahl Nitrogen (mg/L)		(0.08 - 0.13)	(0.07 - 0.13)	(0.07 - 0.11)	(0.07 - 0.11)	(0.08 - 0.11)	(0.07 - 0.14)	(0.08 - 0.14)
T (N); (//);		0.14	0.15	0.13	0.13	0.13	0.12	0.13
Total Nitrogen (mg/L)		(0.09 - 0.21)	(0.09 - 0.22)	(0.08 - 0.21)	(0.08 - 0.22)	(0.08 - 0.21)	(0.09 - 0.16)	(0.08 - 0.20)
Orthophaenhata Phaenharus (mg/L)		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Orthophosphate Phosphorus (mg/L)		(<0.01 - 0.02)	(<0.01 - 0.01)	(0.01 - 0.01)	(<0.01 - 0.02)	(<0.01 - 0.02)	(0.01 - 0.01)	(<0.01 - 0.01)
Total Phosphorus (mg/L)		0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total Thosphoras (mg/L)		(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.02)	(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.03)	(0.02 - 0.03)
Silica (as SiO ₂) (mg/L)		0.6	0.6	0.5	0.6	0.6	0.6	0.6
(<u>-</u> , (g , <u>-</u>)		(0.3 - 1.3)	(0.3 - 1.1)	(0.2 - 1.0)	(0.3 - 1.2)	(0.2 - 1.3)	(0.2 - 0.9)	(0.1 - 1.2)
Chlorophy II-a (µg/L)		2.0	1.8	1.5	1.5	1.3	1.6	2.2
. , ",		(0.8 - 4.8)	(0.9 - 4.9)	(0.6 - 3.7)	(0.6 - 3.5)	(0.6 - 2.3)	(0.7 - 2.7)	(1.0 - 7.2)
<i>E. coli</i> (cfu/100mL)		1 (1 2)	1 (1 2)	1 (1 1)	1 (1 1)	1 (1.1)	1 (1 1)	1 (1 1)
		(1 - 3) 2	(1 - 2) 1	(1 - 1) 1				
Faecal Coliforms (cfu/100mL)		(1 - 10)	(1 - 3)	(1 - 3)	(1 - 2)	(1 - 2)	(1 - 2)	(1 - 6)
		\. 10)	(. 0)	(. 0)	(· <i>-</i> /	(· <i>-)</i>	\· -j	\· •/

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

3. Data in brackets indicate the ranges.

Table 7.2

Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Mirs Bay WCZ, 1986 - 2003

Monitoring Station		MM1	MM2	MM3	MM4	MM5	MM6	MM7
Monitoring Poriod		1991 I	1991 I	1991 I	1991 I	1991 I		1991 I
Monitoring Period		2003	2003	2003	2003	2003		2003
Parameter	Water Depth	2005	2005	2005		2005	2005	
Temperature (°C)	Surface Middle	71	-	-	71	21	7	-
remperature (C)	Bottom	~	7	71	ä	ä	ä	7
	Average	7	-	-	71	-	7	-
Salinity	Surface Middle	-	-	-	-	-	1991 1 2003 7 7 7 7	-
Samily	Bottom		-	-	-	-	1991 1 2003	-
	Average	-	-	-	-	-		-
Disabled Owner (may (1)	Surface	7	Ä	7	Ä	7		7
Dissolved Oxygen (mg/L)	Middle Bottom		- 3	-	7			-
	Average	-	7	-				_
	Surface	7	7	7	7	7	7	7
Dissolved Oxygen (%)	Middle Bottom	-	-	-	-	-		-
	Average		-	-	-	-		-
	Surface	-	-	-	-	-		-
pH	Middle	-	-	-	-	-	-	-
	Bottom Average		-	-	-	-	-	-
Secchi disc depth (m)	Average		-		-	-	7	-
	Surface	7	71	71	71	71	7	7
Turbidity (NTU)	Middle Bottom	7	7	7	7	7		7
	Average	7	7	7	7	7		7
	Surface	-	-	-	-	-	-	-
Suspended Solids (mg/L)	Middle	-	-	-	-	-	-	-
	Bottom Average	-	-	-	-	-	-	
	Surface							
Total volatile solids (mg/L)	Middle	-	-	-	-	-	-	-
	Bottom	-	-	-		-		-
	Average Surface		-	-	7	-		-
5-day Biochemical Oxygen Demand (mg/L)	Middle		-		-			_
, , , , , , , , , , , , , , , , , , , ,	Bottom	-	-	-	-	-	-	-
	Average	-	-	-	-	-	-	-
Ammonia nitrogen (mg/L)	Surface Middle		7	n R	n R	n R		n R
Anniona marogen (mg/L)	Bottom							
	Average	-	-	7	-	7	7	-
Nitrito nitrogon (mg/L)	Surface Middle	-	-	-	-	-	-	-
Nitrite nitrogen (mg/L)	Bottom	-	-	-	-	-	-	-
	Average	-	-	-	-	-	-	-
	Surface	-	-	-	-	-	-	7
Nitrate nitrogen (mg/L)	Middle Bottom	-	-	-	-	-	-	-
	Average		-	-	-	-		-
	Surface	-	7	7	-	7	7	7
Total inorganic nitrogen (mg/L)	Middle	-	-	7	3	7		7
	Bottom Average	-	-		7	<u>.</u>		.
	Surface		7	-		-		-
Total Kjeldahl nitrogen (mg/L)	Middle	-	7	7	-	7	-	-
	Bottom	-		5.				
	Average Surface	-	7	7	7	7		7
Total nitrogen (mg/L)	Middle		-	<u>u</u>		<u>u</u>		-
3, ,	Bottom	-	-	-	2	2	-	-
	Average	-	7	-	7	7		7
Orthophosphate phosphorus (mg/L)	Surface Middle	7	<u>.</u>	n R	2	2		n R
Orthophosphate phosphorus (mg/L)	Bottom	-	-		Ž.	ž		
	Average	7	7	7	7	7		7
Total phosphorus (mg/L)	Surface Middle	Ä	Ä	7	Ä	Ä		Ä
Total phosphorus (mg/L)	Bottom	n R	n R	n R	n R	n R		n R
	Average	Ž.	Ž.	Ž.	Ž.	Ž.		- 2
City ()	Surface	7	7	-	-	-		7
Silica (mg/L)	Middle Bottom	7	Ä	-	-	7		7
	Average		n n	-	n n		-	2
	Surface	71	71	71	71	-	-	7
Chlorophyll– <i>a</i> (µg/L)	Middle	7	71	7	7	7	-	7
	Bottom Average	-	7	7	7	7		7
	Surface	7	-	7	71	7	-	-
E. coli (cfu/100mL)	Middle	-	-	-	-	-	-	-
	Bottom	-	-	-	-	-	-	-
	Average Surface	-	-	-	-	-	-	-
Faecal coliforms (cfu/100mL)	Middle		7	-	-	-	-	-
	Bottom	-	-	-	-	-	-	-
	Average		7					

Note 1. Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05

^{2. -} indicates no significant trend is detected3. Test applied to past 18 years' data from each monitoring station unless stated otherwise

^{4.} **7** represents a significant increase over time 5. **¥** represents a significant decrease over time

Table 7.2 (continued)

Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Mirs Bay WCZ, 1986 - 2003

Monitoring Station		MM8	MM13	MM14	MM15	MM16	MM17
Monitoring Period		1991 I	1991 I	1994 I	1994 I	1994 I	1986 I
		2003	2003	2003	2003	2003	2003
Parameter	Water Depth Surface	_	_	_	_	_	71
Temperature (°C)	Middle	7	7	-	-	-	71
	Bottom Average	7	71	-	-	-	7
	Surface	-	-	-	-	-	-
Salinity	Middle Bottom	-	-	-	-	-	-
	Average	-	-	-	-	-	-
Dissolved Oxygen (mg/L)	Surface Middle	, u	n R	-	-	-	7
bissolved Oxygen (mg/L)	Bottom	7	-	<u>u</u>			- 1
	Average Surface	7	-	7	-	-	-
Dissolved Oxygen (%)	Middle	-	-	-		-	-
	Bottom Average	-	-	7	-	-	7
	Surface	-	-	-	-	-	-
рН	Middle Bottom	-	-	-	-	-	-
	Average		-	-	-	-	-
Secchi disc depth (m)	Surface	-	_	-	-	-	-
Turbidity (NTU)	Middle	7	7	7	7	7	7
• 1	Bottom	77	71	7	7	7	7
	Average Surface	71	71	7	7	-	7
Suspended Solids (mg/L)	Middle	-	-	-	-	-	7
	Bottom Average	-	-	-	-	-	.
Tatal colorla adda (con (I)	Surface	-	-	-	-	-	7
Total volatile solids (mg/L)	Middle Bottom	-	-	-	-	-	n R
	Average	-	-	-	-	-	7
5-day Biochemical Oxygen Demand (mg/L)	Surface Middle	-	-	-	-	-	-
b day bioenemical oxygen bemana (mg/z)	Bottom	-	-	-	-		-
	Average Surface	7	.	<u>.</u>	-		-
Ammonia nitrogen (mg/L)	Middle	ž	Ž.	Ž.	-	-	-
	Bottom Average	n R	n R	- 4	-		-
	Surface	-	-	-	-		-
Nitrite nitrogen (mg/L)	Middle Bottom	-	-	-	-	-	-
	Average	-	-	-	-	-	-
Nituata witus was (man /l)	Surface	-	-	-	-	-	7
Nitrate nitrogen (mg/L)	Middle Bottom		-	-	-	-	-
	Average	-	-	-	-	-	-
Total inorganic nitrogen (mg/L)	Surface Middle	7	-	-	-	-	-
3 2.3 (3,)	Bottom	-	-	-	-	-	-
	Average Surface	2	<u>.</u>			<u> </u>	7
Total Kjeldahl nitrogen (mg/L)	Middle	7	2	-	-	-	7
	Bottom Average	n R	צ	-	-		n R
Tabal adam a a conferencia	Surface	7	7	-	-		7
Total nitrogen (mg/L)	Middle Bottom	n N	צ	-	-	-	n R
	Average	7	Ä	-	-	7	7
Orthophosphate phosphorus (mg/L)	Surface Middle	7	-	u u	n R		-
	Bottom	7	-	7	7	7	-
	Average Surface	7	-	7	n n	7	7
Total phosphorus (mg/L)	Middle	7	7	7	7	7	-
	Bottom Average	n R	n R	y Z	n R	n R	.
Cilian (man (I)	Surface	-	-	-	-	-	7
Silica (mg/L)	Middle Bottom	-	-	-	-	-	7
	Average	-	-	-	-	-	-
Chlorophyll– a (µg/L)	Surface Middle	7	7	-	-	-	-
emorophyn a (µg/ L/	Bottom	7	71	-	-	-	-
	Average Surface	71	71	-	-	-	-
<i>E. coli</i> (cfu/100mL)	Middle	-	-	-	-	-	-
	Bottom	-	-	-	-	-	-
	Average Surface	-	-	-	-	-	-
Faecal coliforms (cfu/100mL)	Middle	-	-	-	-	-	-
	Bottom	_	-	-	-	-	-

Note 1. Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05

^{2. –} indicates no significant trend is detected3. Test applied to past 18 years' data from each monitoring station unless stated otherwise

^{4.} MM19 has three years' data only, which is insufficient to perform Seasonal Kendall Test
5. 7 represents a significant increase over time
6. № represents a significant decrease over time

Chapter 8 - North Western Water Control Zone

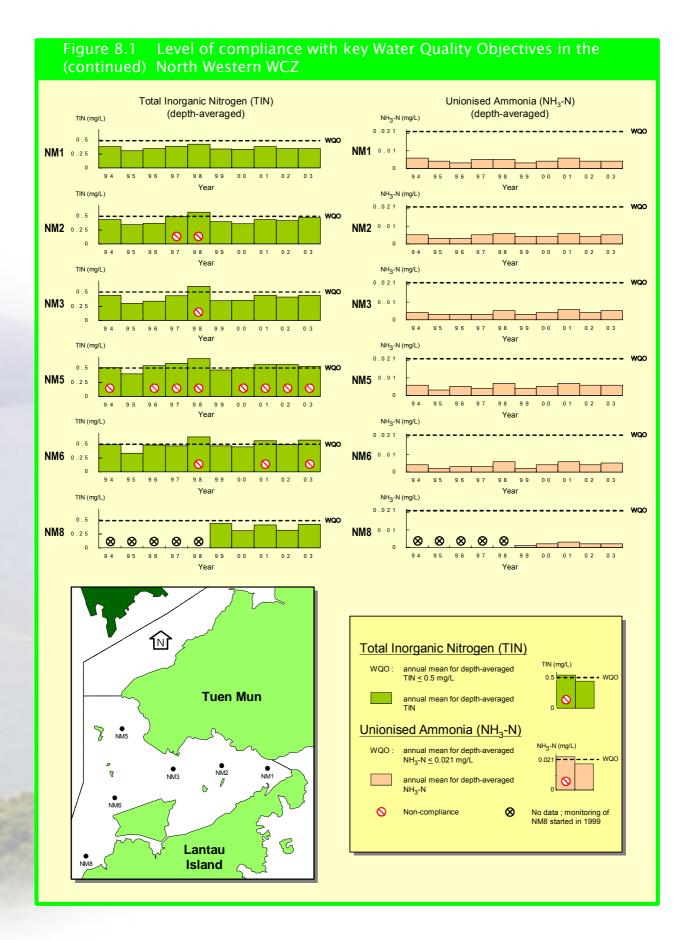
Water Quality in 2003

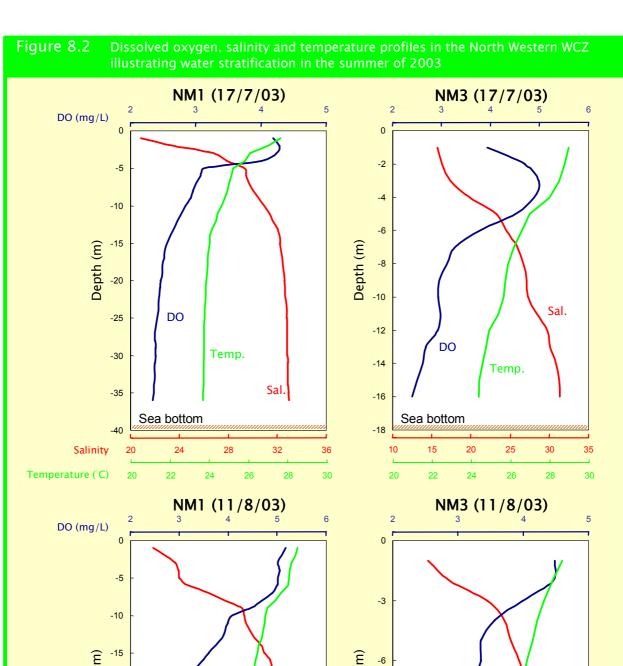
- 8.1 The water quality in the North Western Water Control Zone (WCZ) is influenced by local effluent discharges and the Pearl River flow. There are three major sewage outfalls in the WCZ: Pillar Point, Northwest New Territories (from San Wai Sewage Treatment Works (STW)) and Siu Ho Wan which discharged a total of 0.3 million m³/day of treated effluent into the North Western water in 2003 (Figure 1.8). The levels of *E. coli* and ammonia nitrogen (NH₄-N) at the stations NM1, NM2, NM3 and NM5 located near the outfalls were generally higher compared with other stations. A summary of the 2003 water quality data is shown in Table 8.1.
- 8.2 The increase of *E. coli* bacteria at NM1 noted in 2002 was again observed in 2003, reaching a maximum of 810 cfu/100mL in 10 years. This may be related to the increased volume of effluent from the Stonecutters Island Sewage Outfall to 1.4 million m³/day. On the other hand, there was a 40% decrease of *E. coli* at NM5 located near the discharge point of San Wan STW which had a slight reduction in effluent discharge in 2003.
- As in other parts of territorial waters, there has been a moderate decrease of dissolved oxygen (DO) in the North Western WCZ by around 0.7mg/L (11%) in 2003. In addition, the levels of total inorganic nitrogen (TIN) and total phosphorus increased by 0.04 mg/L (9%) and 0.005 mg/L (13%) respectively in 2003.

Compliance with Water Quality Objectives

- Among the six monitoring stations in the North Western WCZ, two eastern stations (NM1 and NM3) failed to comply with the DO objective in 2003 (Figure 8.1). These stations have experienced periods of water stratification in the summer when high salinity and low DO (below 4mg/L) prevailed in the middle and bottom layers (Figure 8.2). Water column stratification (i.e. salinity difference between surface and bottom water exceeds 5 unit) occurred in 39% of the sampling events in 2003 as compared with 25% in 2002. Increased water stratification may contribute to lower compliance of the DO objective in 2003.
- For TIN, four of the six monitoring stations in the North Western WCZ complied with the WQO in 2003. The two non-compliance stations (i.e. NM5 and NM6) were nearer to the Pearl River flow and had a lower track record of WQO compliance in the past. As in previous years, all stations in the WCZ fully complied with the WQO for unionised ammonia in 2003.

NORTH WESTERN WCZ


Long-term Water Quality Trends


- 8.6 Significant long-term increases of *E. coli* were detected at NM1 and NM5 during 1988-2003 (Table 8.2). The former may be related to pollution in Victoria Harbour and other local discharges around Castle Peak Road, while the latter to effluents discharged from the San Wai and Pillar Point STWs.
- 8.7 Long-term increases in ammonia nitrogen (NH₄-N), nitrite, nitrate and TIN were detected at the stations NM2, NM3 and NM5. These increasing trends may undermine the compliance with the TIN objective at the stations NM2 and NM3 in the future as NM5 had already exceeded the WQO level.
- 8.8 To reduce pollution and arrest the trend of water quality deterioration in the North Western WCZ, the Government has plans to upgrade the Siu Ho Wan, Pillar Point and San Wai Sewage Treatment Works from preliminary to chemical treatment with disinfection. The upgrading of the Siu Ho Wan Sewage Treatment Works (from preliminary to chemical treatment) which started in 2001 would be commissioned around the end of 2004.

Depth (m) DO -9 Sal. -25 Sal. DO -30 -12 **Temp** Temp. -35 Sea bottom Sea bottom -15 Salinity 25 30 25 30 20 Temperature (°C) 24 30 20 30 20 22 26 28 22 24 26 28

Table 8.1
Summary water quality statistics of the North Western WCZ in 2003

	Lantau Island	Pearl Island	Pillar Point	Urmston Road	Chek L	ap Kok
	(North)				(North)	(West)
Parameter	NM1	NM2	NM3	NM5	NM6	NM8
Number of samples	12	12	12	12	12	12
Temperature (°C)	23.2	23.5	23.4	23.5	23.6	23.4
Temperature (C)	(17.1 - 28.3)	(17.1 - 28.6)	(17.0 - 28.4)	(17.1 - 28.5)	(16.8 - 29.1)	(16.9 - 28.8)
Salinity	30.3	28.4	29.0	28.0	26.7	27.7
Cumity	(22.9 - 33.5)	(14.3 - 33.5)	(20.2 - 33.6)	(19.5 - 33.5)	(11.4 - 33.7)	(10.1 - 33.7)
Dissolv ed Oxygen (mg/L)	5.5	5.8	5.6	5.6	5.7	5.9
ziocon ou on y gon (inigi z)	(3.0 - 8.4)	(3.8 - 8.5)	(3.2 - 8.4)	(3.4 - 8.4)	(4.3 - 7.7)	(4.5 - 7.3)
Bottom	5.2	5.6	5.4	5.2	5.6	5.6
	(2.4 - 8.5)	(2.7 - 8.4)	(2.5 - 8.4)	(2.4 - 8.3)	(3.3 - 7.7)	(2.7 - 7.2)
Dissolv ed Oxygen (% Saturation)	76	79	77	77	78	81
	(43 - 106) 72	(55 - 107) 77	(46 - 106) 74	(49 - 105) 71	(62 - 97) 77	(66 - 95) 77
Bottom	(34 - 107)	(38 - 106)	(36 - 105)	(35 - 104)	(47 - 96)	(40 - 91)
	8.1	8.1	8.1	8.1	8.1	8.2
pH	(7.9 - 8.3)	(7.9 - 8.4)	(7.9 - 8.4)	(7.8 - 8.4)	(7.8 - 8.4)	(8.0 - 8.4)
	1.8	1.9	1.5	1.3	1.4	1.4
Secchi Disc Depth (m)	(0.5 - 3.1)	(1.0 - 3.5)	(0.4 - 2.4)	(0.2 - 2.1)	(0.5 - 2.4)	(0.5 - 2.0)
	12.3	10.9	13.5	17.6	15.0	18.4
Turbidity (NTU)	(5.6 - 28.0)	(6.1 - 19.7)	(8.0 - 22.0)	(9.7 - 30.4)	(7.8 - 21.6)	(5.5 - 46.3)
	9.7	7.4	10.0	17.2	11.4	17.0
Suspended Solids (mg/L)	(2.2 - 32.7)	(2.1 - 19.3)	(3.4 - 23.3)	(6.7 - 37.7)	(2.0 - 25.8)	(5.5 - 51.3)
5 to 100	0.9	1.0	1.0	1.1	1.2	1.0
5-day Biochemical Oxygen Demand (mg/L)	(0.4 - 1.6)	(0.3 - 2.1)	(0.3 - 2.4)	(0.5 - 2.5)	(0.6 - 3.1)	(0.4 - 2.1)
Ammonia Nitrogen (mg/L)	0.09	0.10	0.10	0.13	0.10	0.04
Ammonia Miliogen (mg/L)	(0.02 - 0.23)	(0.03 - 0.25)	(0.03 - 0.26)	(0.03 - 0.31)	(0.01 - 0.25)	(0.01 - 0.14)
Unionised Ammonia (mg/L)	0.004	0.005	0.005	0.006	0.005	0.002
Official Ammonia (mg/L)	(0.001 - 0.008)	(0.002 - 0.008)	(0.001 - 0.009)	(0.002 - 0.014)	(0.001 - 0.017)	(<0.001 - 0.006)
Nitrite Nitrogen (mg/L)	0.05	0.07	0.07	0.08	0.08	0.06
	(<0.01 - 0.16)	(<0.01 - 0.23)	(<0.01 - 0.19)	(<0.01 - 0.20)	(<0.01 - 0.24)	(<0.01 - 0.22)
Nitrate Nitrogen (mg/L)	0.20	0.31	0.27	0.33	0.39	0.33
	(0.01 - 0.58)	(<0.01 - 0.95)	(<0.01 - 0.70)	(<0.01 - 0.74)	(<0.01 - 1.13)	(<0.01 - 1.13)
Total Inorganic Nitrogen (mg/L)	0.35	0.48	0.44	0.53	0.57	0.42
	(0.07 - 0.75)	(0.06 - 1.19)	(0.03 - 0.92)	(0.05 - 1.00)	(0.02 - 1.61)	(0.01 - 1.38)
Total Kjeldahl Nitrogen (mg/L)	0.23 (0.15 - 0.34)	0.23 (0.16 - 0.35)	0.25 (0.16 - 0.37)	0.29 (0.16 - 0.43)	0.26 (0.14 - 0.41)	0.19 (0.11 - 0.27)
	0.48	0.61	0.59	0.69	0.73	0.11 - 0.27)
Total Nitrogen (mg/L)	(0.23 - 0.92)	(0.25 - 1.37)	(0.22 - 1.13)	(0.19 - 1.19)	(0.16 - 1.78)	(0.14 - 1.62)
	0.023	0.026	0.026	0.030	0.027	0.017
Orthophosphate Phosphorus (mg/L)	(0.01 - 0.04)	(0.01 - 0.04)	(0.01 - 0.04)	(0.01 - 0.05)	(0.01 - 0.06)	(<0.01 - 0.04)
T (D) (//)	0.04	0.04	0.04	0.05	0.05	0.04
Total Phosphorus (mg/L)	(0.02 - 0.06)	(0.02 - 0.06)	(0.02 - 0.06)	(0.02 - 0.08)	(0.02 - 0.08)	(0.02 - 0.07)
Cili (CiO) (/II)	1.3	1.7	1.6	1.9	2.2	1.9
Silica (as SiO ₂) (mg/L)	(0.2 - 3.3)	(0.2 - 4.8)	(0.2 - 3.9)	(0.3 - 4.3)	(0.3 - 6.3)	(0.2 - 5.8)
Chlorophyll 3 (ug/L)	2.2	2.3	2.6	2.7	2.6	3.2
Chlorophy II-a (µg/L)	(0.5 - 5.2)	(0.5 - 8.4)	(0.6 - 11.5)	(0.6 - 11.7)	(0.7 - 5.9)	(0.7 - 7.4)
E. coli (cfu/100mL)	810	380	440	470	44	5
L. com (old/ roomL)	(180 - 3600)	(84 - 2500)	(92 - 4600)	(7 - 1800)	(4 - 1200)	(1 - 110)
Faecal Coliforms (cfu/100mL)	1900	920	1000	1000	110	11
` ′	(460 - 7900)	(230 - 8900)	(210 - 7800)	(17 - 3800)	(18 - 2700)	(2 - 270)

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for *E. coli* and faecal coliforms which are annual geometric means.

^{3.} Data in brackets indicate the ranges.

Table 8.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the North Western WCZ, 1986 - 2003

Monitoring Station		NM1	NM2	NM3	NM5	NM6
		1988	1986	1986	1988	1991
Monitoring Period		l 2003	l 2003	l 2003	l 2003	I 2003
Parameter	Water Depth	2003	2003	2003		2003
Temperature (°C)	Surface Middle	-	-	-	71	-
remperature (c)	Bottom	-	-	-	-	-
	Average Surface	-	-	-	71	-
Salinity	Middle	-	-	-	-	-
•,	Bottom	-	-	-	-	-
	Average Surface	-	-	-	- 2	-
Dissolved Oxygen (mg/L)	Middle	-			-	-
	Bottom	-	-	-	7	-
	Average Surface	-	-	-	-	צ
Dissolved Oxygen (%)	Middle	-	-	-		-
	Bottom	-	-	-	-	-
	Average Surface	-	- 1	- 1	- 1	7
pH	Middle	-	_	_	2	-
	Bottom	-	-	-	7	-
Secchi disc depth (m)	Average	-	-	-	-	-
	Surface	-	-	-	-	71
Turbidity (NTU)	Middle	-	7	-	-	71
	Bottom	-	-	-	-	71
	Average Surface	-	-	-		71
Suspended Solids (mg/L)	Middle	-	-	-	-	-
•	Bottom	-	-	-	-	-
	Average Surface	-	-	-	-	-
Total volatile solids (mg/L)	Middle					
	Bottom	-	-	-	-	-
	Average	-	7	-	-	-
5-day Biochemical Oxygen Demand (mg/L)	Surface Middle	-	-	-	-	-
day biochemical oxygen bemana (mg/L)	Bottom	-	_	_	_	_
	Average	-	-	-	-	-
Ammonia nitrogon (mg/L)	Surface Middle	-	7	7	7	-
Ammonia nitrogen (mg/L)	Bottom	-	7	7	7	-
	Average	-	7	7	71	-
Nitrita nitragan (mg/l)	Surface Middle	-	7	7	7	-
Nitrite nitrogen (mg/L)	Bottom	-	7	7	-	-
	Average	-	7	7	71	-
Nitron to a literatura of the second (1)	Surface	-	7	7	71	-
Nitrate nitrogen (mg/L)	Middle Bottom	-	7	7		-
	Average		-	71	- [
	Surface	-	7	7	71	-
Total inorganic nitrogen (mg/L)	Middle Bottom	-	-	7	-	-
	Average	-	-	7	7	-
	Surface	7	7	7	-	-
Total Kjeldahl nitrogen (mg/L)	Middle	3	3	3	7	-
	Bottom Average	n R	n R	n R		<u>.</u>
	Surface	-	-	-	-	-
Total nitrogen (mg/L)	Middle	-	-	-	-	-
	Bottom Average	-	<u>-</u>	-	-	-
	Surface	-	-	-		-
Orthophosphate phosphorus (mg/L)	Middle	-	-	-	-	2
	Bottom Average	-	-	-	-	Ä
	Surface	-	-	-	-	צ
Total phosphorus (mg/L)	Middle		-	-		2
-	Bottom	7	-	-	-	7
	Average Surface	-	-	-	-	- 7
Silica (mg/L)	Middle	-	-	-		-
-	Bottom	-	-	-	-	-
	Average Surface	-	-	-	- 7	
Chlorophyll-a (µg/L)	Middle	-	-	-	7	7
. ,	Bottom	-	-	-	-	7
	Average	-	-	-		7
	Surface	7	-	-	7	-
F. coli (cfu/100ml)	Middle					_
<i>E. coli</i> (cfu/100mL)	Middle Bottom	7	-	-		-
<i>E. coli</i> (cfu/100mL)	Bottom Average	7	-	-	7	-
	Bottom Average Surface	71 71 71		- - -	7 7 7	- - 7
E. coli (cfu/100mL) Faecal coliforms (cfu/100mLl)	Bottom Average	7	7	-	7	-

Note 1. Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05 2. – indicates no significant trend is detected

^{3.} Test applied to past 18 years' data from each monitoring station unless stated otherwise

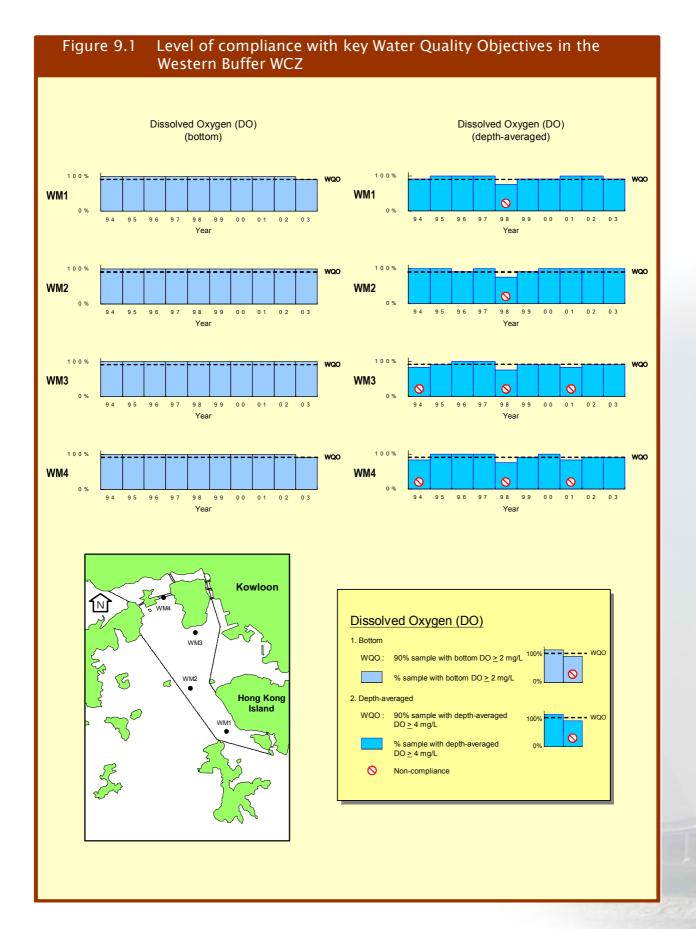
^{4.} NM8 has five years' data only, which is insufficient to perform Seasonal Kendall Test
5.
7 represents a significant increase over time
6.
■ represents a significant decrease over time

Chapter 9 - Western Buffer Water Control Zone

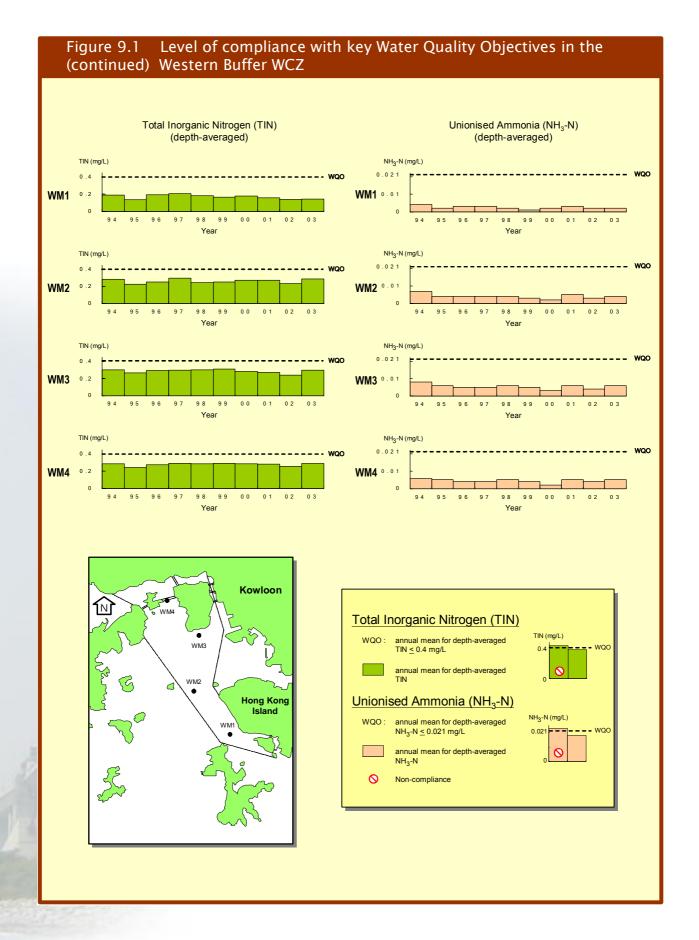
Water Quality in 2003

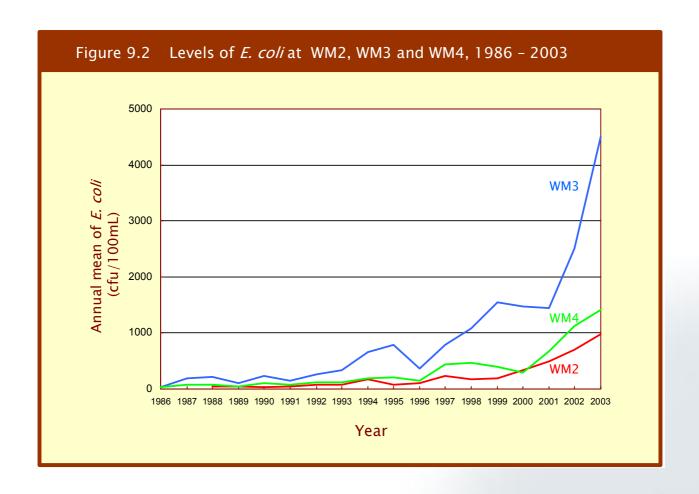
- 9.1 The Western Buffer Water Control Zone (WCZ) covers the Ma Wan Channel, Kap Shui Mun Channel and other major navigation channels and anchorages in the Western Harbour. It has a strong tidal flushing capacity and is used for disposal of effluent from the Stonecutters Island Sewage Treatment Works (SCISTW). A summary of the 2003 water quality data for the Western Buffer WCZ is shown in Table 9.1.
- 9.2 Since the commissioning of the Harbour Area Treatment Scheme (HATS) Stage I in 2002, the water near the SCISTW Outfall has experienced a marked increase of faecal bacteria. In 2003, the *E. coli* levels at the stations WM2, WM3 and WM4 have risen further by 40% (to 280 cfu/100mL), 79% (to 2000 cfu/100mL) and 27% (to 300 cfu/100mL) respectively, reaching their maximum levels since the mid 80s (Figure 9.2). The amount of effluent discharged from the SCISTW Outfall has increased from 1.3 million m³/day in 2002 to 1.4 million m³/day in 2003. Local pollution around Tsuen Wan also contributed to the pollution in the area.
- 9.3 The higher bacterial levels in the Western Buffer WCZ have resulted in the closure of beaches along the Tsuen Wan coast during bathing season in 2003. EPD's beach monitoring results showed that the annual rankings of Approach, Lido, Casam and Gemini Beaches in Tsuen Wan were 'Very Poor' and Hoi Mei Wan Beach was "Poor".
- 2.4 Like the rest of Hong Kong waters, the Western Buffer WCZ has experienced a 6-11% decrease of dissolved oxygen (DO) in 2003 which may be due to natural fluctuations in the sea water. The levels of orthophosphate phosphorus at all stations (WM1-WM4) showed significant increases (41-64%) but no elevation of algal biomass (i.e. chlorophyll-a) was observed.
- 9.5 The levels of suspended solids (SS) and turbidity in the WCZ showed a reduction of 25-70% in 2003, in particular at WM3 which could be related to the decrease of marine works around South Tsing Yi Island. In 2002, the marine sand abstracted from the South Tsing Yi Marine Borrow Area amounted to 14 million m³. The sand dredging activity was ceased in 2003 (Figure 1.7). In addition, the amount of materials dumped at the two marine disposal sites in South Tsing Yi has been reduced from 10 million m³ in 2002 to 1.4 million m³ in 2003 (Figure 1.7).

WESTERN BUFFER WCZ


Compliance with Water Quality Objectives

9.6 Figure 9.1 shows the levels of compliance with the key Water Quality Objectives (WQOs) between 1994 and 2003. All four stations in the WCZ fully complied with the key WQOs in 2003, similar to that in 2002.


Long-term Water Quality Trends


- 9.7 Long-term increasing trends in sewage bacteria were observed in the central and northern parts of the Western Buffer WCZ (i.e. at WM2, WM3 and WM4) (Table 9.2 and Figure 9.2) in the last 18 years (1986-2003). On the other hand, the water quality at WM1 in the East Lamma Channel has remained relatively stable with some decreases in total nitrogen and total phosphorus.
- 9.8 To reduce local pollution in the Western Buffer WCZ, the Government has built a new sewage treatment plant in Sham Tseng, the Sham Tseng Sewage Treatment Works, which was commissioned in December 2003. Sewage undergoes chemically enhanced primary treatment with disinfection prior to discharge. In addition, the Government has plans to provide sewerage along the Castle Peak Road to serve unsewered villages and properties around Ting Kau, Sham Tseng and Tsing Lung Tau.
- 9.9 The current chemically enhanced primary treatment at the SCISTW under the HATS Stage I development was mainly targeting towards the removal of organic pollutants (BOD) and SS. The long term solution of the pollution problem in Victoria Harbour has been investigated and the study findings have been put forward for consultation in 2004 (http://www.cleanharbour.gov. hk).

H H

WESTERN BUFFER WCZ

Table 9.1
Summary water quality statistics of the Western Buffer WCZ in 2003

	Hong Ko	ng Island	Tsing Yi	Tsing Yi
	(We	est)	(South)	(West)
Param eter	WM1	WM2	WM3	WM4
Number of samples	12	12	12	12
Tomporature (°C)	23.3	23.6	23.5	23.5
Temperature (°C)	(17.3 - 26.9)	(17.5 - 28.0)	(17.3 - 27.8)	(17.4 - 28.0)
Salinity	32.6	31.1	31.6	31.4
Caminty	(29.2 - 33.8)	(23.7 - 33.5)	(26.6 - 33.5)	(27.6 - 33.5)
Dissolved Oxygen (mg/L)	5.6	5.5	5.4	5.2
2.000.10 0 0 0 0 y g 0 (g, 2)	(3.7 - 7.5)	(4.2 - 7.1)	(3.7 - 7.0)	(3.1 - 6.9)
Bottom	5.1	5.2	5.0	4.9
	(1.7 - 7.4)	(2.4 - 7.1) 77	(2.0 - 7.4) 75	(1.9 - 7.0) 73
Dissolved Oxygen (% Saturation)	78 (53 - 95)		75 (54 - 89)	
	(53 - 95)	(60 - 91) 73	(54 - 69)	(45 - 88) 69
Bottom	(26 - 94)	(34 - 91)	(30 - 93)	(29 - 88)
	8.1	8.1	8.1	8.1
pH	(7.9 - 8.3)	(7.9 - 8.3)	(7.9 - 8.3)	(7.9 - 8.3)
	2.7	2.2	2.2	2.2
Secchi Disc Depth (m)	(2.0 - 3.7)	(1.0 - 3.9)	(1.6 - 2.8)	(1.4 - 4.1)
T	10.0	9.7	11.6	11.9
Turbidity (NTU)	(7.3 - 14.8)	(5.7 - 14.7)	(5.7 - 25.3)	(6.6 - 19.2)
Suspended Solids (mg/L)	6.7	6.5	8.0	9.6
Suspended Solids (Hig/L)	(2.3 - 9.9)	(2.2 - 12.8)	(2.6 - 14.5)	(2.7 - 18.5)
5-day Biochemical Oxygen Demand (mg/L)	0.8	0.9	0.9	0.7
5-day biochemical oxygen bemand (mg/L)	(0.4 - 1.2)	(0.4 - 1.5)	(0.5 - 1.4)	(0.4 - 1.0)
Ammonia Nitrogen (mg/L)	0.04	0.08	0.12	0.10
,	(0.01 - 0.08)	(0.03 - 0.15)	(0.04 - 0.21)	(0.01 - 0.23)
Unionised Ammonia (mg/L)	0.002	0.004	0.006	0.005
(0 /	(<0.001 - 0.003) 0.02	(0.002 - 0.009)	(0.002 - 0.009)	(<0.001 - 0.008)
Nitrite Nitrogen (mg/L)	(<0.01 - 0.05)	0.04 (<0.01 - 0.14)	0.04 (<0.01 - 0.10)	0.04 (<0.01 - 0.11)
	0.09	0.16	0.14	0.16
Nitrate Nitrogen (mg/L)	(0.01 - 0.32)	(0.01 - 0.59)	(0.02 - 0.44)	(0.02 - 0.40)
	0.14	0.29	0.30	0.29
Total Inorganic Nitrogen (mg/L)	(0.03 - 0.39)	(0.10 - 0.77)	(0.11 - 0.60)	(0.13 - 0.50)
-	0.13	0.20	0.24	0.21
Total Kjeldahl Nitrogen (mg/L)	(0.07 - 0.19)	(0.15 - 0.27)	(0.18 - 0.33)	(0.15 - 0.31)
Total Nitrogen (mg/L)	0.24	0.41	0.41	0.40
Total Nitrogen (mg/L)	(0.09 - 0.52)	(0.17 - 0.93)	(0.20 - 0.76)	(0.19 - 0.64)
Orthophosphate Phosphorus (mg/L)	0.012	0.019	0.023	0.022
Orthophosphale Thospholas (Ilig/L)	(0.01 - 0.02)	(0.01 - 0.03)	(0.01 - 0.03)	(0.02 - 0.03)
Total Phosphorus (mg/L)	0.03	0.04	0.04	0.04
	(0.02 - 0.03)	(0.02 - 0.05)	(0.03 - 0.06)	(0.03 - 0.06)
Silica (as SiO ₂) (mg/L)	0.8	1.1	1.0	1.1
<u>, , , , , , , , , , , , , , , , , , , </u>	(0.4 - 1.9)	(0.4 - 3.2)	(0.4 - 2.8)	(0.5 - 2.7)
Chlorophy II-a (μg/L)	2.8 (0.7 - 10.7)	3.4	2.9	2.6
	(0.7 - 10.7)	(0.7 - 12.5) 970	(0.6 - 10.9) 4500	(0.4 - 8.9) 1400
E. coli (cfu/100mL)	(36 - 440)	(110 - 9000)	(1400 - 14000)	(200 - 7700)
	160	1700	10000	2900
Faecal Coliforms (cfu/100mL)	(65 - 800)	(160 - 16000)	(2600 - 31000)	(420 - 17000)

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for *E. coli* and faecal coliforms which are annual geometric means.

^{3.} Data in brackets indicate the ranges.

Table 9.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Western Buffer WCZ, 1986 – 2003

Monitoring Station		WM1 1988	WM2 1988	WM3 1986	WM4 1986
Monitoring Period					
Parameter	Water Depth	2003	2003	2003	2003
	Surface	71	71	71	71
Temperature (°C)	Middle Bottom	7 7	7	7	7
	Average	7	ä	ä	ä
Calinity	Surface Middle	-	-	-	-
Salinity	Bottom	-	-	-	-
	Average	-	-	-	-
Dissolved Oxygen (mg/L)	Surface Middle	-	<u>.</u>	-	-
Dissolved Oxygen (mg/L)	Bottom	-	-	-	-
	Average	-	7	-	-
Dissolved Oxygen (%)	Surface Middle	-	-	-	-
Disserved extygen (ve)	Bottom	-	-	-	-
	Average Surface	-	-	-	-
pH	Middle	-	<u>u</u>	-	-
	Bottom	-	7	-	-
Secchi disc depth (m)	Average	-	7	-	-
	Surface	71	71	71	-
Turbidity (NTU)	Middle	7		-	_
	Bottom Average	7	71	7	7
	Surface	-	-	-	-
Suspended Solids (mg/L)	Middle	_	-	-	-
	Bottom Average	7	-	-	-
	Surface	-	-	7	-
Total volatile solids (mg/L)	Middle	-	-	-	-
	Bottom Average	-	-	-	-
- 1 - 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1	Surface	-	-	-	-
5-day Biochemical Oxygen Demand (mg/L)	Middle Bottom	-	-	-	-
	Average	-	-	-	-
	Surface	-	-	-	-
Ammonia nitrogen (mg/L)	Middle Bottom	L	-	-	-
	Average	-			
Niewite withous (may /L)	Surface	-	7	-	-
Nitrite nitrogen (mg/L)	Middle Bottom	-	-	-	-
	Average	-	-	-	-
Nitrate nitrogen (mg/L)	Surface Middle	-	-	71	7
Nitrate introgen (ing/L)	Bottom	-	-	-	71
	Average	-	-	7	7
Total inorganic nitrogen (mg/L)	Surface Middle	-	7	7	71
rotal morganic merogen (mg/L)	Bottom	-	-	-	-
	Average Surface	-	-	-	7
Total Kjeldahl nitrogen (mg/L)	Middle	n R	<u>.</u>	-	7
· · · · · · · · · · · · · · · · · · ·	Bottom	7	7	7	7
	Average Surface	7	Ä	Ä	7
Total nitrogen (mg/L)	Middle	4	-	-	-
1	Bottom	7	-	7	-
	Average Surface	7	-	-	-
Orthophosphate phosphorus (mg/L)	Middle	-	-	-	-
	Bottom	-	-	-	-
	Average Surface	-	-	-	-
Total phosphorus (mg/L)	Middle	2	-	-	-
	Bottom	-	-	7	-
	Average Surface	7	-	-	-
Silica (mg/L)	Middle	-	-	-	-
	Bottom Average	-	-	-	-
	Surface	7	7	7	7
Chlorophyll– <i>a</i> (µg/L)	Middle	-	-	7	-
	Bottom Average	7	7	-	
	Surface	-	7	71	7
<i>E. coli</i> (cfu/100mL)	Middle	-	7	71	71
	Bottom Average	7	7	7	7
	Surface	-	7	7	7
Faecal coliforms (cfu/100mL)	Middle Bottom	=	7	7	7
	Average	-	7	7	7

1. Results of the Seasonal Kendall Test shown are statistically significant at $\it p < 0.05$

^{2. -} indicates no significant trend is detected3. Test applied to past 18 years' data from each monitoring station unless stated otherwise

^{4. 7} represents a significant increase over time

^{5. 3} represents a significant decrease over time

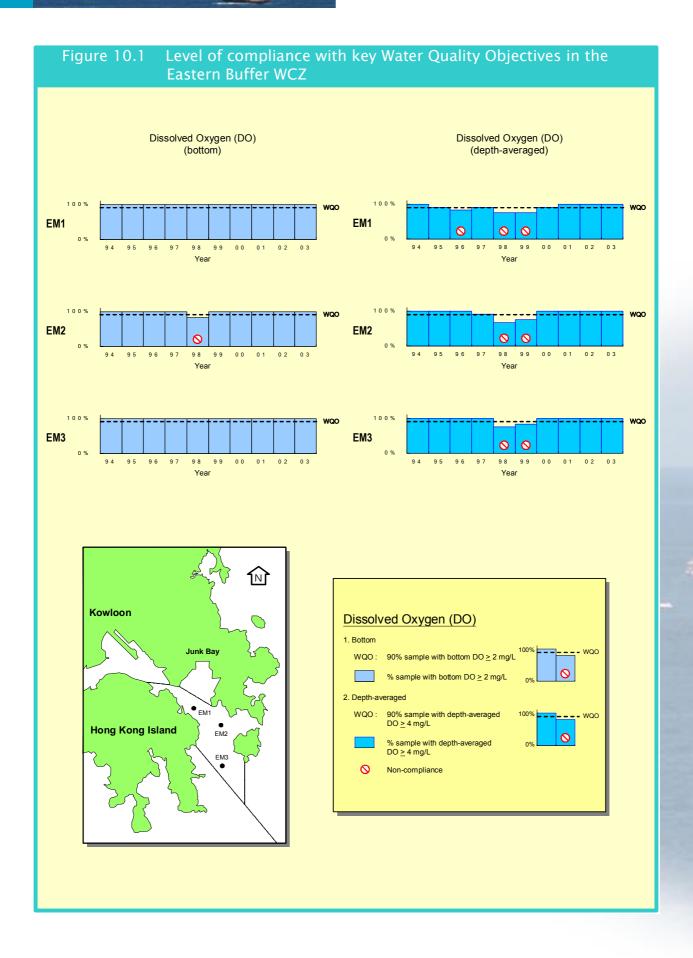
Chapter 10 - Eastern Buffer Water Control Zone

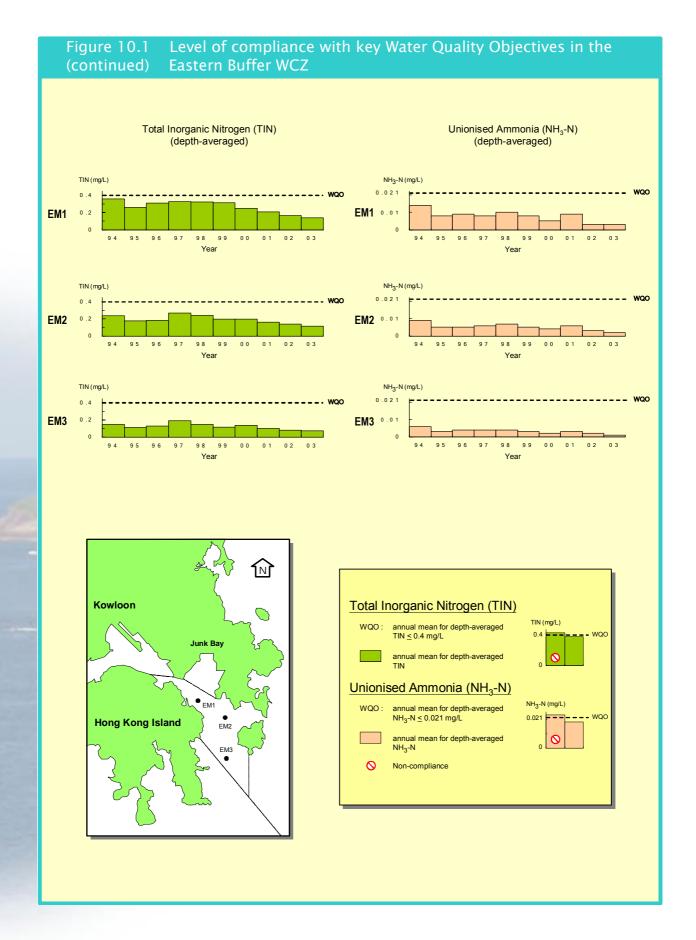
Water Quality in 2003

- The Eastern Buffer Water Control Zone (WCZ) is situated east of the Victoria Harbour WCZ covering Lei Yue Mun and Tathong Channel. There is a general descend of major pollutants (such as *E. coli*, ammonia nitrogen (NH₄-N), total inorganic nitrogen (TIN) and total phosphorus) from north to south of the WCZ (i.e. from EM1 to EM3). Due to the influence of oceanic inflow, the water quality in the southern end of the WCZ was better with lower bacterial and nutrient levels. A summary of the 2003 water quality data for the Eastern Buffer WCZ is shown in Table 10.1.
- Outfalls have been diverted to the Stonecutters Island Sewage Treatment Works following the commissioning of the Harbour Area Treatment Scheme (HATS) Stage I, the Eastern Buffer WCZ has experienced a very substantial improvement in water quality e.g. notable decreases in *E. coli* and nutrients (nitrogen and phosphorus). In 2003, the improvement was sustained and the concentrations of pollutants, such as *E. coli*, NH₄-N, TIN and total phosphorus showed further reductions.
- In 2003, the mean *E. coli* and ammonia nitrogen (NH₄-N) levels in the Eastern Buffer WCZ were 35 cfu/100mL and 0.042 mg/L respectively. These, together with other nutrient parameters e.g. total inorganic nitrogen (TIN), total nitrogen and total phosphorus, have reached their lowest levels since the mid-80s.
- Like in other marine waters in Hong Kong, there has been a general decrease of dissolved oxygen (DO) concentrations in the Eastern Buffer WCZ in 2003. The depth-averaged and the bottom DO have decreased by 0.5mg/L (8%) and 0.8mg/L (12%) respectively, within the range of natural fluctuations.

Compliance with Water Quality Objectives

10.5 As in previous years, the Eastern Buffer WCZ has fully achieved compliance with the Water Quality Objectives for dissolved oxygen, total inorganic nitrogen and unionised ammonia in 2003 (Figure 10.1).


EASTERN BUFFER WCZ


Long-term Water Quality Trends

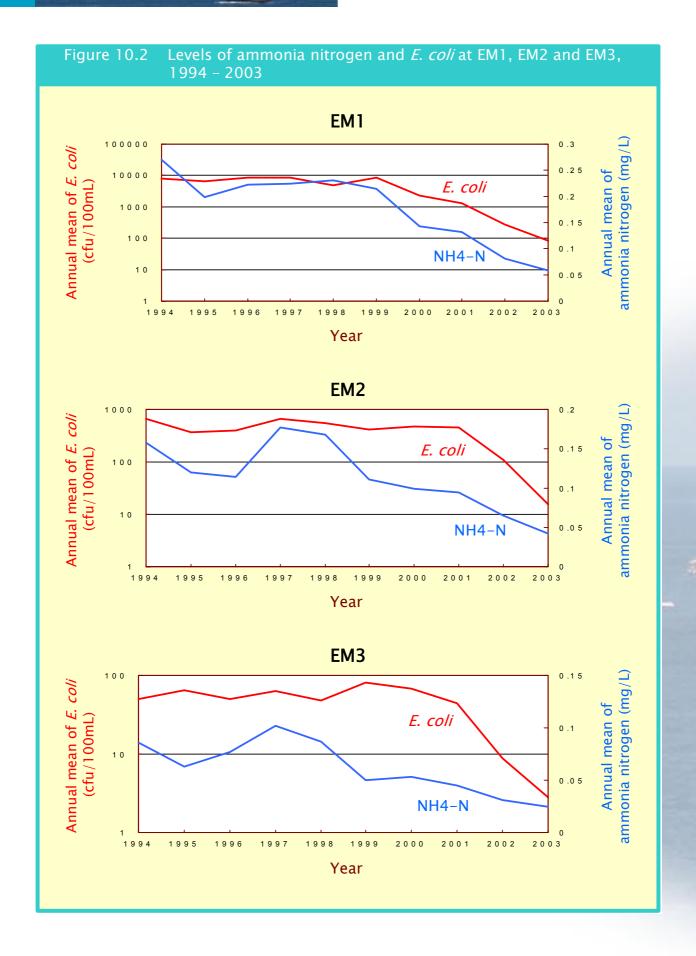

10.6 Up until 2001, there have been significant long-term deteriorating water quality trends (i.e. increases in *E. coli*, NH₄-N, TIN and decrease in DO) in the Eastern Buffer WCZ. With the commissioning of HATS Stage I in 2002, these trends were halted. In 2003, improving trends (e.g. decreases in nitrogen and phosphorous) started to appear (Table 10.2). The reduction of sewage-related bacteria and ammonia nitrogen in the last few years was evident at all sampling stations (Figure 10.2).

Table 10.1 Summary water quality statistics of the Eastern Buffer WCZ in 2003

	Chai Wan	Tathong	Channel
Param eter Param eter	EM1	EM2	EM3
Number of samples	12	12	12
Temperature (°C)	23.0	22.9	22.9
Tomporataile (o)	(17.1 - 26.8)	(16.9 - 26.9)	(16.9 - 27.0)
Salinity	32.9 (31.2 - 33.8)	33.0 (30.4 - 34.2)	33.3 (32.3 - 34.3)
	(51.2 - 55.6) 5.9	(50.4 - 54.2)	(32.3 - 34.3)
Dissolved Oxygen (mg/L)	(4.5 - 8.2)	(4.0 - 8.2)	(4.1 - 7.7)
Deffere	5.5	5.6	5.7
Bottom	(3.2 - 8.3)	(3.0 - 8.3)	(3.4 - 7.8)
Dissolved Oxygen (% Saturation)	83	83	83
Dissolved Cxygen (// Saturation)	(67 - 103)	(59 - 104)	(59 - 97)
Bottom	77	78	79
****	(45 - 106)	(43 - 105)	(48 - 99)
pH	8.1	8.2	8.2
	(7.9 - 8.3) 2.9	(7.9 - 8.3) 2.7	(7.9 - 8.3) 3.1
Secchi Disc Depth (m)	(1.5 - 4.5)	(1.3 - 5.0)	(1.5 - 5.8)
	7.4	7.5	10.6
Turbidity (NTU)	(4.4 - 10.6)	(3.9 - 10.0)	(5.4 - 37.5)
0	3.9	3.6	4.0
Suspended Solids (mg/L)	(1.3 - 7.1)	(0.9 - 5.6)	(1.1 - 8.7)
5-day Biochemical Oxygen Demand (mg/L)	0.9	0.7	0.8
3-day biochemical Oxygen benfand (mg/L)	(0.3 - 1.4)	(0.3 - 1.2)	(0.3 - 1.3)
Ammonia Nitrogen (mg/L)	0.06	0.04	0.02
/	(0.01 - 0.16)	(0.01 - 0.09)	(0.01 - 0.07)
Unionised Ammonia (mg/L)	0.003	0.002	0.001
1.57	(<0.001 - 0.006)	(<0.001 - 0.005) 0.02	(<0.001 - 0.003)
Nitrite Nitrogen (mg/L)	0.03 (<0.01 - 0.12)	(<0.01 - 0.08)	0.02 (<0.01 - 0.05)
	0.05	0.06	0.03
Nitrate Nitrogen (mg/L)	(0.01 - 0.16)	(0.01 - 0.25)	(0.01 - 0.12)
	0.14	0.12	0.07
Total Inorganic Nitrogen (mg/L)	(0.04 - 0.33)	(0.03 - 0.36)	(0.02 - 0.19)
Total Kieldahl Nitragan (mg/l)	0.17	0.14	0.12
Total Kjeldahl Nitrogen (mg/L)	(0.11 - 0.25)	(0.09 - 0.21)	(0.08 - 0.16)
Total Nitrogen (mg/L)	0.25	0.22	0.17
Total Thiogon (mg/2)	(0.13 - 0.43)	(0.11 - 0.51)	(0.10 - 0.33)
Orthophosphate Phosphorus (mg/L)	0.016	0.013	0.010
	(0.01 - 0.03)	(0.01 - 0.02)	(<0.01 - 0.01)
Total Phosphorus (mg/L)	0.03 (0.02 - 0.04)	0.03 (0.02 - 0.04)	0.02 (0.02 - 0.04)
	0.6	0.7	0.6
Silica (as SiO ₂) (mg/L)	(0.2 - 1.1)	(0.3 - 1.7)	(0.3 - 1.0)
	3.2	2.6	2.9
Chlorophy II-a (µg/L)	(0.6 - 8.5)	(0.5 - 10.9)	(0.6 - 9.4)
F. coli (ofu/100ml.)	86	16	3
E. coli (cfu/100mL)	(11 - 1300)	(1 - 510)	(1 - 13)
Faecal Coliforms (cfu/100mL)	200	38	7
	(22 - 2900)	(3 - 1200)	(1 - 46)

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for E. coli and faecal coliforms which are annual geometric means.

3. Data in brackets indicate the ranges.

Table 10.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Eastern Buffer WCZ, 1986 – 2003

Monitoring Station
Monitoring Period
Parameter
Parameter
Surface
Salinity
Salinity
Salinity Surface
Bottom Average
Average - -
Dissolved Oxygen (mg/L)
Bottom
Average Surface Surf
Dissolved Oxygen (%)
Bottom
Average
PH
PH Middle
Secchi disc depth (m)
Secchi disc depth (m)
Turbidity (NTU) Middle
Total volatile solids (mg/L) Middle
Bottom
Surface
Suspended Solids (mg/L)
Bottom
Total volatile solids (mg/L) Middle Middle
Total volatile solids (mg/L)
Bottom
Surface - - -
S-day Biochemical Oxygen Demand (mg/L)
Bottom
Ammonia nitrogen (mg/L) Ammonia nitrogen (mg/L) Middle Bottom Average Surface Nitrite nitrogen (mg/L) Nitrite nitrogen (mg/L) Nitrite nitrogen (mg/L) Nitrate nitrogen (mg/L) Middle Bottom Average Surface Surface Total inorganic nitrogen (mg/L) Middle Bottom Average Surface Total Kjeldahl nitrogen (mg/L) Middle Bottom Average Surface Surface Total nitrogen (mg/L) Middle Bottom Average Surface Total nitrogen (mg/L) Middle Bottom Average - Surface Total nitrogen (mg/L) Middle Bottom Average - Surface Total phosphorus (mg/L) Middle Bottom
Ammonia nitrogen (mg/L) Ammonia nitrogen (mg/L) Nitrite nitrogen (mg/L) Nitrite nitrogen (mg/L) Nitrite nitrogen (mg/L) Nitrite nitrogen (mg/L) Nitrate nitrogen (mg/
Bottom
Average - - -
Nitrite nitrogen (mg/L)
Bottom
Average
Surface - - -
Bottom
Average
Total inorganic nitrogen (mg/L)
Total inorganic nitrogen (mg/L) Middle Sottom Comparison Com
Average
Surface - - -
Total Kjeldahl nitrogen (mg/L)
Bottom
Surface
Total nitrogen (mg/L)
Bottom
Surface
Orthophosphate phosphorus (mg/L) Middle
Bottom
Surface Total phosphorus (mg/L) Middle Bottom Average Surface
Total phosphorus (mg/L)
Bottom ¥ Average ¥ Surface
Average Surface
Silica (mg/L) Middle
Bottom
Average
Surface
Chlorophyll–a (µg/L) Middle
Bottom Average
Surface
E. coli (cfu/100mL) Middle
Bottom
Average Surface
Faecal coliforms (cfu/100mL) Middle
mraccar comornis (ciu/roome) whate
Bottom

Note 1. Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05

 $[\]ensuremath{\text{2.}}\xspace$ - indicates no significant trend is detected

^{3. 7} represents a significant increase over time

^{4. 3} represents a significant decrease over time

CHAPTER 11

VICTORIA HARBOUR WATER CONTROL ZONE

Chapter 11 - Victoria Harbour Water Control Zone

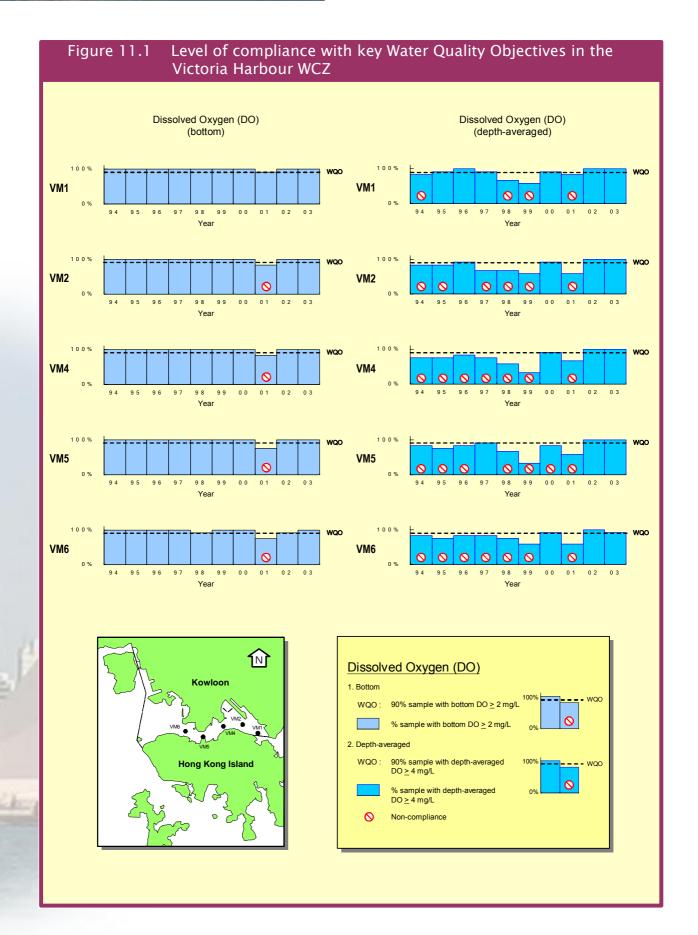
Water Quality in 2003

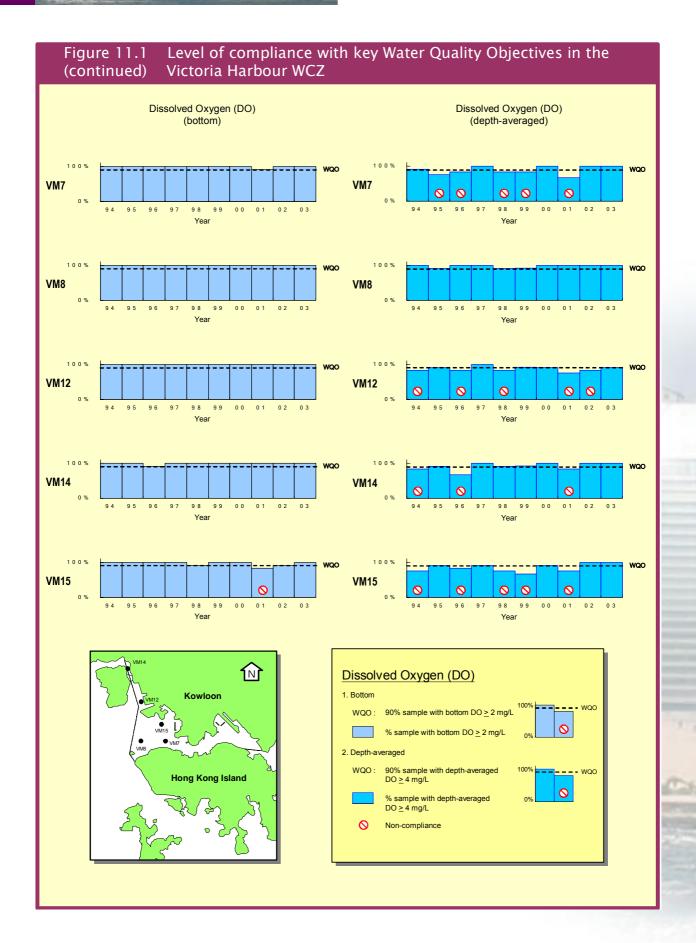
- 11.1 Victoria Harbour is a major tidal channel with strong current flushing and has long been utilised for disposal of sewage effluent. In the past, wastewater was discharged into the harbour after simple screening process. To improve the water quality of the harbour, the Stonecutters Island Sewage Treatment Works (SCISTW) under the Harbour Area Treatment Scheme (HATS) Stage I was commissioned in 2002. It received wastewater from Kowloon and eastern part of Hong Kong Island for Chemically Enhanced Primary Treatment and disposal into the Western Harbour area. In 2003, the effluent flow from the SCISTW has slightly increased from 1.3 million m³/day to 1.4 million m³/day which accounted for 75% of the total sewage flow of HATS (Figure 1.8). A summary of the 2003 water quality data is shown in Tables 11.1.
- In 2002, the implementation of HATS Stage I has resulted in a very substantial water quality improvement at the eastern end of the harbour (VM1 and VM2) and moderate improvement in the mid harbour stations (VM4 and VM5) and northern part of Rambler Channel (VM14). These improvements were generally sustained in 2003.
- 11.3 The level of *E. coli* in the Victoria Harbour Water Control Zone (WCZ) in 2003 was largely comparable to that in 2002. The pattern of bacterial distribution was also similar; the zone of peak *E. coli* concentration shifted from the central part of the harbour (VM1, 2, 4 and 5) to the western side (VM5, 6, 7, 8 and 12).
- 11.4 The general decrease of ammonia nitrogen (NH₄-N) as a result of HATS Stage I was also observed in 2003. Similar to 2002, higher levels of NH₄-N (0.14-0.23 mg/L), compared with those in other areas (e.g. 0.09-0.16mg/L at VM1, 2 and 4), were found in the western part of the harbour near Stonecutters Island (i.e. VM 6, 7, 8, 12 and 15). The depth-averaged and bottom DO at various monitoring stations ranged 5.1-5.6 mg/L and 4.8-5.4 mg/L respectively and no bottom layer hypoxia (i.e. DO \leq 2 mg/L) was observed.
- In 2003, the level of orthophosphate phosphorus (PO₄-P) in Victoria Harbour showed a significant increase of 39-86% at nearly all stations in the WCZ. However, no marked increase in algal activity (chlorophyll-a) was observed during the year.
- 11.6 The monitoring data also showed a general decline in suspended solids (SS) in 2003, in particular at the station VM12 in the southern end of Rambler Channel which was heavily impacted

by the Container 9 reclamation works in 2002. The decrease of SS at VM12 was 45% as compared to 3-27% in other parts of the WCZ.

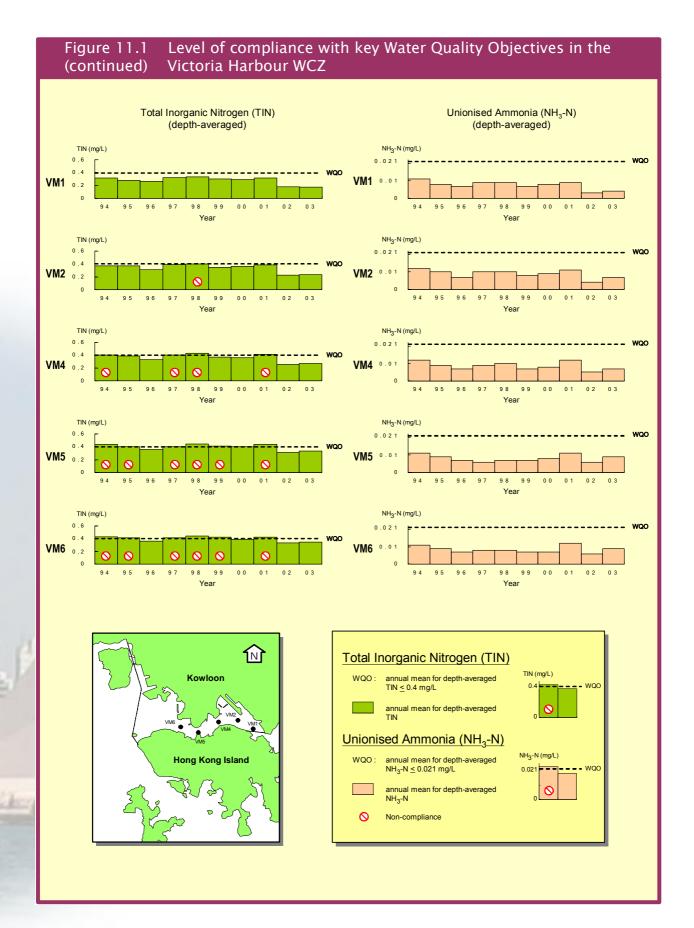
Compliance with Water Quality Objectives

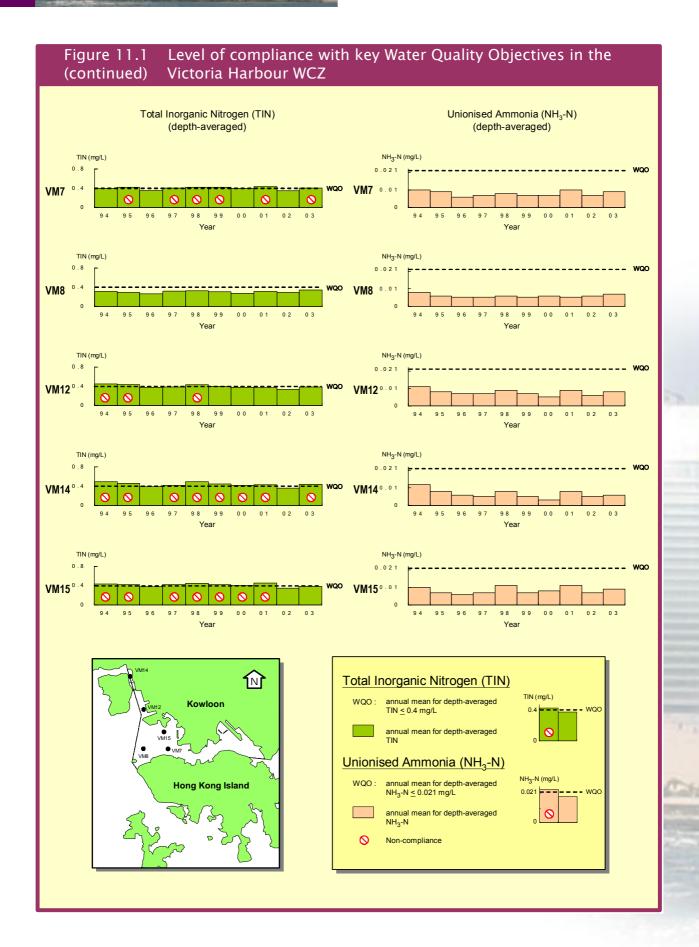
11.7 In 2003, all the monitoring stations in the Victoria Harbour WCZ fully complied (100%) with the WQOs for DO and unionized ammonia (Figure 11.1). The compliance for the TIN WQO was 80%. Two stations (VM7 and VM14) which failed to comply with the WQO were located in the western part of the harbour.

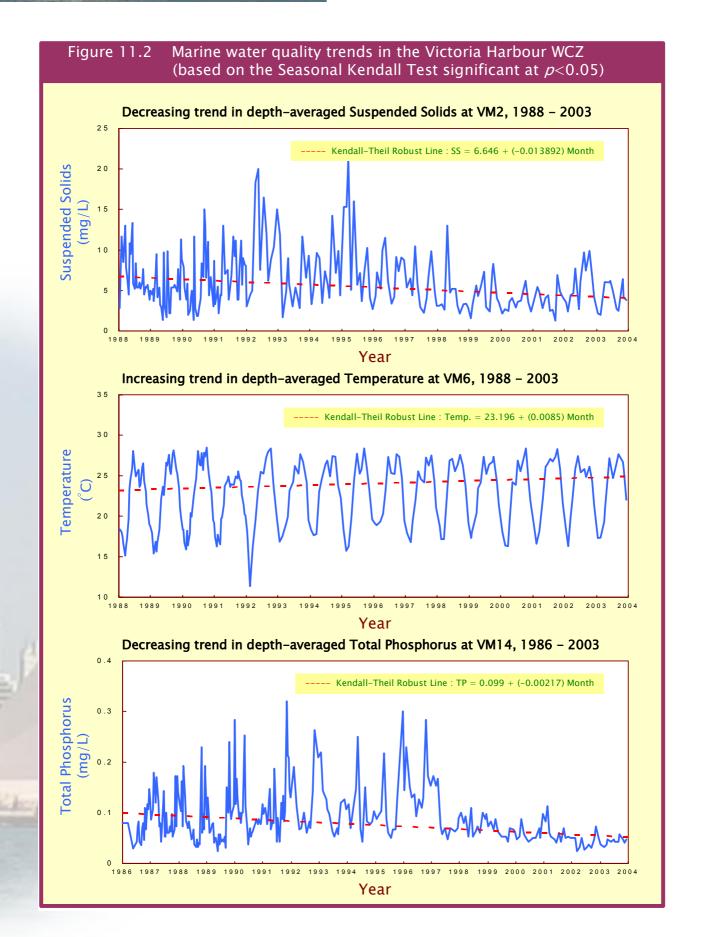

Long-term Water Quality Trends


- 11.8 The long-term water quality changes (1986-2003) in the Victoria Harbour WCZ are summarised in Table 11.2. The increasing trends in *E. coli* at the eastern harbour stations (VM1 and VM2) were arrested in 2002 immediately after the implementation of HATS Stage I. In 2003, the increasing trends formerly observed at the mid harbour stations (VM4 and VM6) also ceased.
- 11.9 A significant decline in Kjeldahl nitrogen was found at eight of the ten stations in Victoria Harbour. This was probably related to a reduction in organic nitrogen as the ammonia nitrogen level remained relatively stable in the last 18 years (1986-2003). On the other hand, there was a rise in nitrate nitrogen (NO₃-N) at six stations (VM5-8, 12 and 14) (Table 11.2) in the western and central parts of the harbour, possibly related to the influence of Pearl River flow. Decreasing trend in suspended solids was found at the station VM2 (Figure 11.2) which may be related to the diversion of sewage from the East Kowloon to the west under HATS Stage I.
- Signs of water quality improvement: increase in DO, decreases in nutrients (i.e. nitrogen and phosphorus) and organic pollutants (i.e. 5-day Biochemical Oxygen Demand) were found at VM14, in the northern part of Rambler Channel in the past 18 years (Figure 11.2).
- 11.11 A significant long-term increase in water temperature was detected at most stations in Victoria Harbour (Table 11.2 and Figure 11.2). This may be related to factors such as surface run off and increases in discharges of spent cooling water from the air conditioning systems in the harbour area.
- 11.12 As part of the HATS development, various studies and trials were conducted to help identify long-term sewage options for Victoria Harbour and these were near completion at the end of 2003. The findings would be put forward for consultation in 2004, and subject to outcome of

the consultation, an option would be selected for future implementation. More details on these studies and trials can be found on the Government's Cleanharbour website (http://www.cleanharbour.gov.hk).







11

VICTORIA HARBOUR WCZ

Table 11.1
Summary water quality statistics of the Victoria Harbour WCZ in 2003

		Victoria Ha	rbour (East)	Vi	ctoria Harbour (Centi	ral)
Param eter Param eter		VM1	VM2	VM4	VM5	VM6
Number of samples		12	12	12	12	12
T(90)		23.0	23.2	23.3	23.4	23.5
Temperature (°C)		(17.0 - 26.6)	(16.9 - 27.1)	(17.0 - 27.2)	(17.1 - 27.5)	(17.3 - 27.6)
Salinity		33.0	32.6	32.4	32.1	32.0
Sallility		(32.5 - 33.6)	(31.6 - 33.7)	(31.0 - 33.5)	(29.4 - 33.4)	(29.8 - 33.3)
Dissolved Oxygen (mg/L)		5.5	5.5	5.4	5.3	5.3
biosoft od 'Cxy gon' (mg/L)		(4.3 - 7.5)	(4.1 - 7.4)	(4.2 - 6.8)	(4.1 - 6.9)	(3.9 - 6.7)
	Bottom	5.4	5.3	5.4	5.0	4.9
	20	(3.1 - 7.6)	(3.9 - 7.4)	(3.6 - 7.2)	(3.7 - 6.9)	(3.1 - 6.7)
Dissolved Oxygen (% Saturation)		77	78	76	75	74
, , , , , , , , , , , , , , , , , , , ,		(63 - 95)	(61 - 93)	(61 - 85)	(61 - 88)	(58 - 85)
	Bottom	75	74	75	71	69
		(46 - 95)	(54 - 93)	(51 - 90)	(53 - 88)	(44 - 85)
pH		8.1	8.1	8.1	8.1	8.0
		(8.0 - 8.3)	(8.0 - 8.3)	(8.0 - 8.2)	(8.0 - 8.2)	(7.9 - 8.2)
Secchi Disc Depth (m)		2.8	2.5 (1.5 - 3.5)	2.3 (1.5 - 3.2)	2.3 (1.5 - 4.1)	2.3 (1.5 - 4.0)
		(1.7 - 3.9) 8.7	(1.5 - 3.5)	(1.5 - 3.2)	(1.5 - 4.1)	(1.5 - 4.0)
Turbidity (NTU)		6.7 (5.9 - 11.8)	o. i (5.4 - 10.8)	6.3 (6.3 - 13.1)	6.6 (5.4 - 11.0)	
		(5.9 - 11.6)	4.3	4.9	(5.4 - 11.0)	(5.4 - 12.2) 5.1
Suspended Solids (mg/L)		(2.3 - 9.2)	(1.9 - 6.4)	(2.5 - 11.3)	(2.5 - 7.5)	(2.4 - 9.8)
		0.9	1.1	1.1	1.4	1.1
5-day Biochemical Oxygen Demand	d (mg/L)	(0.4 - 1.6)	(0.5 - 1.8)	(0.6 - 1.8)	(0.7 - 2.2)	(0.5 - 2.0)
		0.09	0.13	0.16	0.20	0.20
Ammonia Nitrogen (mg/L)		(0.02 - 0.22)	(0.04 - 0.26)	(0.05 - 0.28)	(0.07 - 0.34)	(0.09 - 0.34)
		0.004	0.007	0.007	0.009	0.009
Unionised Ammonia (mg/L)		(0.002 - 0.008)	(0.002 - 0.012)	(0.003 - 0.014)	(0.005 - 0.014)	(0.005 - 0.015)
		0.02	0.02	0.02	0.03	0.03
Nitrite Nitrogen (mg/L)		(<0.01 - 0.05)	(<0.01 - 0.05)	(0.01 - 0.05)	(0.01 - 0.05)	(0.01 - 0.05)
		0.06	0.08	0.09	0.11	0.11
Nitrate Nitrogen (mg/L)		(0.02 - 0.11)	(0.02 - 0.14)	(0.03 - 0.15)	(0.04 - 0.21)	(0.04 - 0.19)
T () 1		0.18	0.24	0.27	0.33	0.34
Total Inorganic Nitrogen (mg/L)		(0.11 - 0.31)	(0.11 - 0.38)	(0.18 - 0.42)	(0.22 - 0.50)	(0.25 - 0.50)
Total Kieldeld Nites and Annul V		0.22	0.29	0.32	0.39	0.38
Total Kjeldahl Nitrogen (mg/L)		(0.17 - 0.32)	(0.17 - 0.42)	(0.23 - 0.47)	(0.29 - 0.51)	(0.30 - 0.48)
Total Nitrogen (mg/L)		0.30	0.39	0.44	0.52	0.52
Total Nitrogen (mg/L)		(0.20 - 0.45)	(0.19 - 0.57)	(0.28 - 0.61)	(0.33 - 0.65)	(0.35 - 0.64)
Orthophosphate Phosphorus (mg/L)		0.021	0.027	0.030	0.036	0.037
Orthophosphate Phosphorus (mg/L)		(0.01 - 0.04)	(0.02 - 0.05)	(0.02 - 0.05)	(0.02 - 0.05)	(0.02 - 0.05)
Total Phosphorus (mg/L)		0.04	0.04	0.05	0.06	0.06
Total Thospholus (mg/L)		(0.02 - 0.06)	(0.02 - 0.06)	(0.03 - 0.07)	(0.03 - 0.08)	(0.04 - 0.07)
Silica (as SiO ₂) (mg/L)		0.7	0.7	0.7	0.8	0.9
omou (do olo ₂) (mg/L)		(0.4 - 1.1)	(0.2 - 1.2)	(0.1 - 1.2)	(0.3 - 1.4)	(0.2 - 1.4)
Chlorophy II-a (µg/L)		2.9	4.0	3.9	4.0	3.5
Omorophy II-a (µg/L)		(0.4 - 12.5)	(0.2 - 19.0)	(0.4 - 18.2)	(0.3 - 22.7)	(0.4 - 16.7)
E. coli (cfu/100mL)		200	1100	2700	5200	3000
L. Con (Old Tooline)		(48 - 2400)	(130 - 6600)	(580 - 23000)	(640 - 42000)	(250 - 14000)
Faecal Coliforms (cfu/100mL)		390	2100	4800	12000	7000
(,		(70 - 3800)	(160 - 13000)	(1100 - 42000)	(2500 - 100000)	(1100 - 26000)

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for *E. coli* and faecal coliforms which are annual geometric means.

Table 11.1 (continued)

Summary water quality statistics of the Victoria Harbour WCZ in 2003

		Victoria Har	bour (West)	Stonecutters Island	Rambler	Channel
Param eter Param eter		VM7	VM8	VM15	VM12	VM14
Number of samples		12	12	12	12	12
Tamanarahura (°C)		23.5	23.5	23.7	23.6	24.0
Temperature (°C)		(17.2 - 27.8)	(17.2 - 27.8)	(17.3 - 27.7)	(17.5 - 28.0)	(17.6 - 28.3)
Salinity		31.0	31.1	31.7	31.1	29.3
Samily		(21.7 - 33.3)	(24.0 - 33.4)	(28.3 - 33.2)	(25.3 - 33.3)	(15.4 - 33.3)
Dissolved Oxygen (mg/L)		5.4	5.6	5.5	5.1	5.5
Diodoiv ou Oxygon (mg/2)		(4.1 - 6.9)	(4.3 - 6.8)	(4.2 - 6.6)	(3.8 - 6.3)	(4.6 - 6.5)
	Bottom	5.1	5.3	5.1	4.8	5.2
		(3.8 - 6.8)	(2.1 - 7.0)	(3.6 - 6.6)	(2.2 - 6.4)	(3.3 - 6.6)
Dissolved Oxygen (% Saturation)		76	79	78	71	78
, ,		(62 - 91)	(61 - 90)	(63 - 88)	(54 - 86)	(69 - 85)
	Bottom	72	74	72	67	73
		(55 - 91)	(31 - 93)	(51 - 84)	(32 - 87)	(47 - 87)
pH		8.1	8.1	8.0	8.1	8.1
		(7.9 - 8.2) 2.1	(8.0 - 8.2) 2.1	(7.9 - 8.2) 2.1	(7.8 - 8.2) 2.0	(7.9 - 8.3) 1.9
Secchi Disc Depth (m)		(1.3 - 3.2)	(1.4 - 3.7)	(1.4 - 4.5)	(1.2 - 3.5)	(0.9 - 3.9)
		8.9	9.9	9.3	11.6	11.4
Turbidity (NTU)		(4.7 - 14.2)	(5.0 - 14.9)	(3.8 - 13.1)	(5.8 - 15.9)	(5.4 - 20.7)
		5.8	7.9	6.3	10.5	7.1
Suspended Solids (mg/L)		(2.8 - 13.3)	(3.1 - 14.6)	(2.9 - 9.9)	(4.8 - 16.2)	(3.4 - 10.0)
		1.2	1.0	1.1	0.8	0.9
5-day Biochemical Oxygen Demand (mg/L)		(0.6 - 2.4)	(0.4 - 1.9)	(0.5 - 1.9)	(0.7 - 1.1)	(0.6 - 1.3)
		0.21	0.14	0.23	0.17	0.14
Ammonia Nitrogen (mg/L)		(0.11 - 0.31)	(0.03 - 0.26)	(0.07 - 0.34)	(0.04 - 0.29)	(0.03 - 0.27)
		0.009	0.007	0.009	0.008	0.006
Unionised Ammonia (mg/L)		(0.005 - 0.016)	(0.002 - 0.016)	(0.005 - 0.016)	(0.002 - 0.013)	(0.002 - 0.010)
No. 10 (1)		0.04	0.04	0.03	0.04	0.06
Nitrite Nitrogen (mg/L)		(0.01 - 0.14)	(0.01 - 0.12)	(0.01 - 0.06)	(0.01 - 0.12)	(0.01 - 0.18)
Nitrata Nitragan (mg/l)		0.16	0.16	0.12	0.17	0.25
Nitrate Nitrogen (mg/L)		(0.05 - 0.58)	(0.03 - 0.49)	(0.05 - 0.24)	(0.03 - 0.53)	(0.03 - 0.83)
Total Inorganic Nitrogen (mg/L)		0.40	0.34	0.38	0.39	0.44
Total inorganic Milogen (mg/L)		(0.28 - 0.93)	(0.21 - 0.75)	(0.30 - 0.49)	(0.25 - 0.68)	(0.20 - 1.04)
Total Kjeldahl Nitrogen (mg/L)		0.39	0.30	0.41	0.31	0.28
Total Tyeldani Milogen (mg/L)		(0.31 - 0.50)	(0.20 - 0.41)	(0.34 - 0.56)	(0.20 - 0.40)	(0.23 - 0.35)
Total Nitrogen (mg/L)		0.58	0.49	0.57	0.53	0.58
Total Milogen (mg/L)		(0.44 - 1.15)	(0.32 - 0.93)	(0.46 - 0.63)	(0.35 - 0.84)	(0.31 - 1.27)
Orthophosphate Phosphorus (mg/L)		0.037	0.027	0.037	0.032	0.029
		(0.02 - 0.05)	(0.01 - 0.04)	(0.02 - 0.05)	(0.02 - 0.04)	(0.02 - 0.04)
Total Phosphorus (mg/L)		0.06	0.04	0.06	0.05	0.04
		(0.04 - 0.08)	(0.03 - 0.07)	(0.04 - 0.07)	(0.04 - 0.06)	(0.03 - 0.06)
Silica (as SiO ₂) (mg/L)		1.0	1.1	0.9	1.2	1.5
2, (0 ,		(0.5 - 3.2)	(0.5 - 2.9)	(0.2 - 1.4)	(0.5 - 3.1)	(0.5 - 4.7)
Chlorophy II-a (µg/L)		3.3	3.4	4.7	2.4	3.9
		(0.3 - 15.6)	(0.5 - 16.7)	(0.4 - 24.9)	(0.3 - 7.8)	(0.4 - 15.0)
E. coli (cfu/100mL)		5900	3700	1700	5400	1700
		(500 - 22000)	(390 - 22000)	(220 - 14000)	(2400 - 14000)	(470 - 12000)
Faecal Coliforms (cfu/100mL)		14000	7600 (660 - 37000)	4500 (780 - 37000)	12000 (4600 - 33000)	3400 (770 - 25000)

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

^{2.} Data presented are annual arithmetic means of the depth-averaged results except for *E. coli* and faecal coliforms which are annual geometric means.

Table 11.2 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Victoria Harbour WCZ, 1986 - 2003

Monitoring Station		VM1	VM2	VM4	VM5	VM6
Monitoring Period		1988 I	1988 I	1988 I	1986 I	1988 I
		2003	2003	2003	2003	2003
Parameter	Water Depth Surface	71	71	71	71	71
Temperature (°C)	Middle	71	7	71	71	71
	Bottom	7	7	7	7	7
	Average Surface	71	71	7	71	71
Salinity	Middle	-	-	-	-	-
	Bottom	-	-	-	-	-
	Average Surface	-	-	-	-	-
Dissolved Oxygen (mg/L)	Middle	-	-	-	7	71
73. (3,)	Bottom	-	-	-	-	71
	Average Surface	-	-	-	-	-
Dissolved Oxygen (%)	Middle	71	-	71	7	71
2.550.1.ca	Bottom	7	71	7	7	7
	Average	7	-	71	7	71
рН	Surface Middle	-	-	-	-	n R
pii	Bottom		-		-	7
	Average	-	-	-	-	2
Secchi disc depth (m)	Curfoso	71	71	71	7	7
Turbidity (NTU)	Surface Middle	7	-	-	7	7
	Bottom	ä	-		7	7
	Average	7	-	-	7	71
Suspended Solids (mg/L)	Surface Middle	7	7	-	-	-
Suspended Solids (mg/L)	Bottom	-	n R	-	-	-
	Average	-	2	<u>u</u>	-	
Takal walastia aalida (m. 11)	Surface	7	7	7	7	7
Total volatile solids (mg/L)	Middle Bottom	7	7	7	7	7
	Average	n n	n n	n R	n n	n R
	Surface	-	-	-	-	-
5-day Biochemical Oxygen Demand (mg/L)	Middle	-	-	-	-	-
	Bottom Average	-	-	-	-	-
	Surface	-	-	-	-	
Ammonia nitrogen (mg/L)	Middle	-	-	-	-	-
	Bottom	7	-	-	-	-
	Average Surface	-				
Nitrite nitrogen (mg/L)	Middle	-	-	-	-	-
	Bottom	-	-	-	-	-
	Average Surface	-	-	-	-	-
Nitrate nitrogen (mg/L)	Middle	-	-	-	7	7
	Bottom	-	-	-	ä	-
	Average	-	-	-	71	71
Total inorganic nitrogen (mg/L)	Surface Middle	-	-	-	-	-
rotal morganic mirrogen (mg/L)	Bottom	<u>u</u>	-	-	-	-
	Average	-	-	-	-	-
Tatal Kialdahl mituanan (m. m. (1)	Surface	7	7	7	7	7
Total Kjeldahl nitrogen (mg/L)	Middle Bottom	n n	צ	צ	-	n R
	Average	7	7	7	-	7
	Surface	7	7	7	-	-
Total nitrogen (mg/L)	Middle	7	7	7	-	7
	Bottom Average	2	<u>.</u>	n n	-	7
	Surface	-	-	-	-	-
Orthophosphate phosphorus (mg/L)	Middle	-	-	-	-	-
	Bottom Average	7	-	-	-	-
	Surface	7	-	7	-	
Total phosphorus (mg/L)	Middle	-	2		-	-
	Bottom	7	-	-	-	-
	Average Surface	7	7	-	-	-
Silica (mg/L)	Middle	-				
. 5	Bottom	-	-	-	-	-
	Average	-	-	-	-	-
Chlorophyll– <i>a</i> (µg/L)	Surface Middle	-	-	-	-	-
Cinolophyn « (µg/L/	Bottom	-	-	-	-	
	Average	-	-	-	-	-
F. coli(cfu/100ml)	Surface	-	-	-	7	-
E. coli (cfu/100mL)	Middle Bottom	-	-	-	7	-
	Average	-	_	-	7	-
F (-6./100 !)	Surface	-	-	-	71	-
Faecal coliforms (cfu/100mL)	Middle Bottom	-	-	7	7	7

1. Results of the Seasonal Kendall Test shown are statistically significant at $\it p < 0.05$

^{2. -} indicates no significant trend is detected3. Test applied to past 18 years' data from each monitoring station unless stated otherwise

^{4. 🛪} represents a significant increase over time

^{5. 3} represents a significant decrease over time

Table 11.2 (continued)
Results of the Seasonal Kendall Test for trends in water quality parameters measured in the Victoria Harbour WCZ, 1986 - 2003

Monitoring Station		VM7	VM8	VM12	VM14	VM15
Monitoring Station		1986	1986	1986	1986	1993
Monitoring Period						
Parameter	Water Depth	2003	2003	2003	2003	2003
Parameter	Water Depth Surface	71	7	71	71	-
Temperature (°C)	Middle	7	7	7	7	-
	Bottom Average	7 7	7	7 7	7	-
	Surface	- "	- "			
Salinity	Middle	-	-	-	-	-
	Bottom Average	-	-	-	-	-
	Surface	-	-	-	-	-
Dissolved Oxygen (mg/L)	Middle Bottom	7	-	7	7	-
	Average	-	-	-	7	
-, , , , , , , , , , , , , , , , , , ,	Surface	-	-	77	-	-
Dissolved Oxygen (%)	Middle Bottom	7	-	7	7	-
	Average	7	-	7	7	
	Surface	-	7	-	7	-
рН	Middle Bottom		n R	-	n R	-
	Average		Ž.		2	- 1
Secchi disc depth (m)	Surface	-	-	-	71	7
Turbidity (NTU)	Surface Middle	71	-	-	-	7
	Bottom	7	7	7	7	-
	Average	71	71	-	71	-
Suspended Solids (mg/L)	Surface Middle	-	-	-	-	n R
Saspended Sonds (mg/L)	Bottom	-	-	-	-	7
	Average	-	-	-	-	7
Total volatile solids (mg/L)	Surface Middle	n R	n R	-	n R	7
Total volatile solius (Hig/L)	Bottom	a u	7	-	Ž.	<u>u</u>
	Average	2	7	-	7	7
5 day Piochomical Oyygon Domand (mg/l)	Surface Middle	-	-	-	7	-
5-day Biochemical Oxygen Demand (mg/L)	Bottom	-	-	-	n n	-
	Average	-	-	-	7	-
A	Surface	-	-	7	7	-
Ammonia nitrogen (mg/L)	Middle Bottom	-	-	-	-	-
	Average	-	-	-	-	-
Nituita mitua nan (nan /l.)	Surface	-	-	-	-	-
Nitrite nitrogen (mg/L)	Middle Bottom	-	-	-	-	-
	Average	-	-	-	-	-
Albert and the second form (1)	Surface	7	7	7	7	-
Nitrate nitrogen (mg/L)	Middle Bottom	7	7	7	7	
	Average	7	71	7	7	_
Tatal in averagia nitua nan (man (l.)	Surface	-	7	-	-	-
Total inorganic nitrogen (mg/L)	Middle Bottom	-	7	-	71	, L
	Average	-	71	-	-	_
Tabal Mialdahl albaanaa (aan 11)	Surface	7	-	7	7	-
Total Kjeldahl nitrogen (mg/L)	Middle Bottom	n R	-	n R	n R	_
	Average	2	-	y.	2	2
T-1-1-25-2-2-2-((1)	Surface	-	-	-	7	-
Total nitrogen (mg/L)	Middle Bottom	-	-	-	-	2
	Average	-	-	7	<u> </u>	7
	Surface	-	-	7	7	7
Orthophosphate phosphorus (mg/L)	Middle Bottom	-	-	-	<u>, </u>	n n
	Average	-	-	<u>u</u>	<u>u</u>	7
Tabel about a contract (C. 19)	Surface	-	-	-	7	7
Total phosphorus (mg/L)	Middle Bottom	-	-	-	n R	n R
	Average	-	-	-	2	Ž.
Silica (mg/L)	Surface	-	-	-	-	7
Silica (mg/L)	Middle Bottom	-	-	-	-	n R
	Average	-	-	-	-	Ž.
Chilaman hadila a (can (l.)	Surface	-	-	-	-	71
Chlorophyll- <i>a</i> (μg/L)	Middle Bottom	-	-	-	-	7
	Average	-	-	-	-	ä
5 (1/-5- /100 · 1)	Surface	7	71	7	Ξ	-
<i>E. coli</i> (cfu/100mL)	Middle Bottom	7	7	7	7	-
	Average	7	7	71	7	-
	Surface	7	71	7	-	-
Faecal coliforms (cfu/100mL)	Middle Bottom	7	7	7	7	-
	Average	7	7	7	7	-
			**	• • • • • • • • • • • • • • • • • • • •	**	

^{1.} Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05

^{2. -} indicates no significant trend is detected3. Test applied to past 18 years' data from each monitoring station unless stated otherwise

^{4. 7} represents a significant increase over time

^{5. 3} represents a significant decrease over time

Chapter 12 - Sediment

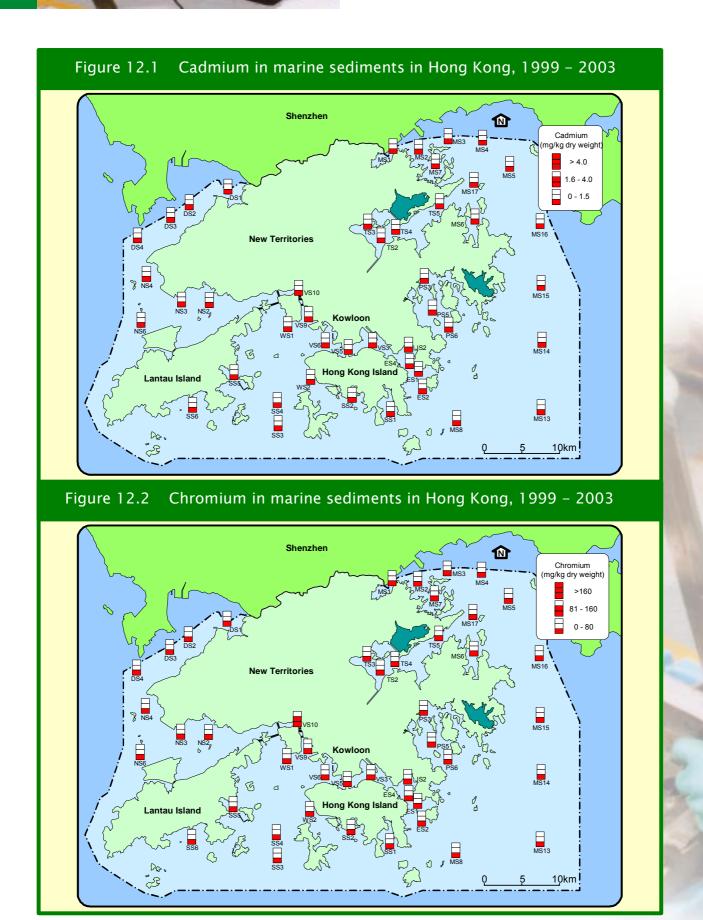
Introduction

- Many inorganic and organic contaminants in the marine water are associated with particulate matters which settle to form part of the sediments on the sea bed. Sediments are often regarded as the ultimate sink for persistent contaminants in the marine environment. Bottom sediments are an important habitat for marine life, including many commercially important food species. Toxic contaminants can accumulate in sediments and may pose a potential threat to marine organisms and human health.
- 12.2 Sediment monitoring is an integral part of EPD's marine monitoring programme. In 2003, sediments were sampled twice at 45 stations in open waters (Figure 1.3) and 15 stations in typhoons shelters (Figure 1.4). Sediment samples were collected using grab samplers and analysed for over 60 physical and chemical parameters (Table 1.3). A summary of the bottom sediment quality in different Water Control Zones in the last 5 years (1999–2003) is shown in Tables 12.1–12.6.
- This report applies the Lower Chemical Exceedance Levels (LCELs) and Upper Chemical Exceedance Levels (UCELs) set out in the 'Environment, Transport and Work Bureau Technical Circular ETWB(W) No. 34/2002 Management of Dredged / Excavated Sediment' as a benchmark to assess the extent of contamination of marine sediments in the territory. The LCELs and UCELs cover 12 individual or groups of chemicals found in the sediments (Table 12.7).

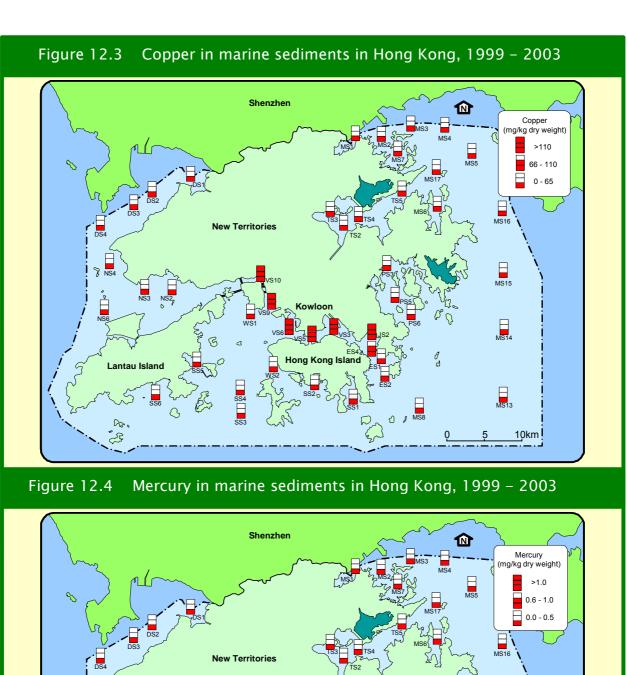
Metals and Metalloid

- Figures 12.1 to 12.8 summarise the mean concentrations of eight heavy metals (cadmium, chromium, copper, lead, mercury, nickel, silver and zinc) in marine sediments in 1999-2003. The mean concentrations of arsenic are presented in Figure 12.9.
- 12.5 In general, sediments in Victoria Harbour (from Junk Bay to Tsuen Wan) had higher levels of heavy metals, especially copper and silver (Figures 12.3 and 12.7). The contamination by copper was mainly due to discharges from printed circuit board, electroplating, metal and textile industries between the 60s and 80s. Elevated concentration of silver in sediments was likely to be related to pollution from electroplating industries, photo-developing business and dental clinics.
- 12.6 Tsuen Wan Bay (VS10), near the old industrial area, was a "hot-spot" of heavy metal

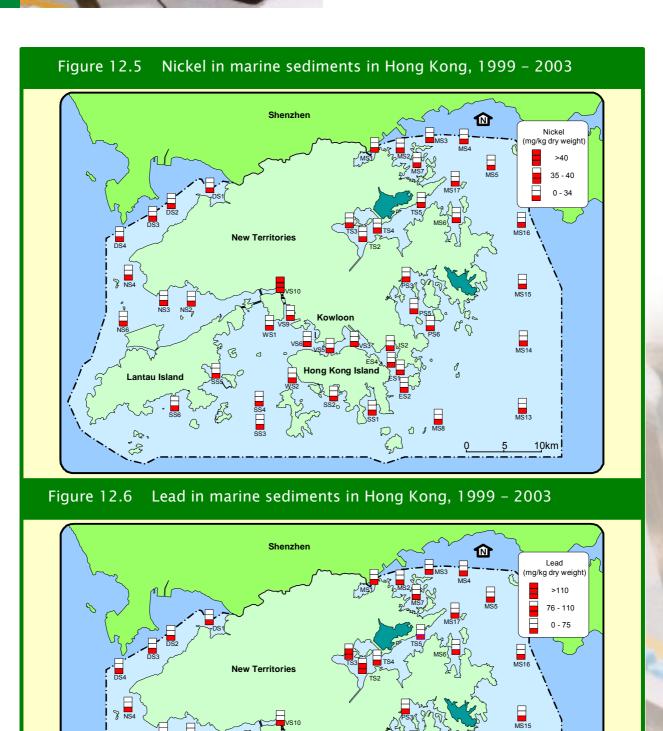
SEDIMENT QUALITY

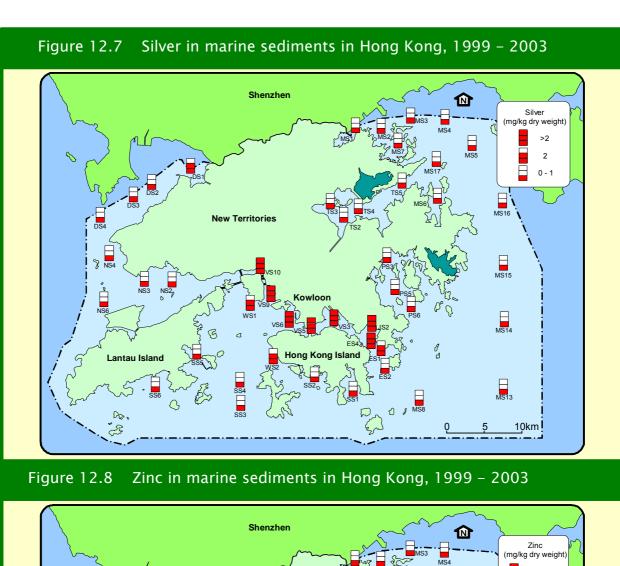

contamination with copper, nickel and silver all exceeding the UCELs. The levels of lead and zinc in the Tolo Harbour Subzone (TS2 and TS3) were relatively high (above LCELs). On the other hand, arsenic was higher in Deep Bay (DS1-DS4) than the rest of the territory, probably related to the higher natural arsenic levels in the soil of northern New Territories.

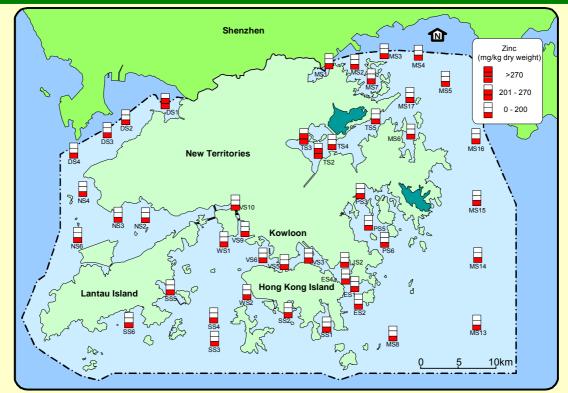
Trace Organics

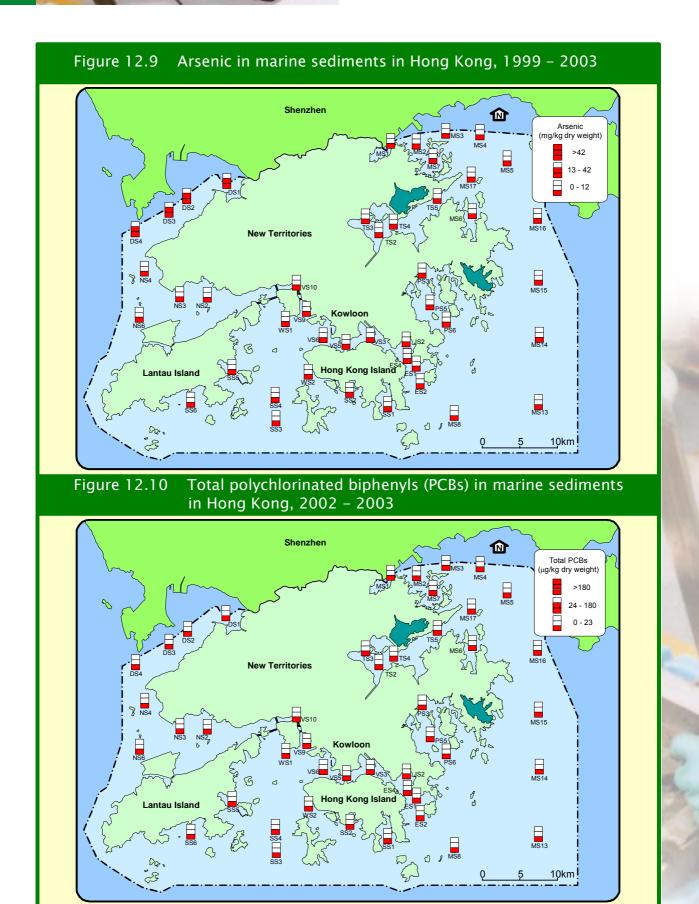

- 12.7 Trace organic pollutants refer to organic contaminants such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) which persist in the environment and generally present at low concentrations. Some of these compounds are bioaccumulative, potentially carcinogenic, mutagenic or teratogenic.
- Overall, the levels of total PCBs in the sediments of Hong Kong were very low and none of the stations exceeded LCEL (Figure 12.10). For most of the sediments sampled (about 95%), all 18 PCB congeners tested were below the reporting limits (<2μg/kg dry weight).
- 12.9 Similar to total PCBs, the average levels of low and high molecular weight PAHs in the marine sediments of Hong Kong were also very low and quite evenly distributed. All stations, with the exception of VS6 (near Sai Ying Pun), were below the LCELs (Figures 12.11 and 12.12). High molecular weight PAHs, notably Fluoranthene, Pyrene, Benzo(a)pyrene and Benzo(g,h,i)perylene were the dominant congeners found at VS6.

Electrochemical Potential


12.10 The marine sediments in Hong Kong were generally anoxic (i.e. with negative electrochemical potential). Highly anoxic sediments were mainly found in three areas: a) Victoria Harbour WCZ (VS3, VS5 & VS6); b) Double Haven and Crooked Harbour (MS1, MS2 & MS7) in Mirs Bay; and c) Tolo Harbour (TS2 & TS4) (Figure 12.13). The low electrochemical potential in Victoria Harbour was mainly due to organic deposition from sewage discharges which exerted a high oxygen demand on the seabed. Double Haven & Crooked Harbour in Mirs Bay and Tolo Harbour were largely enclosed embayments with fish culture zones (Figure 1.6). The sediments of these waters were subject to organic pollution from fish excreta and excessive fishfeed which contributed to the anoxic condition.

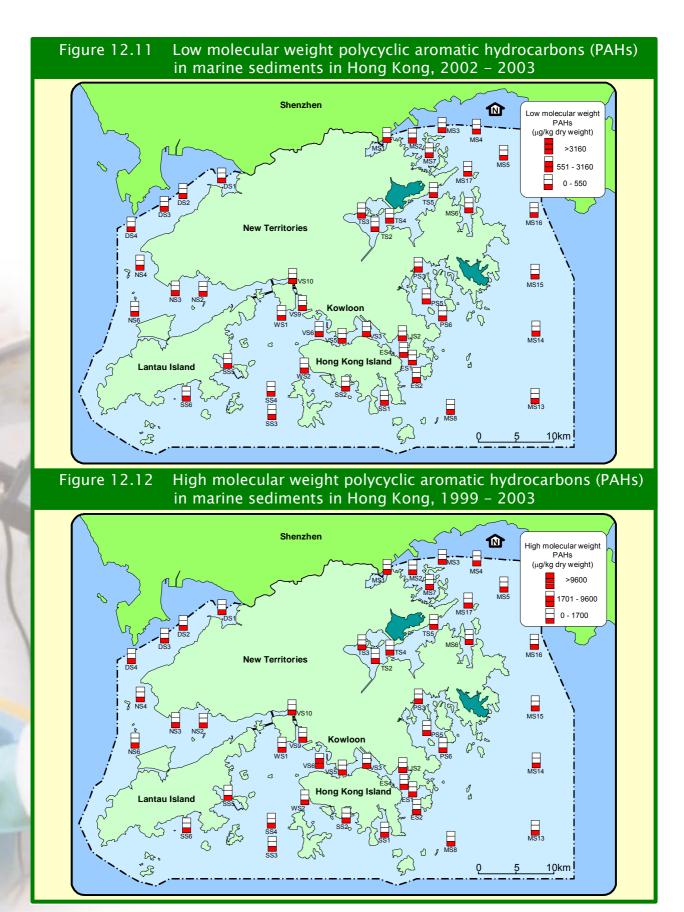

10km

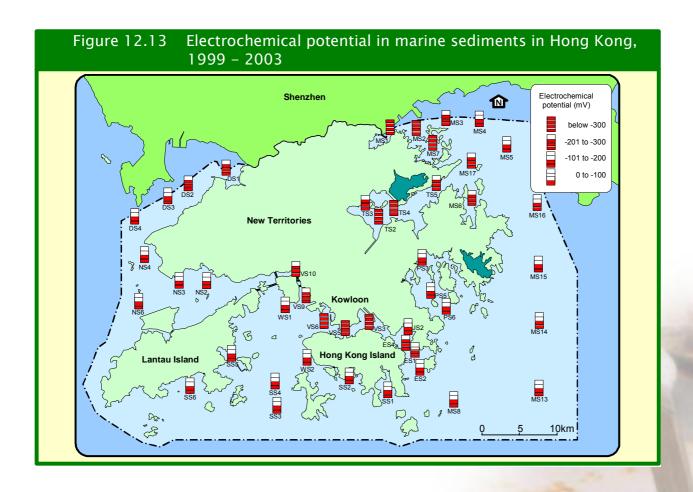



MS13

10km

₫ ø MS8





SEDIMENT QUALITY

SEDIMENT QUALITY

Table 12.1Summary statistics of bottom sediment quality of the Tolo Harbour and Channel and Southern WCZs, 1999 - 2003

		Tolo Harbou	r and Channe Buffer	Channel	Hong Ko	ng Island	West I Cha	_amma nnel
	Harbour	larbour Subzone Si		Subzone	(South)		Onamici	
Parameter	TS2	TS3	TS4	TS5	SS1	SS2	SS3	SS4
Number of samples	10	10	10	10	10	10	10	10
	74	77	70	90	71	90	78	90
Particle Size Fractionation <63µm (%w/w)	(14 - 98)	(49 - 100)	(34 - 99)	(65 - 100)	(47 - 92)	(88 - 93)	(65 - 93)	(68 - 100)
Electrochemical Potential (mV)	-308	-284	-302	-290	-123	-139	-168	-148
Licet continued in cicintal (in v)	((-365) - (-178))	((-364) - (-95))	((-368) - (-190))	((-351) - (-130))	((-205) - 61)	((-338) - 24)	((-280) - (-30))	((-208) - (-81))
Total Solids (%w/w)	35	35	38	32	55	47	51	45
	(30 - 40)	(28 - 45) 9.8	(32 - 51)	(28 - 44) 11.2	(49 - 59) 6.4	(41 - 51) 7.4	(45 - 59) 6.9	(42 - 51) 7.4
Total Volatile Soilds (%w/w)	(8.6 - 12.0)	(7.4 - 12.0)	(7.5 - 12.0)	(9.5 - 13.0)	(5.9 - 7.2)	(6.7 - 7.8)	(6 - 7.6)	(7 - 7.9)
	24000	22000	21000	19000	11000	15000	19000	16000
Chemical Oxygen Demand (mg/kg)	(21000 - 28000)	(15000 - 25000)	(17000 - 24000)	(16000 - 21000)	(10000 - 13000)	(13000 - 16000)	(14000 - 25000)	(14000 - 18000)
Total Carbon (9/11/11)	0.8	0.7	0.8	0.8	0.8	0.7	0.9	0.6
Total Carbon (%w/w)	(0.7 - 0.9)	(0.5 - 0.8)	(0.7 - 0.9)	(0.7 - 0.9)	(0.6 - 1.0)	(0.6 - 0.7)	(0.7 - 1.4)	(0.5 - 0.7)
Ammonical Nitrogen (mg/kg)	11	6	12	18	6	7	6	5
/ IIIIII CIII CAI THA CHO THA	(2 - 32)	(3 - 14)	(2 - 24)	(5 - 25)	(0 - 11)	(0 - 14)	(1 - 16)	(0 - 10)
Total Kjeldahl Nitrogen (mg/kg)	608	529	638	730	372	384	350	356
	(470 - 720) 177	(350 - 640) 168	(460 - 820) 195	(540 - 890) 207	(260 - 450) 213	(230 - 520) 193	(240 - 430) 234	(240 - 420) 192
Total Phosphorus (mg/kg)	(160 - 200)	(140 - 200)	(140 - 230)	(180 - 240)	(160 - 250)	(150 - 240)	(190 - 270)	(160 - 240)
	193	170	144	155	34	46	26	48
Total Sulphide (mg/kg)	(13 - 400)	(15 - 320)	(10 - 230)	(15 - 240)	(7 - 70)	(8 - 74)	(11 - 55)	(15 - 140)
Total Cyanida (ma/ka)	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Total Cyanide (mg/kg)	(0.1 - 0.3)	(0.1 - 0.2)	(0.1 - 0.3)	(0.1 - 0.2)	(0.1 - 0.1)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.1)
Arsenic (mg/kg)	9.6	10.1	8.5	7.2	6.9	9.3	7.6	9.1
7 toothic (mg/kg)	(7.8 - 11.0)	(8.2 - 13.0)	(6.6 - 9.8)	(6.3 - 8.6)	(4.6 - 8.2)	(7.9 - 12.0)	(6.0 - 8.8)	(6.2 - 11.0)
Cadmium (mg/kg)	0.6	0.5	0.4	0.2	0.1	0.1	0.1	0.1
	(0.4 - 0.6)	(0.2 - 0.7)	(0.2 - 0.5)	(0.1 - 0.3)	(0.1 - 0.1) 27	(0.1 - 0.1)	(0.1 - 0.1)	(0.1 - 0.1)
Chromium (mg/kg)	(23 - 34)	(18 - 35)	(19 - 32)	(25 - 40)	(17 - 34)	(28 - 38)	(25 - 38)	(26 - 44)
	50	43	27	23	13	24	21	38
Copper (mg/kg)	(37 - 60)	(22 - 60)	(15 - 38)	(12 - 26)	(8 - 17)	(19 - 30)	(15 - 29)	(20 - 48)
Lead (mg/kg)	89	99	68	54	29	38	34	44
Lead (Ilig/kg)	(76 - 100)	(76 - 130)	(55 - 81)	(40 - 62)	(21 - 40)	(28 - 44)	(23 - 42)	(25 - 50)
Mercury (mg/kg)	0.08	0.07	0.06	0.06	0.07	0.09	0.08	0.14
	(<0.05 - 0.17)	(<0.05 - 0.10)	(<0.05 - 0.09)	(<0.05 - 0.12)	(<0.05 - 0.16)	(<0.05 - 0.14)	(0.06 - 0.11)	(0.08 - 0.21)
Nickel (mg/kg)	18	15	17	24	18	23	21	22
	(15 - 22) <1.0	(10 - 22) <1.0	(13 - 20) <1.0	(17 - 28) <1.0	(12 - 21) <1.0	(20 - 26) <1.0	(17 - 26) <1.0	(16 - 27) <1.0
Silver (mg/kg)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - 1.0)
	212	211	142	123	73	103	87	112
Zinc (mg/kg)	(140 - 270)	(180 - 270)	(75 - 190)	(87 - 140)	(56 - 91)	(93 - 120)	(68 - 110)	(75 - 130)
Total Polychlorinated Biphenyls (PCBs)	18	18	18	18	18	18	18	18
(µg/kg) ^{(3) (4)}	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)
Low Molecular Weight Polycylic Aromatic	92	91	90	91	90	91	91	92
Hydrocarbons (PAHs) (µg/kg) ^{(5) (6) (9)}	(90 - 98)	(90 - 94)	(90 - 90)	(90 - 93)	(90 - 90)	(90 - 93)	(90 - 95)	(90 - 98)
High Molecular Weight Polycylic Aromatic	63	50	62	70	47	75	101	124
Hydrocarbons (PAHs) (µg/kg) (7) (8) (9)	(35 - 120)	(21 - 100)	(20 - 137)	(45 - 115)	(28 - 98)	(30 - 133)	(23 - 354)	(41 - 189)
	(-2 .20)	(=)	(== .0.)	(,)	(== 00)	(== .00)	(== 00.)	(

Note: 1. Data presented are arithmetic means; data in brackets indicate ranges.

2. All data are based on the analyses of bulk (unsieved) sediment and are reported on a dry weight basis unless stated otherwise.

^{3.} The Technical Circular 'ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment' issued in 2002 has revised the definition of 'Total PCBs' as the summation of 18 specific PCB congeners. Following the new definition, the monitoring of these 18 PCB congeners started in 2002 and the Total PCBs results only refer to 2002 and 2003.

^{4.} Total PCBs results are derived from the summation of 18 congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

^{5.} Low molecular weight polyaromatic hydrocarbons (PAHs) include 6 congeners of molecular weight below 200, namely: Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene and Phenanthrene.

^{6.} As the monitoring of Naphthalene only started in 2002, the Low Molecular Weight PAHs results are based on sediments samples collected in 2002 and 2003.

^{7.} High molecular weight polyaromatic hydrocarbons (PAHs) include 10 congeners of molecular weight above 200, namely: Fluoranthene, Pyrene, Benzo(a) anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene and Indeno(1,2,3-cd) pyrene.

^{8.} High Molecular Weight PAHs results are based on sediment samples collected in five years (1999-2003).

^{9.} Low and high molecular weight PAHs results are derived from the summation of the corresponding congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

Table 12.2
Summary statistics of bottom sediment quality of the Southern, Junk Bay and Deep Bay WCZs, 1999 - 2003

	Lantau Island		Junk Bay	Inner D	eep Bay	Outer Deep Bay		
	(East)	(South)						
Parameter	SS5	SS6	JS2	DS1	DS2	DS3	DS4	
Number of samples	10	10	10	10	10	10	10	
Particle Size Fractionation <63µm (%w/w)	98 (93 - 100)	72 (38 - 100)	85 (56 - 99)	83 (41 - 99)	85 (63 - 99)	83 (38 - 100)	71 (13 - 99)	
Electrochemical Potential (mV)	-155	-135	-173	-258	-202	-161	-114	
Elocution formal (mv)	((-289) - (-60))	((-226) - (-41))	((-239) - (-70))	((-368) - (-94))	((-310) - (-98))	((-291) - (-9))	((-204) - (-29))	
Total Solids (%w/w)	37 (35 - 39)	61 (57 - 64)	45 (41 - 54)	46 (34 - 53)	46 (42 - 50)	49 (43 - 69)	54 (41 - 71)	
Total Volatile Soilds (%w/w)	8.5	4.6	7.3	6.8	7.1	6.7	6.1	
, ,	(8 - 8.8) 15000	(4.2 - 5.2) 10000	(5.8 - 8.2) 16000	(4.7 - 9.2) 20000	(6 - 7.9) 16000	(4.3 - 7.6) 15000	(4.6 - 7.7) 14000	
Chemical Oxygen Demand (mg/kg)	(13000 - 17000)	(9400 - 12000)	(11000 - 18000)	(15000 - 24000)	(12000 - 18000)	(12000 - 18000)	(8800 - 19000)	
Total Carbon (%w/w)	0.6	0.5	0.7	0.6	0.5	0.5	0.5	
Total Carbon (%w/w)	(0.5 - 0.6)	(0.5 - 0.6)	(0.6 - 0.8)	(0.3 - 0.7)	(0.4 - 0.6)	(0.4 - 0.6)	(0.3 - 0.6)	
Ammonical Nitrogen (mg/kg)	15 (1 - 34)	10 (2 - 21)	8 (5 - 14)	17 (2 - 39)	8 (2 - 32)	3 (0 - 7)	5 (0 - 11)	
	446	309	440	412	407	349	272	
Total Kjeldahl Nitrogen (mg/kg)	(350 - 580)	(260 - 370)	(340 - 520)	(210 - 800)	(300 - 510)	(210 - 470)	(160 - 490)	
Total Phosphorus (mg/kg)	194	190	197	330	302	238	174	
Total Thospholas (mg/kg)	(150 - 230)	(170 - 220)	(170 - 240)	(140 - 620)	(220 - 380)	(130 - 320)	(120 - 270)	
Total Sulphide (mg/kg)	58	28	101	439	134	59	24	
. ,	(9 - 110) 0.1	(5 - 59) 0.1	(29 - 230) 0.1	(12 - 1200) 0.2	(30 - 320)	(3 - 160) 0.1	(0 - 76) 0.1	
Total Cy anide (mg/kg)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.4)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.3)	
Annuarie (manther)	9	6.3	7.9	12.9	14.8	15.6	14.8	
Arsenic (mg/kg)	(7.8 - 9.9)	(5.4 - 7.6)	(5.8 - 9.6)	(8.5 - 20.0)	(11.0 - 18.0)	(13.0 - 17.0)	(7.6 - 19.0)	
Cadmium (mg/kg)	0.1	0.1	0.2	0.3	0.3	0.2	0.1	
	(0.1 - 0.1)	(0.1 - 0.1)	(0.2 - 0.2)	(0.1 - 0.6)	(0.2 - 0.4)	(0.1 - 0.4)	(0.1 - 0.2)	
Chromium (mg/kg)	42 (34 - 47)	25 (20 - 32)	54 (41 - 78)	42 (28 - 57)	43 (36 - 49)	45 (39 - 53)	35 (27 - 50)	
	42	14	137	62	59	53	29	
Copper (mg/kg)	(30 - 49)	(11 - 17)	(98 - 190)	(14 - 100)	(51 - 70)	(38 - 77)	(15 - 57)	
Lead (mg/kg)	54	27	47	63	61	56	45	
(g,g)	(41 - 64)	(22 - 32)	(35 - 55)	(39 - 87)	(46 - 87)	(49 - 62)	(29 - 68)	
Mercury (mg/kg)	0.17 (0.12 - 0.27)	0.06 (<0.05 - 0.09)	0.25 (0.14 - 0.35)	0.12 (<0.05 - 0.29)	0.14 (0.11 - 0.16)	0.14 (0.09 - 0.16)	0.08 (<0.05 - 0.15)	
	25	16	24	24	26	29	21	
Nickel (mg/kg)	(18 - 30)	(11 - 22)	(17 - 38)	(14 - 33)	(23 - 29)	(23 - 37)	(15 - 30)	
Silver (mg/kg)	<1.0	<1.0	2.2	<1.0	<1.0	<1.0	<1.0	
c. (g,g)	(<1.0 - 1.0)	(<1.0 - <1.0)	(1.0 - 3.0)	(<1.0 - 2.0)	(<1.0 - 1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	
Zinc (mg/kg)	137 (110 - 160)	69 (61 - 86)	142 (100 - 180)	226 (86 - 380)	191 (140 - 240)	157 (130 - 230)	108 (60 - 180)	
Total Polychlorinated Biphenyls (PCBs)	18	18	18	18	18	18	18	
(μg/kg) ^{(3) (4)}	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	
Low Molecular Weight Polycylic Aromatic	90	90	91	94	92	93	90	
Hydrocarbons (PAHs) (µg/kg) (5) (6) (9)	(90 - 90)	(90 - 90)	(90 - 95)	(90 - 104)	(90 - 94)	(90 - 96)	(90 - 90)	
High Molecular Weight Polycylic Aromatic	92	29	183	119	101	86	71	
Hydrocarbons (PAHs) (µg/kg) (7) (8) (9)	(44 - 155)	(19 - 47)	(121 - 273)	(18 - 355)	(42 - 190)	(37 - 120)	(16 - 254)	

Note: 1. Data presented are arithmetic means; data in brackets indicate ranges.

- 2. All data are based on the analyses of bulk (unsieved) sediment and are reported on a dry weight basis unless stated otherwise.
- 3. The Technical Circular 'ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment' issued in 2002 has revised the definition of 'Total PCBs' as the summation of 18 specific PCB congeners. Following the new definition, the monitoring of these 18 PCB congeners started in 2002 and the Total PCBs results only refer to 2002 and 2003.
- 4. Total PCBs results are derived from the summation of 18 congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.
- 5. Low molecular weight polyaromatic hydrocarbons (PAHs) include 6 congeners of molecular weight below 200, namely: Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene and Phenanthrene.
- 6. As the monitoring of Naphthalene only started in 2002, the Low Molecular Weight PAHs results are based on sediments samples collected in 2002 and 2003.
- 7. High molecular weight polyaromatic hydrocarbons (PAHs) include 10 congeners of molecular weight above 200, namely: Fluoranthene, Pyrene, Benzo(a) anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene and Indeno(1,2,3-cd) pyrene.
- High Molecular Weight PAHs results are based on sediment samples collected in five years (1999–2003).
- 9. Low and high molecular weight PAHs results are derived from the summation of the corresponding congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

SEDIMENT QUALITY

Table 12.3Summary statistics of bottom sediment quality of the Port Shelter and Mirs Bay WCZs, 1999 – 2003

	Inner Port		ıter	Starling	Crooke	d Island	Port Island	Mirs Bay
	Shelter	Port S	Shelter	Inlet				(North)
Parameter	PS3	PS5	PS6	MS1	MS2	MS7	MS17	MS3
Number of samples	10	10	10	10	10	10	10	10
Particle Size Fractionation <63µm (%w/w)	90	57	87	90	97	97	96	95
ranicle Size Fractionation (05µm (/w/w)	(55 - 99)	(19 - 97)	(82 - 97)	(82 - 100)	(93 - 100)	(90 - 100)	(91 - 100)	(89 - 100)
Electrochemical Potential (mV)	-198	-108	-164	-302	-323	-339	-232	-238
	((-324) - (-34))	((-249) - (-15))	((-281) - (-33))	((-379) - (-106))	((-390) - (-71))	((-395) - (-152))	((-342) - (-61))	((-346) - (-6))
Total Solids (%w/w)	37 (32 - 53)	54 (38 - 63)	46 (43 - 51)	40 (32 - 46)	32 (30 - 35)	30 (27 - 34)	36 (34 - 42)	39 (35 - 44)
	12	8.1	9.5	8.3	10.6	11.3	10.1	9.5
Total Volatile Soilds (%w/w)	(8.2 - 14.0)	(5.5 - 11.0)	(8.8 - 11.0)	(7.4 - 10.0)	(9.8 - 12.0)	(11 - 12.0)	(9 - 11.0)	(7.8 - 11.0)
Chamical Owners Damand (marlles)	19000	12000	14000	19000	19000	19000	18000	18000
Chemical Oxygen Demand (mg/kg)	(15000 - 21000)	(7200 - 17000)	(10000 - 15000)	(14000 - 22000)	(16000 - 20000)	(17000 - 21000)	(14000 - 19000)	(14000 - 20000)
Total Carbon (%w/w)	1	1	0.9	0.7	0.7	0.8	0.8	0.7
Total Galbon (/ow/w)	(0.5 - 1.2)	(0.3 - 1.8)	(0.4 - 1.3)	(0.6 - 0.8)	(0.6 - 0.9)	(0.7 - 0.9)	(0.7 - 1.2)	(0.6 - 0.9)
Ammonical Nitrogen (mg/kg)	9	8	8	19	18	12	9	7
	(4 - 15) 638	(4 - 15) 389	(2 - 15) 485	(3 - 50) 554	(13 - 25) 648	(1 - 18) 666	(1 - 16) 606	(2 - 13) 565
Total Kjeldahl Nitrogen (mg/kg)	(420 - 780)	(300 - 600)	(270 - 600)	(270 - 760)	(510 - 720)	(570 - 760)	(390 - 760)	(380 - 670)
	211	165	198	190	206	202	213	198
Total Phosphorus (mg/kg)	(170 - 240)	(120 - 210)	(110 - 250)	(150 - 230)	(180 - 240)	(170 - 240)	(150 - 270)	(170 - 230)
Total Culphide (ma/ka)	72	13	32	198	150	98	50	36
Total Sulphide (mg/kg)	(7 - 200)	(0 - 36)	(1 - 59)	(34 - 350)	(43 - 340)	(2 - 190)	(2 - 77)	(10 - 100)
Total Cyanide (mg/kg)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
· · · · · · · · · · · · · · · · · · ·	(0.1 - 0.1)	(0.1 - 0.1)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.2)
Arsenic (mg/kg)	7	5.1	6.5	9.8	7.9	7.6	7.3	7.6
	(5.4 - 9.7) 0.1	(3.1 - 8.2)	(5.2 - 9.3) 0.1	(7.5 - 12.0) 0.2	(5.8 - 9.4)	(5.7 - 10.0) 0.2	(5.3 - 10.0) 0.1	(5.1 - 9.6)
Cadmium (mg/kg)	(0.1 - 0.1)	(0.1 - 0.1)	(0.1 - 0.1)	(0.2 - 0.3)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.2)
	28	23	29	28	35	36	36	33
Chromium (mg/kg)	(20 - 35)	(16 - 35)	(26 - 34)	(26 - 31)	(28 - 40)	(32 - 38)	(28 - 40)	(27 - 39)
Connor (ma/ka)	25	11	14	40	21	20	17	15
Copper (mg/kg)	(19 - 31)	(5 - 19)	(12 - 21)	(32 - 45)	(19 - 26)	(16 - 25)	(13 - 19)	(12 - 19)
Lead (mg/kg)	40	27	34	51	47	44	45	40
(99)	(34 - 44)	(18 - 43)	(32 - 38)	(38 - 57)	(39 - 50)	(36 - 51)	(34 - 52)	(32 - 49)
Mercury (mg/kg)	0.1	<0.05	0.05	0.1	0.07	0.08	0.06	<0.05
1.1.0	(0.06 - 0.18) 17	(<0.05 - 0.07) 16	(<0.05 - 0.09) 20	(0.07 - 0.15) 17	(<0.05 - 0.1) 23	(0.06 - 0.11)	(<0.05 - 0.09) 26	(<0.05 - 0.07)
Nickel (mg/kg)	(9 - 22)	(9 - 26)	(18 - 23)	(15 - 20)	(20 - 28)	(21 - 26)	(21 - 30)	(19 - 28)
0" (")	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver (mg/kg)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - 1.0)	(<1.0 - 1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)
Zinc (mg/kg)	102	68	83	107	101	97	95	85
(0 0)	(77 - 130)	(36 - 120)	(67 - 100)	(80 - 130)	(77 - 120)	(78 - 120)	(66 - 120)	(60 - 99)
Total Polychlorinated Biphenyls (PCBs)	18	18	18	18	18	18	18	18
(µg/kg) ^{(3) (4)}	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)
Low Molecular Weight Polycylic Aromatic	90	90	90	90	91	90	90	90
Hydrocarbons (PAHs) (µg/kg) (5) (6) (9)	(90 - 90)	(90 - 90)	(90 - 90)	(90 - 90)	(90 - 95)	(90 - 90)	(90 - 90)	(90 - 90)
High Molecular Weight Polycylic Aromatic	74	38	50	60	72	89	60	52
Hydrocarbons (PAHs) (µg/kg) (7) (8) (9)	(57 - 107)	(20 - 92)	(24 - 89)	(34 - 93)	(44 - 109)	(36 - 200)	(30 - 101)	(33 - 94)

Note: 1. Data presented are arithmetic means; data in brackets indicate ranges.

^{3.} The Technical Circular 'ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment' issued in 2002 has revised the definition of 'Total PCBs' as the summation of 18 specific PCB congeners. Following the new definition, the monitoring of these 18 PCB congeners started in 2002 and the Total PCBs results only refer to 2002 and 2003.

^{4.} Total PCBs results are derived from the summation of 18 congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

^{5.} Low molecular weight polyaromatic hydrocarbons (PAHs) include 6 congeners of molecular weight below 200, namely: Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene and Phenanthrene.

^{6.} As the monitoring of Naphthalene only started in 2002, the Low Molecular Weight PAHs results are based on sediments samples collected in 2002 and 2003.

7. High molecular weight polyaromatic hydrocarbons (PAHs) include 10 congeners of molecular weight above 200, namely: Fluoranthene, Pyrene, Benzo(a) anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene and Indeno(1,2,3-cd)

^{8.} High Molecular Weight PAHs results are based on sediment samples collected in five years (1999–2003).

^{9.} Low and high molecular weight PAHs results are derived from the summation of the corresponding congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

Table 12.4
Summary statistics of bottom sediment quality of the Mirs Bay WCZ, 1999 - 2003

	Mirs	Вау	Long	Waglan	Mirs Bay	Mirs Bay (Central)			
	(No	orth)	Harbour	Island	(South)				
Parameter	MS4	MS5	MS6	MS8	MS13	MS14	MS15	MS16	
Number of samples	10	10	10	10	10	10	10	10	
Particle Size Fractionation <63µm (%w/w)	65	91	97	96	94	92	90	85	
	(65)	(85 - 96)	(95 - 100)	(91 - 98)	(91 - 100)	(88 - 95)	(81 - 96)	(76 - 94)	
Electrochemical Potential (mV)	-182 ((-291) - 10)	-175 ((-256) - (-27))	-211 ((-300) - (-8))	-124 ((-237) - (-4))	-111 ((-195) - (-19))	-119 ((-189) - (-18))	-118 ((-209) - (-29))	-131 ((-274) - (-10))	
	((-291) - 10)	39	35	((-237) - (-4))	((-195) - (-19))	((-109) - (-10))	((-209) - (-29))	52	
Total Solids (%w/w)	(33 - 36)	(36 - 44)	(32 - 40)	(44 - 51)	(47 - 51)	(46 - 53)	(49 - 54)	(46 - 56)	
Tatal Valatia Cailda (0(()	9.6	8.7	11	7.2	6.7	6.8	6.4	6.4	
Total Volatile Soilds (%w/w)	(8.9 - 10.0)	(7.8 - 10.0)	(8 - 12.0)	(6.6 - 7.6)	(6.1 - 7.5)	(5.7 - 7.4)	(5.3 - 7.0)	(5.5 - 7.1)	
Chemical Oxygen Demand (mg/kg)	15000	15000	19000	13000	11000	11000	11000	11000	
Offermed Oxygen Demand (mg/kg)	(12000 - 17000)	(13000 - 16000)	(15000 - 21000)	(10000 - 20000)	(9700 - 12000)	(9600 - 12000)	(9500 - 12000)	(8200 - 12000)	
Total Carbon (%w/w)	0.6	0.7	0.9	0.6	0.6	0.6	0.6	0.6	
,	(0.6 - 0.7)	(0.6 - 0.9)	(0.7 - 1.0) 12	(0.5 - 0.6)	(0.5 - 0.6)	(0.5 - 0.7)	(0.5 - 0.8)	(0.5 - 0.8)	
Ammonical Nitrogen (mg/kg)	8 (1 - 20)	10 (1 - 16)	(1 - 21)	6 (0 - 20)	8 (0 - 48)	10 (0 - 69)	4 (0 - 10)	10 (2 - 37)	
	622	592	698	390	406	389	370	386	
Total Kjeldahl Nitrogen (mg/kg)	(550 - 680)	(530 - 650)	(480 - 840)	(320 - 480)	(350 - 520)	(280 - 560)	(270 - 470)	(260 - 450)	
	210	214	239	206	229	217	211	216	
Total Phosphorus (mg/kg)	(190 - 230)	(180 - 240)	(180 - 290)	(180 - 220)	(210 - 250)	(190 - 250)	(180 - 230)	(160 - 260)	
Total Culphide (mar/lin)	45	59	84	42	26	23	16	39	
Total Sulphide (mg/kg)	(1 - 86)	(13 - 180)	(15 - 210)	(1 - 180)	(8 - 130)	(8 - 89)	(8 - 27)	(2 - 210)	
Total Cyanide (mg/kg)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Total Oyumac (mg/kg)	(0.1 - 0.2)	(0.1 - 0.1)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.1)	(0.1 - 0.1)	(0.1 - 0.1)	(0.1 - 0.1)	
Arsenic (mg/kg)	7.1	7.7	6.8	7.9	8.2	8.1	7.3	6.8	
3. 3 (3. 3)	(4.9 - 9.0)	(5.7 - 9.7)	(5.0 - 8.8)	(6.6 - 9.4)	(6.4 - 9.3)	(6.9 - 9.1)	(5.6 - 8.6)	(5.0 - 8.0)	
Cadmium (mg/kg)	0.1 (0.1 - 0.2)	0.1	0.1	0.1 (0.1 - 0.1)	0.1	0.1	(0.1 0.1)	(0.1 0.1)	
	37	(0.1 - 0.2)	(0.1 - 0.2)	34	(0.1 - 0.1)	(0.1 - 0.1)	(0.1 - 0.1)	(0.1 - 0.1)	
Chromium (mg/kg)	(30 - 43)	(26 - 62)	(27 - 35)	(26 - 41)	(29 - 34)	(28 - 36)	(25 - 35)	(24 - 34)	
	16	15	18	14	13	13	11	10	
Copper (mg/kg)	(13 - 18)	(11 - 19)	(15 - 23)	(11 - 20)	(11 - 14)	(10 - 16)	(9 - 13)	(8 - 14)	
Lord (see the)	41	43	42	34	31	32	31	32	
Lead (mg/kg)	(33 - 48)	(33 - 49)	(36 - 48)	(27 - 40)	(26 - 34)	(26 - 36)	(25 - 36)	(26 - 39)	
Mercury (mg/kg)	<0.05	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	
Melculy (mg/kg)	(<0.05 - 0.07)	(<0.05 - 0.08)	(0.06 - 0.12)	(<0.05 - 0.09)	(<0.05 - 0.06)	(<0.05 - 0.07)	(<0.05 - 0.09)	(<0.05 - 0.06)	
Nickel (mg/kg)	28	27	24	25	24	23	22	21	
· ···o··o·· (····g····g)	(23 - 33)	(20 - 39)	(21 - 28)	(20 - 31)	(21 - 27)	(20 - 27)	(18 - 26)	(17 - 26)	
Silver (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
	(<1.0 - <1.0) 94	(<1.0 - <1.0) 92	(<1.0 - <1.0) 100	(<1.0 - <1.0) 83	(<1.0 - <1.0) 78	(<1.0 - <1.0) 78	(<1.0 - <1.0) 71	(<1.0 - <1.0) 71	
Zinc (mg/kg)	(66 - 120)	(62 - 110)	(78 - 120)	os (59 - 100)	7 o (56 - 95)	70 (58 - 92)	(53 - 85)	(54 - 82)	
Total Polychlorinated Biphenyls (PCBs)	18	18	18	18	18	18	18	18	
(μg/kg) ^{(3) (4)}	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	
Low Molecular Weight Polycylic Aromatic	90	90	90	90	90	90	90	90	
• , ,									
Hydrocarbons (PAHs) (µg/kg) (5) (6) (9)	(90 - 90)	(90 - 90)	(90 - 90)	(90 - 90)	(90 - 90)	(90 - 90)	(90 - 90)	(90 - 90)	
High Molecular Weight Polycylic Aromatic	57	47	76	57	40	37	34	30	
Hy drocarbons (PAHs) (μg/kg) (7) (8) (9)	(30 - 89)	(28 - 75)	(38 - 123)	(22 - 101)	(26 - 82)	(23 - 67)	(19 - 54)	(19 - 47)	

Note: 1. Data presented are arithmetic means; data in brackets indicate ranges.

^{3.} The Technical Circular 'ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment' issued in 2002 has revised the definition of 'Total PCBs' as the summation of 18 specific PCB congeners. Following the new definition, the monitoring of these 18 PCB congeners started in 2002 and the Total PCBs results only refer to 2002 and 2003.

^{4.} Total PCBs results are derived from the summation of 18 congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

^{5.} Low molecular weight polyaromatic hydrocarbons (PAHs) include 6 congeners of molecular weight below 200, namely: Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene and Phenanthrene.

^{6.} As the monitoring of Naphthalene only started in 2002, the Low Molecular Weight PAHs results are based on sediments samples collected in 2002 and 2003.

^{7.} High molecular weight polyaromatic hydrocarbons (PAHs) include 10 congeners of molecular weight above 200, namely: Fluoranthene, Pyrene, Benzo(a) anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene and Indeno(1,2,3-cd) pyrene.

^{8.} High Molecular Weight PAHs results are based on sediment samples collected in five years (1999-2003).

^{9.} Low and high molecular weight PAHs results are derived from the summation of the corresponding congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

SEDIMENT QUALITY

Table 12.5

Summary statistics of bottom sediment quality of the North Western and Western Buffer WCZs, 1999 - 2003

	Pearl	Pillar	Urmston	Chek Lap	Tsing Yi	Hong Kong
	Island	Point	Road	Kok (North)	(South)	Island (West)
Parameter	NS2	NS3	NS4	NS6	WS1	WS2
Number of samples	10	10	10	10	10	10
Partials Size Exectionation (62.1m (9/11/11)	74	58	54	63	84	87
Particle Size Fractionation <63µm (%w/w)	(46 - 90)	(5 - 86)	(26 - 86)	(26 - 92)	(27 - 97)	(71 - 97)
Electrochemical Potential (mV)	-129	-149	-152	-143	-163	-121
Elocution four Follows (mv)	((-186) - (-33))	((-236) - (-18))	((-230) - (-19))	((-205) - (-20))	((-263) - (-31))	((-166) - 43)
Total Solids (%w/w)	52	58	63	62	45	46
,	(50 - 58) 6.3	(51 - 69)	(50 - 68)	(47 - 73)	(38 - 64) 7	(41 - 54)
Total Volatile Soilds (%w/w)	6.3 (5 - 7.0)	5.9 (3.1 - 7.4)	5.3 (4.5 - 6.7)	4.8 (2.9 - 8.3)	/ (4 - 9.0)	7.1 (5.6 - 8.4)
	14000	16000	13000	12000	16000	14000
Chemical Oxygen Demand (mg/kg)	(10000 - 16000)	(8400 - 19000)	(11000 - 14000)	(8300 - 17000)	(11000 - 19000)	(9800 - 20000)
	0.6	0.6	0.5	0.5	0.6	0.6
Total Carbon (%w/w)	(0.5 - 0.7)	(0.4 - 0.8)	(0.3 - 0.7)	(0.4 - 0.7)	(0.5 - 0.7)	(0.5 - 0.7)
Ammonical Nitrogen (mg/kg)	3	5	17	5	16	7
Animonical Nilrogen (mg/kg)	(1 - 8)	(1 - 12)	(2 - 39)	(1 - 16)	(6 - 38)	(2 - 11)
Total Kjeldahl Nitrogen (mg/kg)	298	280	254	239	417	381
roar Holdan Huogon (mg/kg)	(220 - 360)	(120 - 340)	(200 - 340)	(140 - 370)	(200 - 570)	(260 - 460)
Total Phosphorus (mg/kg)	181	181	156	156	189	193
3.7 3.4 (3. 3)	(130 - 210)	(86 - 240)	(110 - 220)	(100 - 260)	(110 - 240)	(140 - 220)
Γotal Sulphide (mg/kg)	24 (2 - 64)	17 (5 - 32)	20 (1 - 54)	6 (1 - 15)	101 (13 - 210)	48 (15 - 87)
	0.1	0.2	0.1	0.1	0.1	0.1
Total Cy anide (mg/kg)	(0.1 - 0.1)	(0.1 - 0.5)	(0.1 - 0.1)	(0.1 - 0.1)	(0.1 - 0.3)	(0.1 - 0.2)
	9.9	10.8	11.1	10.9	9.9	11.8
Arsenic (mg/kg)	(8.3 - 11.0)	(6.3 - 14.0)	(9.1 - 15.0)	(6.1 - 22.0)	(5.6 - 13.0)	(9.5 - 16.0)
Cadmium (ma/ka)	0.1	0.1	0.1	0.1	0.2	0.1
Cadmium (mg/kg)	(0.1 - 0.1)	(0.1 - 0.3)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.3)	(0.1 - 0.3)
Chromium (mg/kg)	33	31	27	26	41	40
oniomam (mg/kg/	(30 - 35)	(16 - 41)	(20 - 36)	(15 - 45)	(13 - 52)	(32 - 51)
Copper (mg/kg)	32	34	23	17	52	38
11 (3 0)	(27 - 45) 36	(17 - 47)	(18 - 37)	(8 - 34)	(9 - 94) 41	(18 - 120)
_ead (mg/kg)	(32 - 44)	36 (20 - 45)	38 (29 - 47)	29 (17 - 49)	(15 - 49)	42 (34 - 54)
	0.08	0.12	0.08	0.06	0.17	0.13
Mercury (mg/kg)	(0.06 - 0.15)	(0.06 - 0.19)	(0.06 - 0.11)	(<0.05 - 0.15)	(<0.05 - 0.49)	(<0.05 - 0.26)
N	19	19	17	16	23	24
Nickel (mg/kg)	(16 - 22)	(10 - 25)	(14 - 20)	(9 - 27)	(8 - 27)	(21 - 27)
Cilvor (ma/ka)	<1.0	<1.0	<1.0	<1.0	1	<1.0
Silver (mg/kg)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - 2.0)	(<1.0 - 3.0)
Zinc (mg/kg)	93	87	99	72	110	107
(0 0)	(73 - 110)	(48 - 120)	(67 - 110)	(34 - 120)	(31 - 150)	(82 - 160)
Total Polychlorinated Biphenyls (PCBs)	18	18	18	18	18	18
μg/kg) ^{(3) (4)}	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 18)
Low Molecular Weight Polycylic Aromatic	90	91	90	90	90	90
Hydrocarbons (PAHs) (µg/kg) (5) (6) (9)	(90 - 90)	(90 - 94)	(90 - 90)	(90 - 90)	(90 - 90)	(90 - 90)
High Molecular Weight Polycylic Aromatic	53	87	58	31	112	81
Hydrocarbons (PAHs) (µg/kg) (7) (8) (9)	(27 - 92)	(31 - 296)	(22 - 139)	(16 - 84)	(22 - 197)	(22 - 185)

Note: 1. Data presented are arithmetic means; data in brackets indicate ranges.

^{3.} The Technical Circular 'ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment' issued in 2002 has revised the definition of 'Total PCBs' as the summation of 18 specific PCB congeners. Following the new definition, the monitoring of these 18 PCB congeners started in 2002 and the Total PCBs results only refer to 2002 and 2003.

^{4.} Total PCBs results are derived from the summation of 18 congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

^{5.} Low molecular weight polyaromatic hydrocarbons (PAHs) include 6 congeners of molecular weight below 200, namely: Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene and Phenanthrene.

^{6.} As the monitoring of Naphthalene only started in 2002, the Low Molecular Weight PAHs results are based on sediments samples collected in 2002 and 2003.

^{7.} High molecular weight polyaromatic hydrocarbons (PAHs) include 10 congeners of molecular weight above 200, namely: Fluoranthene, Pyrene, Benzo(a) anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene and Indeno(1,2,3-cd) pyrene.

^{8.} High Molecular Weight PAHs results are based on sediment samples collected in five years (1999–2003).

^{9.} Low and high molecular weight PAHs results are derived from the summation of the corresponding congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

Table 12.6

Summary statistics of bottom sediment quality of the Eastern Buffer and Victoria Harbour WCZs, 1999 – 2003

		Eastern Buffe	r	V	ictoria Harbo	Rambler Channel		
Parameter	Chai Wan ES1	Tathong ES2	Channel ES4	(East) VS3	(Central) VS5	(West) VS6	VS9	VS10
Number of samples	10	10	10	8	8	8	10	10
Particle Size Fractionation <63µm (%w/w)	54	70	59	54	69	68	86	84
Tartolo Olzo Tradadriadori Gopini (704/44)	(31 - 94)	(37 - 92)	(29 - 87)	(8 - 91)	(28 - 100)	(45 - 86)	(67 - 99)	(29 - 99)
Electrochemical Potential (mV)	-175 ((246) (24))	-145	-245 ((240) (64))	-313	-339	-338	-243 ((265) (100))	-247 ((265) (149)
	((-246) - (-34)) 64	((-202) - (-26)) 56	((-349) - (-64)) 54	((-421) - (-66)) 52	((-408) - (-213)) 46	((-410) - (-218)) 48	((-365) - (-100)) 47	((-365) - (-148) 42
Total Solids (%w/w)	(51 - 69)	(44 - 70)	(45 - 64)	(39 - 73)	(31 - 66)	(41 - 59)	(42 - 53)	(35 - 60)
T-4-1 \(\frac{1}{2} = \O_{-}^{2} \dots \(\frac{1}{2} \dots \(\frac{1}{2} \dots \(\frac{1}{2} \dots \do	5	5.7	6.3	6.4	8.5	7.9	7	7.9
Total Volatile Soilds (%w/w)	(4 - 6.6)	(4 - 7.6)	(4.9 - 8.1)	(3.2 - 8.8)	(5.2 - 12.0)	(6.3 - 9.4)	(6 - 7.8)	(4.8 - 9.6)
Chemical Oxygen Demand (mg/kg)	11000	11000	15000	18000	24000	24000	18000	20000
Onemical Oxygen Demand (mg/kg)	(9400 - 13000)	(8000 - 15000)	(11000 - 18000)	(7300 - 24000)	(15000 - 29000)	(13000 - 29000)	(12000 - 25000)	(13000 - 27000
Total Carbon (%w/w)	1	0.7	0.7	0.7	0.7	0.9	0.7	0.6
, ,	(0.3 - 1.8) 10	(0.5 - 1.1)	(0.3 - 1.0) 11	(0.5 - 0.8)	(0.5 - 0.9)	(0.7 - 1.3) 16	(0.6 - 0.8) 14	(0.4 - 0.8)
Ammonical Nitrogen (mg/kg)	(2 - 22)	(2 - 10)	(4 - 34)	(1 - 240)	(2 - 86)	(1 - 42)	(1 - 47)	(3 - 34)
	323	361	428	493	558	457	320	457
Total Kjeldahl Nitrogen (mg/kg)	(190 - 430)	(230 - 520)	(290 - 620)	(220 - 640)	(360 - 670)	(360 - 580)	(160 - 460)	(270 - 630)
Total Dhaanharia (ma/ka)	161	181	181	179	191	230	162	217
Total Phosphorus (mg/kg)	(100 - 210)	(130 - 230)	(120 - 240)	(120 - 240)	(130 - 240)	(200 - 280)	(120 - 200)	(150 - 260)
Total Sulphide (mg/kg)	71	51	212	358	686	256	92	357
Total Calpinat (mg/kg)	(10 - 140)	(2 - 150)	(13 - 360)	(78 - 690)	(170 - 1700)	(100 - 490)	(0 - 300)	(120 - 1100)
Total Cy anide (mg/kg)	0.1	0.1	0.2	0.2	0.3	0.2	0.1	0.3
, , , ,	(0.1 - 0.2)	(0.1 - 0.2) 6.4	(0.1 - 0.4)	(0.1 - 0.4) 6.2	(0.1 - 0.8) 7.5	(0.1 - 0.3)	(0.1 - 0.3)	(0.1 - 0.5)
Arsenic (mg/kg)	(3.5 - 7.0)	(4.9 - 8.3)	(4.9 - 8.1)	(0.9 - 9.4)	(5.4 - 8.5)	(6.6 - 10.0)	(4.0 - 9.7)	(4.6 - 11.0)
	0.1	0.1	0.2	0.4	0.7	0.5	0.5	0.9
Cadmium (mg/kg)	(0.1 - 0.2)	(0.1 - 0.1)	(0.1 - 0.3)	(0.1 - 0.9)	(0.3 - 1.0)	(0.4 - 0.6)	(0.1 - 1.3)	(0.3 - 2.4)
Chromium (malka)	24	29	35	44	50	48	58	109
Chromium (mg/kg)	(15 - 36)	(20 - 41)	(23 - 54)	(12 - 100)	(28 - 70)	(34 - 60)	(33 - 88)	(48 - 190)
Copper (mg/kg)	44	29	84	136	163	141	147	309
	(17 - 87)	(16 - 48)	(54 - 140)	(27 - 330)	(84 - 250)	(95 - 210)	(11 - 320)	(110 - 760)
Lead (mg/kg)	25	29	40	41	55	88 (51 130)	62	62
	(20 - 32) 0.19	(21 - 46) 0.07	(24 - 69) 0.18	(21 - 68) 0.31	(41 - 75) 0.36	(51 - 130) 1.62	(25 - 260) 0.21	(42 - 76) 0.2
Mercury (mg/kg)	(0.06 - 1)	(<0.05 - 0.13)	(0.09 - 0.3)	(<0.05 - 0.72)	(0.20 - 0.50)	(0.29 - 8.00)	(<0.05 - 0.40)	(0.09 - 0.34)
	13	18	17	17	21	20	30	46
Nickel (mg/kg)	(10 - 18)	(13 - 23)	(8 - 22)	(6 - 30)	(12 - 31)	(16 - 24)	(19 - 38)	(16 - 110)
Silver (mg/kg)	<1.0	<1.0	2.1	3.6	6.7	4.1	3.7	9.3
Silver (mg/kg)	(<1.0 - 2.0)	(<1.0 - 1.0)	(1.0 - 3.0)	(<1.0 - 6.0)	(3.0 - 11.0)	(3.0 - 6.0)	(<1.0 - 10.0)	(3.0 - 19.0)
Zinc (mg/kg)	67	74	102	137	200	192	128	192
, , ,	(46 - 100)	(54 - 110)	(63 - 140)	(17 - 240)	(110 - 300)	(120 - 250)	(62 - 200)	(94 - 270)
Total Polychlorinated Biphenyls (PCBs)	18	18	18	18	19	21	18	21
(µg/kg) ^{(3) (4)}	(18 - 18)	(18 - 18)	(18 - 18)	(18 - 19)	(18 - 19)	(18 - 25)	(18 - 19)	(18 - 30)
Low Molecular Weight Polycylic Aromatic	90	90	96	106	107	140	90	93
Hydrocarbons (PAHs) (µg/kg) (5) (6) (9)	(90 - 90)	(90 - 90)	(93 - 101)	(90 - 124)	(90 - 118)	(113 - 169)	(90 - 90)	(90 - 99)
High Molecular Weight Polycylic Aromatic	83	52	141	337	476	1997	153	194
Hy drocarbons (PAHs) (µg/kg) (7) (8) (9)	(21 - 160)	(30 - 143)	(74 - 265)	(66 - 689)	(278 - 712)	(357 - 5780)	(16 - 433)	(89 - 339)

Note: 1. Data presented are arithmetic means; data in brackets indicate ranges.

- 2. All data are based on the analyses of bulk (unsieved) sediment and are reported on a dry weight basis unless stated otherwise.
- 3. The Technical Circular 'ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment' issued in 2002 has revised the definition of 'Total PCBs' as the summation of 18 specific PCB congeners. Following the new definition, the monitoring of these 18 PCB congeners started in 2002 and the Total PCBs results only refer to 2002 and 2003.
- 4. Total PCBs results are derived from the summation of 18 congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.
- 5. Low molecular weight polyaromatic hydrocarbons (PAHs) include 6 congeners of molecular weight below 200, namely: Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene and Phenanthrene.
- 6. As the monitoring of Naphthalene only started in 2002, the Low Molecular Weight PAHs results are based on sediments samples collected in 2002 and 2003.
- 7. High molecular weight polyaromatic hydrocarbons (PAHs) include 10 congeners of molecular weight above 200, namely: Fluoranthene, Pyrene, Benzo(a) anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene and Indeno(1,2,3-cd) pyrene.
- High Molecular Weight PAHs results are based on sediment samples collected in five years (1999–2003).
- 9. Low and high molecular weight PAHs results are derived from the summation of the corresponding congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

SEDIMENT QUALITY

Table 12.7
Sediment Quality Criteria for the Classification of Sediments¹

Contaminants	Lower Chemical Exceedance Level (LCEL)	Upper Chemical Exceedance Level (UCEL)
Metals <i>(mg/kg dry weight)</i>		
Cadmium (Cd)	1.5	4
Chromium (Cr)	80	160
Copper (Cu)	65	110
Mercury (Hg)	0.5	1
Nickel (Ni) ²	40	40
Lead (Pb)	75	110
Silver (Ag)	1	2
Zinc (Zn)	200	270
Metalloid <i>(mg/kg dry weight)</i>		
Arsenic (As)	12	42
Organic-PAHs <i>(mg/kg dry weight)</i>		
Low Molecular Weight PAHs ³	550	3160
High Molecular Weight PAHs ⁴	1700	9600
Organic-non-PAHs (mg/kg dry weight)		
Total PCBs	23	180
Organometallics (mg TBT/L in Interstitial water)		
Tributyltin ²	0.15	0.15

Footnote: 1. The table is extracted from Appendix A of ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment (http://www.etwb.gov.hk).

- 2. When the LCEL and UCEL for a contaminant are the same, the contaminant level is considered to have exceeded UCEL if it is greater than the value shown.
- 3. Low molecular weight PAHs include acenaphthene, acenaphthylene, anthracene, fluorene, naphthalene, and phenanthrene.
- 4. High molecular weight PAHs include benzo[a]anthracene, benzo[a]pyrene, chrysene, dibenzo[a,h]anthracene, fluoranthene, pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-c,d]pyrene and benzo[g,h,i] perylene.
- 5. Total PCBs include 18 congeners: PCB 8, 18, 28, 44, 52, 66, 77, 101, 105, 118, 126, 128, 138, 153, 169, 170, 180, 187.

Chapter 13 - Typhoon Shelters

Water Quality in 2003

- 13.1 Typhoon shelters are port facilities which provide refuge for vessels during the advent of typhoons. These embayments are largely enclosed with low water exchange with open waters and are highly vulnerable to pollution from storm-drains, surface-runoff and vessels. In 2003, monitoring was carried out at 18 water and 15 sediment stations in 17 typhoon shelters and sheltered anchorages in the territory (Figure 1.4). A summary of the water quality data is shown in Table 13.1, while the key results are presented in Figure 13.1.
- Like other port facilities, typhoon shelters are managed by the Marine Department (http://www.mardep.gov.hk). The Marine Department is responsible for controlling pollution from ships by enforcing environmental legislation such as the 'Merchant Shipping (Prevention and Control of Pollution) Ordinance' and the 'Shipping and Port Control Ordinance'. In addition, it also cleans up floating refuse in typhoon shelters and other marine waters.
- 13.3 The older typhoon shelters used to receive discharges from storm-drains and contaminated by wastewater from expedient connections. Many such connections have been rectified during the implementation of Sewerage Master Plans and the enforcement of Water Pollution Control Ordinance (WPCO).

Water Quality in 2003

- In 2003, an increase of dissolved oxygen (DO) was observed in many typhoon shelters in the Victoria Harbour area, including Chai Wan, Causeway Bay, Kwun Tong and Yau Ma Tei. The increases ranged 13-106%, highest at Kwun Tong Typhoon Shelter.
- In the eastern Victoria Harbour, notable decreases in *E. coli* and ammonia nitrogen (NH₄-N) in Chai Wan, Aldrich Bay (Shau Kei Wan), Sam Ka Tsuen and To Kwa Wan Typhoon Shelters were observed in 2002 after the commissioning of the Harbour Area Treatment Scheme (HATS) Stage I. These improvements were sustained in 2003.
- The two typhoon shelters in Sai Kung, Yim Tin Tsai and Hebe Haven, continued to have the best water quality in the territory, while Kwun Tong Typhoon Shelter the poorest, with highest *E. coli*, NH₄-N and total inorganic nitrogen (TIN) (Figure 3.1). In addition, Causeway Bay, Rambler Channel and Yau Ma Tei Typhoon Shelters also had high levels of *E. coli* content (5,000 –

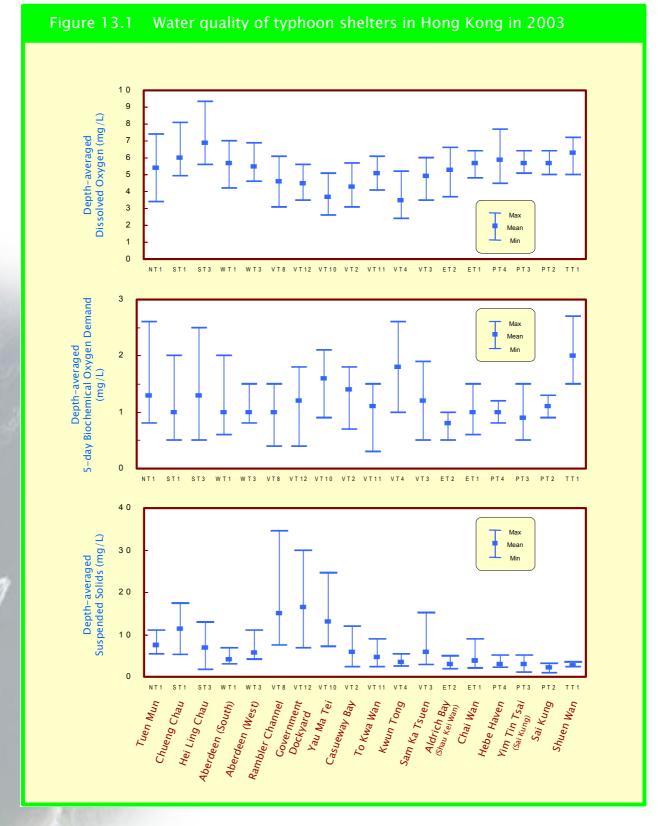
8,000 cfu/100mL) indicating faecal contamination.

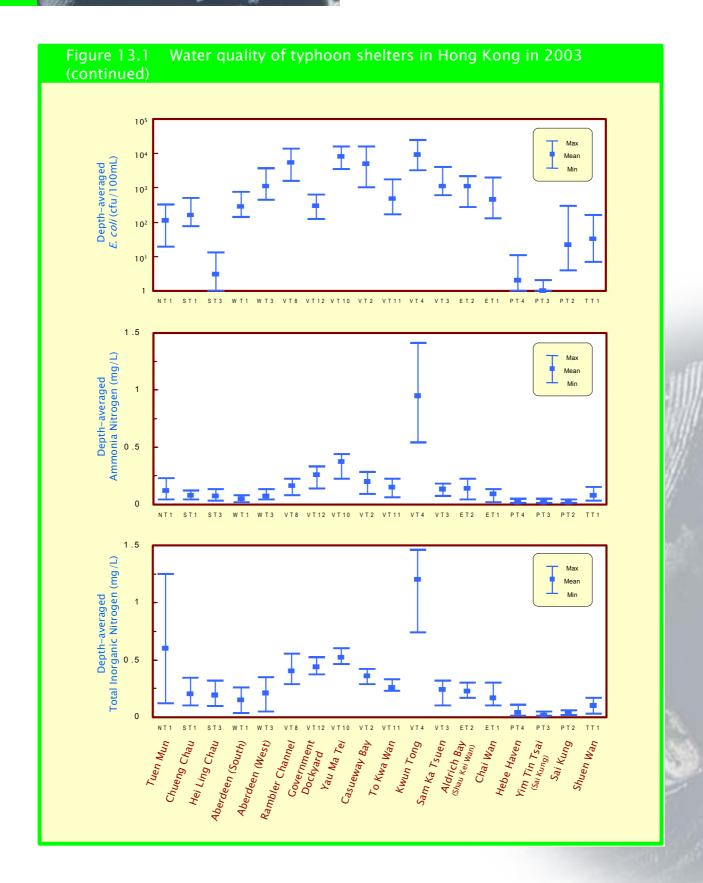
Long-term Water Quality Trends

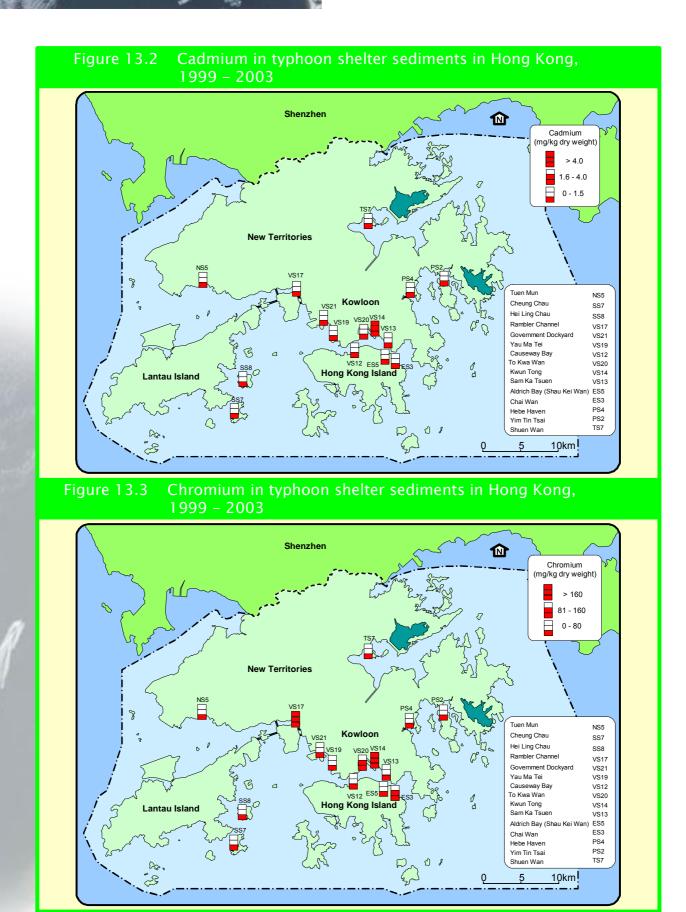
13.7 Except Hei Ling Chau Typhoon Shelter and Government Dockyard which had less than 10 years of monitoring data which were insufficient to perform statistical analysis, the long-term water quality trends in other 15 typhoon shelters (16 monitoring stations) are shown in Table 13.3. Long-term improvement trends (i.e. increase in DO and decreases in BOD₅, E. coli and NH₄-N) were observed in Causeway Bay, Kwun Tong, Sam Ka Tsuen and Sai Kung Typhoon Shelters.

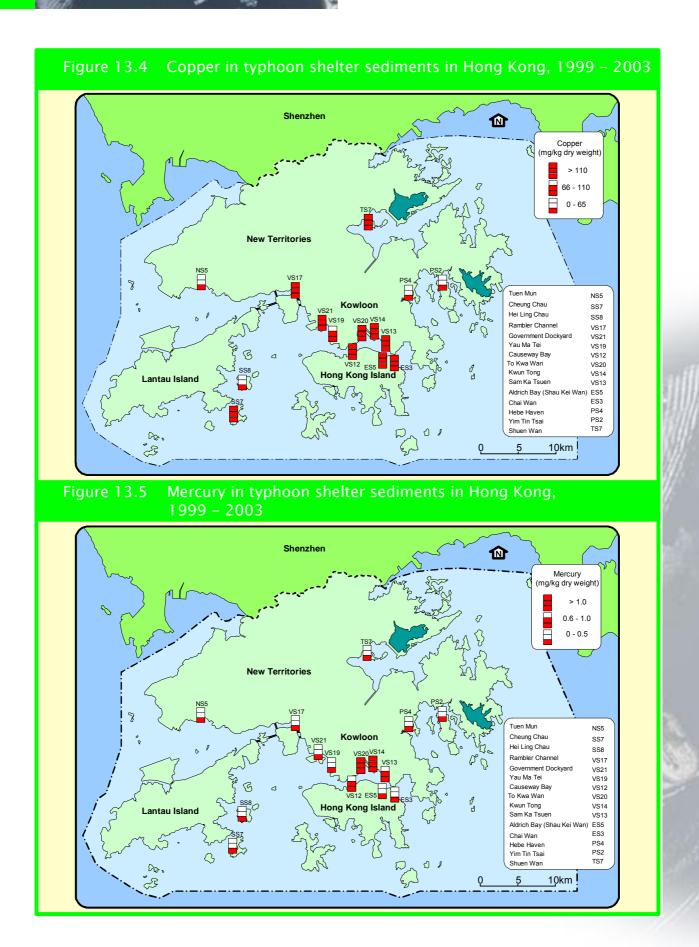
Sediment Quality

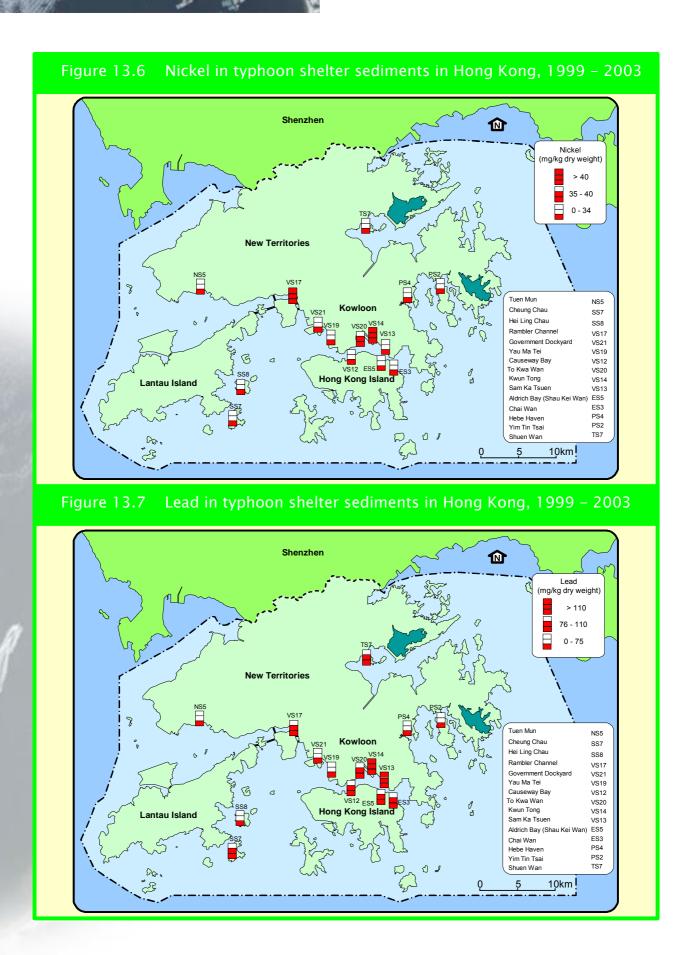
- Results of sediment monitoring in typhoon shelters between 1999 and 2003 are summarised in Table 13.2. The mean concentrations of contaminants as compared to those listed in the document 'ETWB(W) No. 34/2002 Management of Dredged / Excavated Sediment' (Table 12.7) are presented in Figures 13.2 13.13.
- 13.9 Contamination of sediments by copper and silver was commonly observed in the typhoon shelter sediments in the Victoria Harbour and Eastern Buffer WCZs. Kwun Tong Typhoon Shelter had the highest level of metals, with cadmium, chromium, copper, mercury, nickel, lead, silver and zinc, all exceeded the 'Upper Chemical Exceedance Levels (UCELs)'. Rambler Channel Typhoon Shelter was also heavily contaminated with chromium, copper, nickel, silver and zinc, exceeded the UCELs.
- 13.10 Among the trace organics, the level of total Polychlorinated Biphenyls (PCBs) in the sediment of Kwun Tong Typhoon Shelter was the highest, above the UCEL value. The high concentrations of metals and PCBs in Kwun Tong Typhoon Shelter were related to discharges from printed circuit board, electroplating and electronic industries in the Kwun Tong industrial area between the 60s and 80s.
- 13.11 The levels of Total PCBs in sediments in most other typhoon shelters were below the 'Lower Chemical Exceedance Levels (LCELs)' (Figure 13.11). Elevated levels (i.e. between LCEL and UCEL) were found in Sam Ka Tsuen, To Kwa Wan, Rambler Channel and Chai Wan Typhoon Shelters.
- 13.12 The levels of high and low molecular weight Polycyclic Aromatic Hydrocarbons (PAHs) in the typhoon shelter sediments were also all below the LCELs with the exception of To Kwa Wan


Typhoon Shelter (Figures 13.12 and 13.13), where the concentrations exceeded the UCELs. The contamination of PAHs in To Kwa Wan Typhoon Shelter was likely to be related to contamination by aviation fuel from the former Kai Tak Airport.


Electrochemical Potential


Organic-enriched and highly anoxic (i.e. with negative electrochemical potentials) sediments were found in the typhoon shelters of the Victoria Harbour and Eastern Buffer WCZs (Figure 13.14). High levels of sulphide (above 1,000mg/kg dry weight) were found in the sediments of Kwun Tong, Sam Ka Tsuen and Aldrich Bay Typhoon Shelters.





Tuen Mun Cheung Chau

Yau Ma Tei

Causeway Bay To Kwa Wan

Sam Ka Tsuen

Hebe Haven Yim Tin Tsai

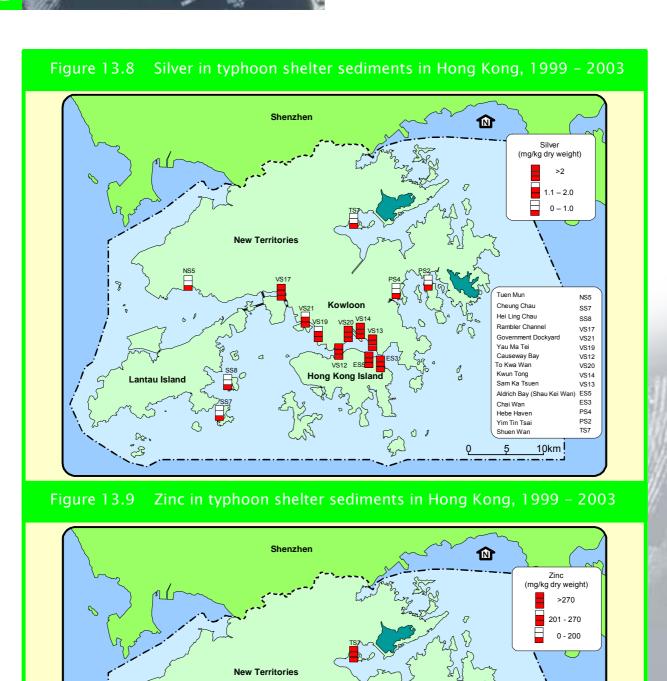
Shuen Wan

Aldrich Bay (Shau Kei Chai Wan

10km

Hei Ling Chau Rambler Channel SS7

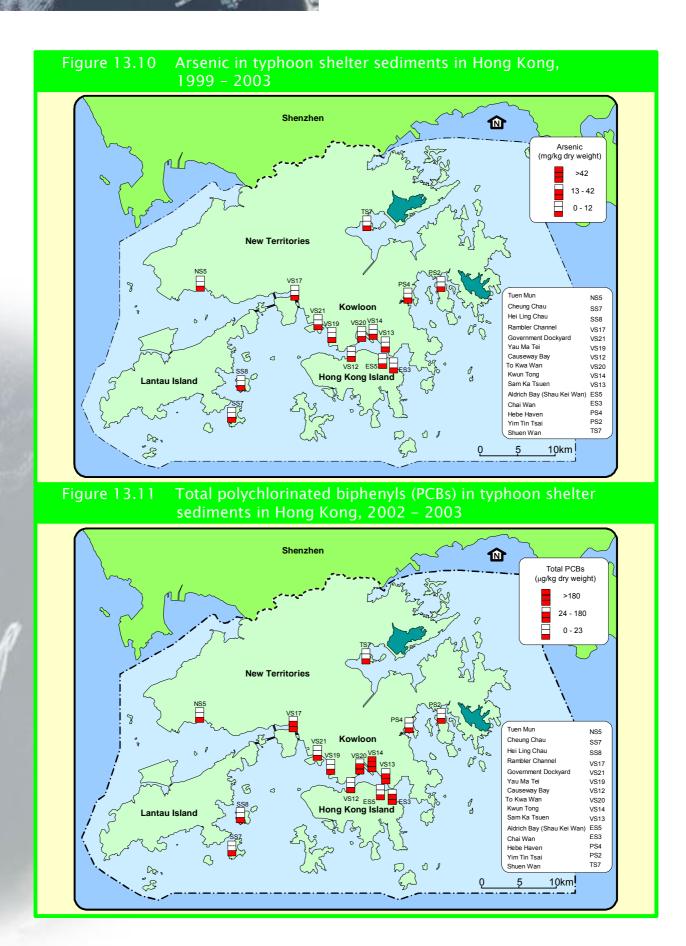
SS8 VS17 VS21

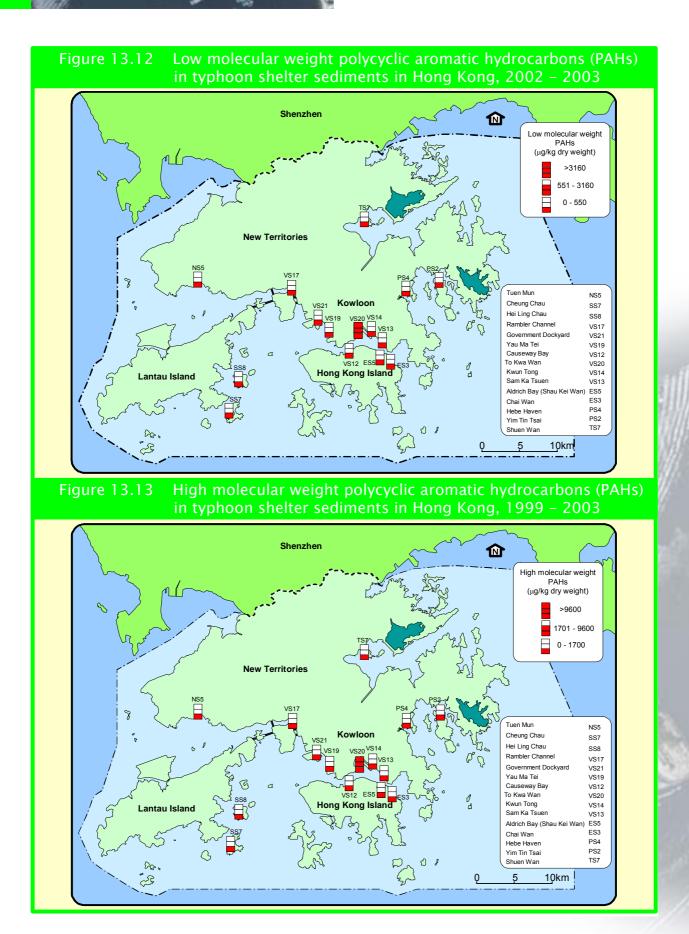

VS19 VS12

VS20 VS14

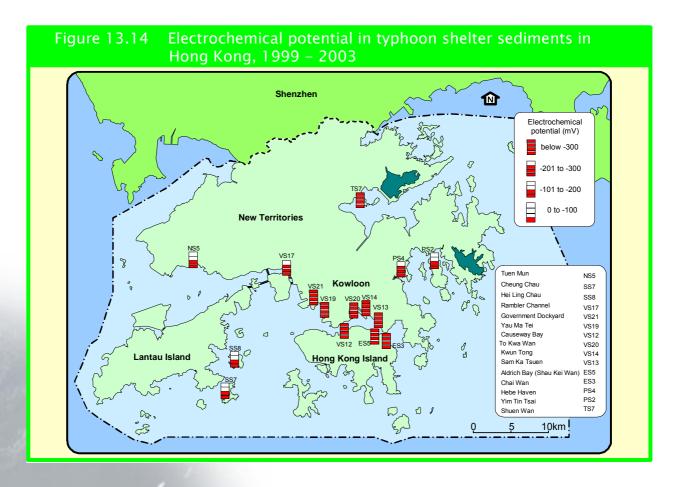
VS13 ES5

FS3


PS2



Hong Kong Island


Lantau Island

Z

Table 13.1 Summary water quality statistics of the typhoon shelters in 2003

Juminary Water quanty stati		Cheung	Hei Ling	Aberdeen	Aberdeen	Rambler
	Tuen Mun	Chau	Chau	(South)	(West)	Channel
Parameter	NT1	STI	ST3	WT1	WT3	VT8
Number of samples	6	6	6	6	6	6
	24.2	24.2	24.2	24.1	24.0	23.8
Temperature (°C)	(17.3 - 29.4)	(17.2 - 28.7)	(17.5 - 28.6)	(18.6 - 27.6)	(18.6 - 27.7)	(17.5 - 27.7)
	26.3	31.5	31.1	31.3	31.3	30.0
Salinity	(17.7 - 32.2)	(29.3 - 33.4)	(28.8 - 33.1)	(26.5 - 33.7)	(27.1 - 33.6)	(26.4 - 32.7)
Disash and Own san (mar/l)	5.4	6.0	6.9	5.7	5.5	4.6
Dissolv ed Ox y gen (mg/L)	(3.4 - 7.4)	(4.9 - 8.1)	(5.6 - 9.3)	(4.2 - 7.0)	(4.6 - 6.9)	(3.1 - 6.1)
Bottom	N.M.	6.0	6.9	5.7	5.2	4.8
Dollon	l.	(5.0 - 7.9)	(5.6 - 9.4)	(4.4 - 6.7)	(3.3 - 6.8)	(3.1 - 6.0)
Dissolv ed Oxygen (% Saturation)	74	86	99	82	78	65
2.000.00 Chygon (/o Calabaton)	(49 - 93)	(71 - 124)	(81 - 142)	(63 - 104)	(68 - 91)	(45 - 78)
Bottom	N.M.	86	99	81	73	67
	8.1	(72 - 121) 8.2	(78 - 142) 8.2	(67 - 87) 8.0	(47 - 90) 8.0	(45 - 85) 8.1
pH	(7.9 - 8.3)	(7.9 - 8.4)	(7.9 - 8.4)	(7.5 - 8.3)	(7.8 - 8.3)	(8.0 - 8.3)
	1.6	1.3	1.7	2.6	2.1	1.4
Secchi Disc Depth (m)	(0.6 - 2.3)	(0.5 - 2.2)	(1.0 - 3.1)	(2.1 - 3.7)	(1.3 - 2.5)	(0.5 - 2.3)
	11.1	12.0	9.5	7.5	8.9	12.9
Turbidity (NTU)	(6.3 - 14.5)	(5.3 - 16.1)	(2.6 - 14.5)	(3.9 - 9.1)	(4.3 - 14.0)	(7.4 - 20.4)
Over and ded Oalide (marth)	7.6	11.4	6.9	4.2	5.8	15.1
Suspended Solids (mg/L)	(5.4 - 11.0)	(5.3 - 17.5)	(1.8 - 13.0)	(3.0 - 6.9)	(4.2 - 11.0)	(7.5 - 34.5)
5-day Biochemical Oxygen Demand (mg/L)	1.3	1.0	1.3	1.0	1.0	1.0
3-day biochemical oxygen benfand (mg/L)	(0.8 - 2.6)	(0.5 - 2.0)	(0.5 - 2.5)	(0.6 - 2.0)	(0.8 - 1.5)	(0.4 - 1.5)
Ammonia Nitrogen (mg/L)	0.12	0.08	0.07	0.05	0.07	0.16
r annionia i naogon (ing. 2)	(0.04 - 0.23)	(0.04 - 0.12)	(0.03 - 0.13)	(0.02 - 0.08)	(0.04 - 0.13)	(0.08 - 0.22)
Unionised Ammonia (mg/L)	0.006	0.005	0.004	0.002	0.003	0.009
(0 /	(0.003 - 0.010)	(0.002 - 0.006)	(0.001 - 0.007)	(0.001 - 0.005)	(0.001 - 0.007)	(0.004 - 0.017)
Nitrite Nitrogen (mg/L)	0.07 (0.01 - 0.22)	0.02 (<0.01 - 0.05)	0.02 (0.01 - 0.06)	0.01 (<0.01 - 0.05)	0.02 (<0.01 - 0.07)	0.04 (0.02 - 0.12)
	0.41	0.11	0.10	0.09	0.11	0.02 - 0.12)
Nitrate Nitrogen (mg/L)	(0.03 - 0.94)	(0.04 - 0.24)	(0.04 - 0.23)	(0.01 - 0.19)	(0.01 - 0.26)	(0.09 - 0.44)
	0.60	0.21	0.19	0.15	0.21	0.40
Total Inorganic Nitrogen (mg/L)	(0.12 - 1.25)	(0.10 - 0.35)	(0.10 - 0.32)	(0.04 - 0.26)	(0.05 - 0.35)	(0.29 - 0.55)
Total Kieldeld Nitremen (men)	0.28	0.24	0.23	0.18	0.21	0.33
Total Kjeldahl Nitrogen (mg/L)	(0.22 - 0.41)	(0.20 - 0.27)	(0.15 - 0.29)	(0.10 - 0.33)	(0.11 - 0.31)	(0.25 - 0.41)
Total Nitrogen (mg/L)	0.76	0.37	0.35	0.28	0.34	0.58
Total Mitogen (mg/L)	(0.31 - 1.45)	(0.27 - 0.53)	(0.19 - 0.54)	(0.11 - 0.54)	(0.13 - 0.60)	(0.50 - 0.73)
Orthophosphate Phosphorus (mg/L)	0.029	0.015	0.012	0.011	0.015	0.029
	(0.01 - 0.05)	(<0.01 - 0.03)	(<0.01 - 0.03)	(0.01 - 0.02)	(0.01 - 0.03)	(0.02 - 0.04)
Total Phosphorus (mg/L)	0.06	0.04	0.03	0.03	0.03	0.06
	(0.03 - 0.10) 2.1	(0.03 - 0.05) 0.7	(0.02 - 0.04) 0.6	(0.02 - 0.04)	(0.02 - 0.05)	(0.05 - 0.08) 1.2
Silica (as SiO ₂) (mg/L)	(0.1 - 5.0)	(0.4 - 1.1)	(0.4 - 1.0)	(0.3 - 1.2)	(0.4 - 1.4)	(0.4 - 2.1)
	3.1	6.3	7.9	3.9	3.9	2.1
Chlorophy II- a (µg/L)	(1.8 - 4.9)	(0.9 - 18.3)	(1.0 - 19.0)	(0.8 - 15.4)	(0.7 - 16.8)	(0.8 - 3.7)
5 " (5 (400 1)	110	160	3	280	1100	5400
E.coli (cfu/100mL)	(19 - 330)	(76 - 510)	(1 - 13)	(140 - 750)	(450 - 3700)	(1600 - 14000)
Faecal Coliforms (cfu/100mL)	750	440	5	820	2100	13000
i accai comornia (cia/100IIIL)	(140 - 4100)	(150 - 1100)	(2 - 31)	(210 - 2600)	(1100 - 5700)	(3700 - 32000)

<sup>Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).
2. Data presented are annual arithmetic means of the depth-averaged results except for</sup> *E.coli* and faecal coliforms which are annual

geometric means.

^{3.} Data in brackets indicate the ranges.4. NM - not measured

Table 13.1 (continued)

Summary water quality statistics of the typhoon shelters in 2003

		Government	Yau Ma	Causeway	To Kwa	Kwun	Sam Ka
		Dockyard	Tei	Bay	Wan	Tong	Tsuen
Parameter		VT12	VT10	VT2	VTII	VT4	VT3
Number of samples		6	6	6	6	6	6
		24.1	23.9	23.7	23.2	23.5	23.3
Temperature (°C)		(18.0 - 27.7)	(17.6 - 27.5)	(17.4 - 27.1)	(17.3 - 27.0)	(17.5 - 27.1)	(17.2 - 27.1)
0.11.11		30.4	30.6	31.1	32.1	30.9	31.9
Salinity		(27.3 - 32.2)	(27.0 - 32.1)	(28.2 - 32.2)	(31.4 - 32.7)	(30.0 - 32.4)	(29.9 - 32.8)
Dissolved Oxygen (mg/L)		4.5	3.7	4.3	5.1	3.5	4.9
Dissolved Oxygen (mg/L)		(3.5 - 5.6)	(2.6 - 5.1)	(3.1 - 5.7)	(4.1 - 6.1)	(2.4 - 5.2)	(3.5 - 6.0)
	Bottom	4.5	3.8	4.4	5.0	4.0	5.1
	20	(3.6 - 5.6)	(3.1 - 5.1)	(3.1 - 5.8)	(3.7 - 6.4)	(2.6 - 5.4)	(3.6 - 6.5)
Dissolv ed Oxygen (% Saturation)		65	53	61	71	50	69
, , , , , , , , , , , , , , , , , , , ,		(53 - 72)	(39 - 65)	(45 - 72)	(59 - 80)	(34 - 65)	(50 - 79)
	Bottom	64	55 (45. 65)	62 (44 - 73)	71	57	71
		(54 - 72) 8.0	(45 - 65) 8.0	8.1	(54 - 84) 8.2	(37 - 70) 7.9	(52 - 86) 8.1
рН		(7.9 - 8.2)	(7.8 - 8.1)	(7.9 - 8.3)	(8.0 - 8.4)	(7.4 - 8.1)	(7.9 - 8.4)
		1.6	1.3	2.2	2.3	1.3	2.1
Secchi Disc Depth (m)		(1.0 - 2.4)	(0.5 - 1.8)	(1.3 - 2.8)	(1.5 - 3.1)	(0.2 - 2.1)	(1.5 - 2.7)
		16.9	14.8	7.6	8.3	7.9	8.1
Turbidity (NTU)		(7.8 - 33.1)	(6.6 - 22.2)	(3.7 - 8.8)	(5.0 - 11.8)	(2.8 - 10.8)	(3.2 - 10.3)
		16.5	13.2	6.0	4.6	3.6	5.9
Suspended Solids (mg/L)		(6.9 - 30.0)	(7.2 - 24.7)	(2.4 - 12.0)	(2.4 - 9.0)	(2.5 - 5.5)	(2.9 - 15.2)
F day Dischamical Owners Demand	/mm m / I \	1.2	1.6	1.4	1.1	1.8	1.2
5-day Biochemical Oxygen Demand ((mg/L)	(0.4 - 1.8)	(0.9 - 2.1)	(0.7 - 1.8)	(0.3 - 1.5)	(1.0 - 2.6)	(0.5 - 1.9)
Ammonia Nitrogen (mg/L)		0.26	0.37	0.20	0.15	0.95	0.13
Allinonia Nitrogen (mg/L)		(0.14 - 0.33)	(0.22 - 0.44)	(0.09 - 0.28)	(0.06 - 0.22)	(0.54 - 1.41)	(0.07 - 0.18)
Unionised Ammonia (mg/L)		0.012	0.015	0.010	0.008	0.025	0.007
omonioca / minoria (mg/L)		(0.006 - 0.022)	(0.008 - 0.028)	(0.005 - 0.021)	(0.004 - 0.018)	(0.008 - 0.041)	(0.003 - 0.012)
Nitrite Nitrogen (mg/L)		0.03	0.03	0.03	0.02	0.09	0.02
		(0.02 - 0.05)	(0.02 - 0.04)	(0.01 - 0.05)	(0.01 - 0.03)	(0.01 - 0.20)	(<0.01 - 0.03)
Nitrate Nitrogen (mg/L)		0.16	0.13	0.13	0.09	0.16	0.09
3 (3)		(0.11 - 0.22)	(0.09 - 0.21)	(0.09 - 0.22)	(0.05 - 0.15)	(0.04 - 0.54)	(0.03 - 0.16)
Total Inorganic Nitrogen (mg/L)		0.44	0.52	0.36	0.26	1.20	0.24
		(0.37 - 0.52) 0.47	(0.46 - 0.60) 0.63	(0.29 - 0.42) 0.43	(0.23 - 0.33)	(0.74 - 1.46) 1.24	(0.10 - 0.32) 0.29
Total Kjeldahl Nitrogen (mg/L)		(0.47 - 0.58)	(0.55 - 0.76)	(0.33 - 0.60)	(0.24 - 0.47)	(0.89 - 1.77)	(0.17 - 0.40)
		0.66	0.78	0.59	0.44	1.50	0.40
Total Nitrogen (mg/L)		(0.62 - 0.71)	(0.71 - 0.88)	(0.45 - 0.71)	(0.36 - 0.56)	(1.09 - 1.82)	(0.20 - 0.58)
		0.043	0.051	0.038	0.029	0.195	0.025
Orthophosphate Phosphorus (mg/L)		(0.03 - 0.06)	(0.03 - 0.06)	(0.02 - 0.05)	(0.02 - 0.05)	(0.05 - 0.32)	(0.01 - 0.04)
		0.08	0.09	0.06	0.05	0.26	0.05
Total Phosphorus (mg/L)		(0.06 - 0.09)	(0.08 - 0.11)	(0.05 - 0.09)	(0.04 - 0.07)	(0.16 - 0.35)	(0.02 - 0.07)
Cilian (an CiO) (mar/l)		1.1	0.9	0.8	0.7	1.7	0.6
Silica (as SiO ₂) (mg/L)		(0.6 - 1.9)	(0.6 - 1.6)	(0.3 - 1.6)	(0.1 - 1.1)	(0.9 - 2.9)	(0.2 - 1.2)
Chlorophy II-a (µg/L)		4.6	3.9	4.2	4.0	5.3	4.3
οποιορη γ ιι-α (μg/L)		(1.0 - 15.7)	(0.6 - 13.7)	(0.7 - 14.5)	(0.6 - 9.6)	(0.7 - 18.4)	(0.7 - 14.7)
E.coli (cfu/100mL)		290	8200	5000	490	9400	1100
Liou (ola roome)		(120 - 630)	(3500 - 16000)	(1000 - 16000)	(170 - 1700)	(3200 - 24000)	(600 - 4000)
Faecal Coliforms (cfu/100mL)		1100	21000	15000	1300	19000	2500
(,		(220 - 2800)	(5300 - 42000)	(3300 - 27000)	(280 - 6500)	(8700 - 47000)	(1200 - 13000)

Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).

2. Data presented are annual arithmetic means of the depth-averaged results except for *E.coli* and faecal coliforms which are annual

geometric means.

3. Data in brackets indicate the ranges.

4. NM – not measured

Table 13.1 (continued)

Summary water quality statistics of the typhoon shelters in 2003

	Aldrich Bay	Chai	Hebe	Yim Tin	Sai	Shuen
	(Shau Kei Wan)	Wan	Haven	Tsai	Kung	Wan
Parameter	ET2	ET1	PT4	PT3	PT2	TTI
Number of samples	6	6	6	6	6	6
T (00)	23.2	23.3	24.0	23.7	23.8	24.0
Temperature (°C)	(18.7 - 26.9)	(18.5 - 27.6)	(17.2 - 28.6)	(16.6 - 28.8)	(16.9 - 28.7)	(16.5 - 28.6)
Salinity	32.7	32.3	32.3	32.9	32.5	31.4
Sairilly	(32.0 - 33.4)	(31.0 - 33.4)	(28.4 - 33.9)	(31.2 - 34.0)	(29.6 - 33.8)	(28.8 - 33.8)
Dissolv ed Oxygen (mg/L)	5.3	5.7	5.9	5.7	5.7	6.3
Dissolv ed Oxy gon (mg/L)	(3.7 - 6.6)	(4.8 - 6.4)	(4.5 - 7.7)	(5.1 - 6.4)	(5.0 - 6.4)	(5.0 - 7.2)
Bottom	4.9	5.6	6.1	5.6	5.7	5.8
	(2.8 - 6.6)	(4.6 - 6.6)	(4.9 - 7.8)	(4.2 - 6.4)	(4.5 - 6.4)	(0.6 - 7.8)
Dissolv ed Oxygen (% Saturation)	74	81	84	81	81	89
,	(56 - 87)	(72 - 96)	(66 - 97) 87	(76 - 86) 79	(75 - 89)	(76 - 106)
Bottom	68 (41 - 87)	79 (65 - 100)	(72 - 99)	79 (61 - 86)	79 (65 - 85)	80 (9 - 114)
	8.0	8.1	8.1	8.2	(65 - 65)	8.2
pH	(7.8 - 8.1)	(7.9 - 8.2)	(7.8 - 8.3)	(8.0 - 8.3)	(8.0 - 8.4)	(8.1 - 8.3)
	3.0	2.6	2.7	3.4	3.0	2.2
Secchi Disc Depth (m)	(1.8 - 4.0)	(1.3 - 3.7)	(1.6 - 3.5)	(2.3 - 4.3)	(2.2 - 3.5)	(1.5 - 2.5)
	6.9	6.9	6.9	6.7	6.1	6.3
Turbidity (NTU)	(5.2 - 7.7)	(5.3 - 8.7)	(2.4 - 12.0)	(2.5 - 10.1)	(2.0 - 8.3)	(2.1 - 8.9)
0 1 10 11 / 41	3.1	3.9	3.0	3.0	2.2	2.8
Suspended Solids (mg/L)	(1.9 - 4.9)	(2.1 - 8.9)	(2.2 - 5.1)	(1.1 - 5.2)	(0.9 - 3.2)	(2.4 - 3.5)
5-day Biochemical Oxygen Demand (mg/L)	0.8	1.0	1.0	0.9	1.1	2.0
5-day Biochemical Oxygen Demand (mg/L)	(0.5 - 1.0)	(0.6 - 1.5)	(0.8 - 1.2)	(0.5 - 1.5)	(0.9 - 1.3)	(1.5 - 2.7)
Ammonia Nitrogen (mg/L)	0.14	0.09	0.02	0.02	0.02	0.08
Anniona Wilogen (mg/L)	(0.04 - 0.22)	(0.02 - 0.13)	(0.01 - 0.05)	(0.01 - 0.05)	(0.01 - 0.04)	(0.03 - 0.15)
Unionised Ammonia (mg/L)	0.006	0.004	0.001	0.001	0.001	0.006
omoniood / mmonia (mg/z)	(0.002 - 0.010)	(0.001 - 0.008)	(<0.001 - 0.003)	(<0.001 - 0.003)	(0.001 - 0.003)	(0.002 - 0.014)
Nitrite Nitrogen (mg/L)	0.01	0.01	<0.01	<0.01	<0.01	<0.01
1 11 11 (3)	(0.01 - 0.02)	(0.01 - 0.03)	(<0.01 - <0.01)	(<0.01 - <0.01)	(<0.01 - <0.01)	(<0.01 - <0.01)
Nitrate Nitrogen (mg/L)	0.07	0.07	0.01	<0.01	0.01	0.01
	(0.04 - 0.12) 0.23	(0.04 - 0.14) 0.17	(<0.01 - 0.06) 0.04	(<0.01 - 0.01) 0.02	(<0.01 - 0.03) 0.04	(<0.01 - 0.05) 0.10
Total Inorganic Nitrogen (mg/L)	(0.17 - 0.30)	(0.10 - 0.30)	(0.01 - 0.11)	(0.01 - 0.05)	(0.02 - 0.06)	(0.03 - 0.17)
	0.26	0.10 - 0.30)	0.13	0.11	0.02 - 0.00)	0.29
Total Kjeldahl Nitrogen (mg/L)	(0.20 - 0.37)	(0.18 - 0.29)	(0.11 - 0.18)	(0.08 - 0.14)	(0.09 - 0.20)	(0.23 - 0.37)
	0.35	0.32	0.14	0.12	0.15	0.31
Total Nitrogen (mg/L)	(0.31 - 0.46)	(0.23 - 0.40)	(0.11 - 0.24)	(0.08 - 0.14)	(0.09 - 0.21)	(0.23 - 0.38)
0 1 1 1 5 5 1 (1)	0.027	0.018	<0.01	<0.01	<0.01	0.013
Orthophosphate Phosphorus (mg/L)	(0.02 - 0.04)	(0.01 - 0.03)	(<0.01 - 0.01)	(0.01 - 0.01)	(<0.01 - 0.01)	(0.01 - 0.02)
Total Phaenharus (ma/L)	0.04	0.03	0.03	0.02	0.02	0.04
Total Phosphorus (mg/L)	(0.03 - 0.05)	(0.02 - 0.04)	(0.02 - 0.04)	(0.02 - 0.03)	(0.02 - 0.03)	(0.03 - 0.06)
Silica (as SiO₂) (mg/L)	0.7	0.6	0.7	0.5	0.6	0.8
oliloa (as olo ₂) (Ilig/L)	(0.5 - 1.2)	(0.1 - 1.2)	(0.1 - 1.5)	(0.2 - 0.7)	(0.2 - 1.0)	(0.5 - 1.5)
Chlorophy II-a (µg/L)	2.7	5.4	3.4	2.4	2.8	8.8
	(0.4 - 10.7)	(0.6 - 17.8)	(1.6 - 8.0)	(1.0 - 3.3)	(1.1 - 4.8)	(2.7 - 13.6)
E.coli (cfu/100mL)	1100	460	2	1	22	32
(/	(270 - 2200)	(130 - 2000)	(1 - 11)	(1 - 2)	(4 - 290)	(7 - 160)
Faecal Coliforms (cfu/100mL)	3900	1200	9 (1 - 120)	2 (1 - 3)	120 (7 - 1900)	120 (28 - 650)
	(1800 - 9700)	(420 - 7900)	(1 - 120)	(1 - 3)	(7 - 1900)	(20 - 000)

<sup>Note: 1. Unless otherwise specified, data presented are depth-averaged (A) values calculated by taking the means of three depths: Surface (S), Mid-depth (M), Bottom (B).
2. Data presented are annual arithmetic means of the depth-averaged results except for</sup> *E.coli* and faecal coliforms which are annual

geometric means.

^{3.} Data in brackets indicate the ranges.4. NM - not measured

Table 13.2
Summary statistics of bottom sediment quality of the typhoon shelters, 1999 - 2003

	Tuen	Cheung	Hei Ling	Rambler	Government	Yau Ma	Causeway
Parameter	Mun NS5	Chau SS7	Chau SS8 ¹⁰	Channel VS17	Dockyard VS21 ¹⁰	Tei VS19	Bay VS12
Number of samples	10	10	6	10	6	10	10
Particle Size Fractionation <63µm (%w/w)	75	69	95	79	99	77	86
ratucie Size Flactionation (55µm (76W/W)	(59 - 92)	(22 - 98)	(84 - 100)	(56 - 98)	(98 - 100)	(48 - 97)	(48 - 99)
Electrochemical Potential (mV)	-181	-190	-161	-295	-307	-346	-328
Electronical Folchild (IIIV)	((-286) - (-69))	((-300) - (90))	((-232) - (-25))	((-404) - (-90))	((-388) - (-97))	((-407) - (-190))	((-407) - (-173))
Total Solids (%w/w)	48	48	38	45	37	51	44
,	(39 - 57)	(34 - 68)	(34 - 41)	(39 - 53)	(31 - 44)	(43 - 59)	(33 - 68)
Total Volatile Soilds (%w/w)	6.9	7.1	8.2	8.3	8.4	7	8.6
, ,	(6.2 - 8.4)	(3.8 - 8.5)	(7.4 - 8.8)	(7 - 8.9)	(7.4 - 9.3)	(6 - 8.1)	(3.9 - 11.0)
Chemical Oxygen Demand (mg/kg)	19000	21000	14000	30000	16000	22000	30000
	(15000 - 23000)	(10000 - 28000)	(13000 - 15000) 0.5	(21000 - 41000)	(9900 - 21000) 0.6	(13000 - 26000)	(26000 - 32000)
Total Carbon (%w/w)	(0.4 - 0.9)	(0.5 - 1.7)	(0.5 - 0.6)	(0.8 - 1.1)	(0.5 - 0.8)	(0.5 - 0.9)	(0.7 - 1.0)
	(0.4 - 0.9)	10	(0.5 - 0.0)	21	(0.5 - 0.6)	31	31
Ammonical Nitrogen (mg/kg)	(1 - 28)	(2 - 20)	(4 - 22)	(4 - 37)	(4 - 29)	(11 - 48)	(4 - 67)
	334	412	430	503	350	415	586
Total Kjeldahl Nitrogen (mg/kg)	(170 - 580)	(180 - 550)	(290 - 540)	(320 - 640)	(310 - 410)	(300 - 520)	(290 - 780)
	191	401	186	227	204	205	227
Total Phosphorus (mg/kg)	(86 - 330)	(230 - 1100)	(160 - 220)	(160 - 300)	(180 - 230)	(160 - 230)	(150 - 300)
	131	197	111	865	205	365	368
Total Sulphide (mg/kg)	(0 - 370)	(18 - 520)	(68 - 200)	(110 - 2500)	(8 - 630)	(26 - 1200)	(180 - 630)
	0.2	0.2	0.1	0.4	0.2	0.1	0.2
Total Cyanide (mg/kg)	(0.1 - 0.3)	(0.1 - 0.3)	(0.1 - 0.1)	(0.1 - 0.8)	(0.1 - 0.3)	(0.1 - 0.2)	(0.1 - 0.3)
	8.9	8.7	8.6	8.4	8.8	6.4	8.3
Arsenic (mg/kg)	(7.0 - 11.0)	(4.4 - 11.0)	(7.4 - 12.0)	(5.2 - 10.0)	(7.3 - 9.7)	(4.0 - 8.8)	(2.9 - 12.0)
	0.2	0.2	0.1	1.2	0.3	0.5	0.9
Cadmium (mg/kg)	(0.1 - 0.4)	(0.1 - 0.3)	(0.1 - 0.1)	(0.5 - 2.0)	(0.1 - 0.5)	(0.1 - 0.9)	(0.2 - 1.2)
01 : (//)	34	56	43	229	53	42	71
Chromium (mg/kg)	(24 - 49)	(14 - 73)	(34 - 58)	(85 - 470)	(50 - 56)	(26 - 54)	(15 - 95)
0	47	156	41	395	119	97	272
Copper (mg/kg)	(14 - 83)	(41 - 250)	(34 - 55)	(130 - 850)	(29 - 180)	(33 - 170)	(48 - 410)
Lood (malks)	45	75	54	83	49	55	85
Lead (mg/kg)	(27 - 60)	(27 - 190)	(41 - 78)	(54 - 110)	(34 - 65)	(24 - 82)	(24 - 120)
Moroupy (malka)	<0.05	0.32	0.18	0.42	0.14	0.31	0.84
Mercury (mg/kg)	(<0.05 - 0.12)	(0.1 - 0.6)	(0.12 - 0.39)	(0.14 - 1.5)	(<0.05 - 0.20)	(0.1 - 0.74)	(0.18 - 1.7)
Nickel (mg/kg)	19	17	27	99	32	23	27
Nickel (Ilig/kg)	(14 - 22)	(6 - 23)	(22 - 33)	(39 - 210)	(28 - 36)	(18 - 30)	(7 - 39)
Silv er (mg/kg)	<1.0	<1.0	<1.0	10.3	1.6	1.9	6.8
Oliver (mg/kg)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(3.0 - 18.0)	(<1.0 - 2.4)	(<1.0 - 3.7)	(<1.0 - 9.0)
Zinc (mg/kg)	136	188	143	323	204	202	298
, , ,	(74 - 200)	(65 - 400)	(120 - 160)	(170 - 530)	(110 - 270)	(99 - 340)	(66 - 380)
Total Poly chlorinated Bipheny Is (PCBs)	18	18	18	30	21	21	22
(µg/kg) ^{(3) (4)}	(18 - 18)	(18 - 19)	(18 - 18)	(18 - 48)	(18 - 25)	(18 - 26)	(18 - 32)
Low Molecular Weight Polycylic Aromatic	90	99	90	124	99	119	118
Hydrocarbons (PAHs) (µg/kg) (5) (6) (9)	(90 - 90)	(90 - 108)	(90 - 90)	(96 - 142)	(90 - 117)	(110 - 132)	(90 - 150)
High Molecular Weight Polycylic Aromatic	143	491	85	983	197	1026	590
Hydrocarbons (PAHs) (µg/kg) (7) (8) (9)	(20 - 292)	(0 - 1427)	(38 - 151)	(366 - 2141)	(49 - 285)	(65 - 3185)	(169 - 999)
riy diocarbons (r Aris) (µg/kg)	(20 - 202)	(0 - 1721)	(50 - 151)	(500-2141)	(40 - 200)	(00 - 0100)	(103 - 333)

Note: 1. Data presented are arithmetic means; data in brackets indicate ranges.

^{3.} The Technical Circular 'ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment' issued in 2002 has revised the definition of 'Total PCBs' as the summation of 18 specific PCB congeners. Following the new definition, the monitoring of these 18 PCB congeners started in 2002 and the Total PCBs results only refer to 2002 and 2003.

^{4.} Total PCBs results are derived from the summation of 18 congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

^{5.} Low molecular weight polyaromatic hydrocarbons (PAHs) include 6 congeners of molecular weight below 200, namely: Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene and Phenanthrene.6. As the monitoring of Naphthalene only started in 2002, the Low Molecular Weight PAHs results are based on sediments samples collected in 2002 and 2003.

^{7.} High molecular weight polyaromatic hydrocarbons (PAHs) include 10 congeners of molecular weight above 200, namely: Fluoranthene, Pyrene, Benzo(a) anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene and Indeno(1,2,3-cd) pyrene

^{8.} High Molecular Weight PAHs results are based on sediment samples collected in five years (1999–2003).

^{9.} Low and high molecular weight PAHs results are derived from the summation of the corresponding congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.

^{10.} Monitoring of Hei Ling Chau Typhoon Shelter (SS8) and Government Dockyard (VS21) commenced in 2000.

Table 13.2 (continued)

Summary statistics of bottom sediment quality of the typhoon shelters, 1999 - 2003

Parameter 1	To Kwa Wan	Kwun Tong	Sam Ka Tsuen	Aldrich Bay (Shau Kei Wan)	Chai Wan	Hebe Haven	Yim Tin Tsai	Shuen Wan
Parameter	VS20	VS14	VS13	ES5 ¹¹	ES3	PS4	PS2 9	TS7
Number of samples	10	10 71	10 90	1 0 90	10 84	10 92	74	10 64
Particle Size Fractionation <63µm (%w/w)	75 (53 - 94)	(36 - 85)	(70 - 97)	90 (74 - 99)	(69 - 90)	(80 - 98)	(13 - 98)	64 (45 - 81)
	-363	-388	-370	-378	-311	-249	-196	-324
Electrochemical Potential (mV)	((-433) - (-182))	((-437) - (-309))	((-417) - (-276))	((-422) - (-324))	((-394) - (-133))	((-354) - (-13))	((-286) - (-75))	((-392) - (-113))
Tatal Oalida (0(autos)	46	39	41	34	43	37	49	41
Total Solids (%w/w)	(34 - 63)	(33 - 43)	(39 - 44)	(30 - 36)	(40 - 48)	(34 - 46)	(40 - 75)	(29 - 54)
Total Volatile Soilds (%w/w)	7.9	10.3	10	10.9	8.2	9.8	10.2	8.5
Total Volatile Collas (70W/W)	(5.3 - 10.0)	(8.9 - 11.0)	(8.7 - 11.0)	(9.7 - 12.0)	(7.4 - 9.2)	(8.2 - 11.0)	(4.3 - 12.0)	(5.6 - 12.0)
Chemical Oxygen Demand (mg/kg)	31000	40000	27000	26000	24000	23000	17000	27000
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(29000 - 36000)	(29000 - 45000)	(22000 - 32000)	(18000 - 31000)	(18000 - 29000)	(19000 - 26000)	(7100 - 24000)	(20000 - 32000)
Total Carbon (%w/w)	1 (0.9. 1.5)	1.3	0.8	0.9	0.8	0.7	1.4	0.8
	(0.8 - 1.5) 25	(1.1 - 1.5) 47	(0.7 - 0.9) 24	(0.7 - 1.0)	(0.7 - 1.0) 10	(0.5 - 0.9)	(0.6 - 4.4)	(0.5 - 1.0) 12
Ammonical Nitrogen (mg/kg)	(1 - 53)	(17 - 66)	(9 - 49)	(14 - 61)	(4 - 15)	(2 - 14)	(6 - 28)	(1 - 25)
	564	779	494	551	479	544	482	584
Total Kjeldahl Nitrogen (mg/kg)	(390 - 740)	(680 - 950)	(420 - 600)	(470 - 640)	(400 - 540)	(450 - 620)	(180 - 630)	(310 - 780)
Total Dhaanhanin (mallin)	222	300	238	240	240	194	154	203
Total Phosphorus (mg/kg)	(170 - 260)	(260 - 360)	(180 - 370)	(190 - 390)	(200 - 270)	(160 - 240)	(48 - 200)	(140 - 270)
Total Sulphide (mg/kg)	360	1281	1173	1173	232	100	54	242
Total Culphiac (mg/kg)	(100 - 1300)	(220 - 2500)	(510 - 2300)	(690 - 2800)	(21 - 420)	(8 - 210)	(15 - 110)	(15 - 460)
Total Cyanide (mg/kg)	0.2	0.3	0.3	0.2	0.2	0.2	0.1	0.2
, (3 3)	(0.1 - 0.3)	(0.1 - 0.7)	(0.1 - 0.6)	(0.1 - 0.4)	(0.1 - 0.3)	(0.1 - 0.2)	(0.1 - 0.2)	(0.1 - 0.4)
Arsenic (mg/kg)	7.7 (6.3 - 9.0)	8.1 (5.9 - 10.0)	7.1 (5.8 - 8.9)	8.5 (6.9 - 11.0)	10.2 (8.4 - 11.0)	10.3 (8.6 - 12.0)	5.2 (0.6 - 9.1)	10 (7.0 - 13.0)
	(0.3 - 9.0)	4.2	0.7	0.7	0.6	0.0 - 12.0)	0.0 - 9.1)	0.5
Cadmium (mg/kg)	(0.4 - 1.6)	(3.0 - 5.3)	(0.5 - 1.1)	(0.5 - 1.6)	(0.4 - 0.7)	(0.1 - 0.3)	(0.1 - 0.1)	(0.2 - 0.9)
	100	405	73	72	110	37	17	24
Chromium (mg/kg)	(64 - 130)	(250 - 560)	(36 - 200)	(63 - 89)	(83 - 180)	(25 - 51)	(<5 - 24)	(15 - 33)
Copper (mg/kg)	629	2640	196	312	320	49	15	134
Copper (mg/kg)	(410 - 810)	(1700 - 4000)	(97 - 450)	(250 - 370)	(240 - 400)	(31 - 58)	(1 - 20)	(37 - 310)
Lead (mg/kg)	99	154	118	92	85	45	30	104
(g/	(77 - 130)	(100 - 230)	(84 - 150)	(68 - 130)	(64 - 140)	(39 - 52)	(9 - 39)	(77 - 140)
Mercury (mg/kg)	1.12	1.03	0.57	0.37	0.48	0.16	0.05	0.13
7 (0 0)	(0.65 - 1.4)	(0.77 - 1.4)	(0.34 - 1.3)	(0.29 - 0.54)	(0.42 - 0.58)	(0.09 - 0.22)	(<0.05 - 0.09) 11	(0.07 - 0.21) 12
Nickel (mg/kg)	(29 - 40)	(68 - 170)	(11 - 48)	(21 - 36)	(20 - 37)	9 (7 - 15)	(<5 - 14)	(6 - 19)
	5.7	11.9	3.3	5.7	9.9	<1.0	<1.0	<1.0
Silver (mg/kg)	(3.0 - 9.0)	(8.0 - 16.0)	(2.0 - 6.0)	(5.0 - 7.0)	(6.0 - 18.0)	(<1.0 - <1.0)	(<1.0 - <1.0)	(<1.0 - 1.0)
7 : (264	526	280	355	283	158	70	272
Zinc (mg/kg)	(180 - 320)	(420 - 670)	(210 - 360)	(280 - 480)	(220 - 340)	(120 - 170)	(24 - 91)	(170 - 400)
Total Polychlorinated Biphenyls (PCBs)	78	186	32	19	41	19	18	18
(µg/kg) ^{(3) (4)}	(18 - 120)	(35 - 293)	(22 - 41)	(18 - 20)	(34 - 54)	(18 - 20)	(18 - 18)	(18 - 19)
Low Molecular Weight Polycylic Aromatic	8544	164	96	101	118	91	90	92
Hy drocarbons (PAHs) (µg/kg) (5) (6) (9)	(2974 - 17405)	(145 - 191)	(94 - 98)	(94 - 113)	(108 - 127)	(90 - 93)	(90 - 90)	(90 - 98)
High Molecular Weight Polycylic Aromatic	62412	1429	420	714	613	100	67	107
Hy drocarbons (PAHs) (µg/kg) (7) (8) (9)	(2137 - 132600)	(1052 - 2058)	(231 - 535)	(515 - 993)	(341 - 776)	(74 - 190)	(22 - 116)	(46 - 193)
, (F3.13)	,	,/	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , ,		TITTAKT OG		

Note : 1. Data presented are arithmetic means ; data in brackets indicate ranges.

- 2. All data are based on the analyses of bulk (unsieved) sediment and are reported on a dry weight basis unless stated otherwise.
- 3. The Technical Circular 'ETWB (W) No. 34/2002 Management of Dredged / Excavated Sediment' issued in 2002 has revised the definition of 'Total PCBs' as the summation of 18 specific PCB congeners. Following the new definition, the monitoring of these 18 PCB congeners started in 2002 and the Total PCBs results only refer to 2002 and 2003.
- 4. Total PCBs results are derived from the summation of 18 congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.
- 5. Low molecular weight polyaromatic hydrocarbons (PAHs) include 6 congeners of molecular weight below 200, namely: Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene and Phenanthrene.
- 6. As the monitoring of Naphthalene only started in 2002, the Low Molecular Weight PAHs results are based on sediments samples collected in 2002 and 2003.
- 7. High molecular weight polyaromatic hydrocarbons (PAHs) include 10 congeners of molecular weight above 200, namely: Fluoranthene, Pyrene, Benzo(a) anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene and Indeno(1,2,3-cd)
- 8. High Molecular Weight PAHs results are based on sediment samples collected in five years (1999–2003).
- 9. Low and high molecular weight PAHs results are derived from the summation of the corresponding congeners. If the concentration of a congener is below report limit (RL), the result will be taken as 0.5xRL in the calculation.
- 10. Monitoring of Hei Ling Chau Typhoon Shelter (SS8) and Government Dockyard (VS21) commenced in 2000.
- 11. The monitoring station in Alsrich Bay Typhoon Shelter (ES5) was renamed from VS18 to ES5 in 2000.

Table 13.3 Results of the Seasonal Kendall Test for trends in water quality parameters measured in the typhoon shelters, 1986 - 2003

Monitoring Station		NT1	ST1	WT3	WT1	VT8	VT10	VT2	VTII
Monitoring Period		1986 I	1986 I	1986 I	1986 I	1986 I	1993 I	1986 I	1994 I
		2003	2003	2003	2003	2003	2003	2003	2003
Parameter	Water Depth Surface	_	71	_	71	_	_	_	_
Temperature (°C)	Middle	-	-	-	- "	-	-	-	-
	Bottom	-	7	-	-	-	-	-	-
	Average Surface	-	7	-		-	-	-	-
Salinity	Middle	-	-	-	-	-	-	-	-
	Bottom Average	-	-	-	-	-	-	-	-
	Surface	71	-	-	-	-	-	71	
Dissolved Oxygen (mg/L)	Middle	_	-	-	-	_	-	_	7
	Bottom Average	7	-		7	7	-	7	7
	Surface	7	-	-	-	-	-	71	-
Dissolved Oxygen (%)	Middle Bottom	71	-	-	7	7	-	71	7
	Average	ä	-	-	7	7	-	ä	7
	Surface	-	7	7	7	7	-	-	-
рН	Middle Bottom	-	<u>.</u>	n R	n R	-			-
	Average	-	- u	2	2	2	-	-	-
Secchi disc depth (m)	Surface	7	-	7	7	71	7	7	-
Turbidity (NTU)	Middle	-	-	-	-	7	-	7	7
, , , , , , , , , , , , , , , , , , ,	Bottom	-	-	-	-	7	-	77	7
	Average Surface	-	7	-	-	7	-	71	71
Suspended Solids (mg/L)	Middle	-		-		-	-	-	
	Bottom	-	7	-	-	-	-	-	-
	Average Surface	-	7	-	-	-		2	-
Total volatile solids (mg/L)	Middle		-	2	2	-	-		-
	Bottom	-	-	7	7	-	-	-	-
	Average Surface	7	-	- 4	7	-	-	n R	-
5-day Biochemical Oxygen Demand (mg/L)	Middle	-	-	-	-	2	-	7	-
	Bottom Average	-	n R	-	-	Ä	-	n R	-
	Surface	7	-		7	- 7		7	7
Ammonia nitrogen (mg/L)	Middle	-	-	-	-	7	-	-	7
	Bottom Average	- L	-	-	-	-	-	n R	-
	Surface	7	-	-	-	-	-	-	-
Nitrite nitrogen (mg/L)	Middle	-	-	-	-	-	-	-	-
	Bottom Average	71	-	-	-	-	-	-	-
	Surface	71	71	-	-	-	-	71	-
Nitrate nitrogen (mg/L)	Middle Bottom	71	-	-	-	7	-	7	-
	Average	ä	-		-	-	-	ä	-
- - 1 · · · · · · · · · · · · · · · · · ·	Surface	-	-	-	-	-	-	-	-
Total inorganic nitrogen (mg/L)	Middle Bottom	7	-	-	-	-	.	-	-
	Average	-	-	-	-	-	2	-	-
Tatal Kialdahl mitua nam (mm /l.)	Surface	7	-	-	-	7	-	7	-
Total Kjeldahl nitrogen (mg/L)	Middle Bottom	-	-	-		n R	-	Ä	7
	Average	7	-	-	-	7	-	7	-
Total nitrogen (mg/L)	Surface Middle	-	-	-	-	7	-	7	-
Total Introgen (mg/L)	Bottom	-	-		-	-	-	2	-
	Average	-	-	-	-	N N	-	7	-
Orthophosphate phosphorus (mg/L)	Surface Middle	<u>.</u>	-	-	-	n R	<u>.</u>	7	7
Time prior prior prior (ing/ L)	Bottom	-	-	-	-	7	-	Ä	7
	Average Surface	7	-	-	-	7	-	7	7
Total phosphorus (mg/L)	Middle	<u>-</u>	-	-	-	n R	n R	7	n R
	Bottom	-	-	-	-	3	2	7	7
	Average Surface	7	-	-	-	- 2	n R	7	7
Silica (mg/L)	Middle	-	_			-	-	-	
	Bottom	-	-	-	-	-	Ä	-	-
	Average Surface	71	-	-	71	-	7	-	-
Chlorophyll- <i>a</i> (μg/L)	Middle	-	-	-	-	-	-	-	-
	Bottom	-	-	71	7	-	-	-	-
	Average Surface	7	-	-	7	71	-	2	-
<i>E. coli</i> (cfu/100mL)	Middle	-	-	-	ž	-	-	-	-
	Bottom Average	-	-	-	-	7	-	Ä	-
	Surface	7	_	-	7	7	-	7	-
Faecal coliforms (cfu/100mL)	Middle Bottom	-	7	-	-	71	-	-	-

Note 1. Results of the Seasonal Kendall Test shown are statistically significant at p < 0.05

Seasonal Kendall Test

6. 7 represents a significant increase over time

7. 2 represents a significant decrease over time

^{2. –} indicates no significant trend is detected
3. NA (Not Applicable) indicates the measurement was not made due to shallow water
4. Test applied to past 18 years' data from each monitoring station unless stated otherwise

^{5.} ST3 has four years' data only, which is insufficient to perform

Table 13.3 (continued)
Results of the Seasonal Kendall Test for trends in water quality parameters measured in the typhoon shelters, 1986 - 2003

Monitoring Station		VT4	VT3	ET2	ET1	PT4	PT2	PT3	<u>TT1</u>
Monitoring Period		1987 I	1986 I	1993 I	1986 I	1986 I	1986 I	1986 I	1986 I
		2003	2003	2003	2003	2003	2003	2003	2003
Parameter	Water Depth Surface		_		71	71	71	71	71
Temperature (°C)	Middle				7	•"	•"	7	7
	Bottom	-	7	-	7	7	7	7	-
	Average Surface	-	71	-	71	71	71	71	7
Salinity	Middle	-	-	-	-	-	-	-	-
	Bottom	-	-	-	-	-	-	-	-
	Average Surface	71	71			2	71		7
Dissolved Oxygen (mg/L)	Middle	7	7	-	-		-	-	
	Bottom	7	7		-	-	-	-	-
	Average Surface	7	7	71	-	-	7	-	7
Dissolved Oxygen (%)	Middle	77	71	71	-	-	-	-	-
	Bottom	7	7	7	-	-	-	-	-
	Average Surface	7	7	71	-	2	71	2	7
рН	Middle	71	-	-	-	-	-	7	7
	Bottom	-	-	-	-	7	-	-	7
Secchi disc depth (m)	Average	-	-	71	-	7	71	-	7
	Surface	-	71	71	-	71	-	-	-
Turbidity (NTU)	Middle		7	7	-	_	-	7	7
	Bottom Average	71	7	7	-	7 7		-	7
	Surface	7	-	7	-	-	-	-	-
Suspended Solids (mg/L)	Middle	7	-	-	-	-	-	7	-
	Bottom Average	n R	-	-	-	-	<u>, </u>	-	-
	Surface	7	-	-	7	7	7	7	-
Total volatile solids (mg/L)	Middle	2	7	7	7	-	-	-	-
	Bottom Average	n R	n n	-	n R	<u>.</u>	-	-	-
	Surface	Ä	2	-	2	Ä	7	-	7
5-day Biochemical Oxygen Demand (mg/L)	Middle	2	7	-	-		-	-	-
	Bottom Average	n R	n R	-	-	7	, u	-	n R
	Surface	-	7	7	-	-	7	-	-
Ammonia nitrogen (mg/L)	Middle	7	7	7	-	-	-	-	-
	Bottom Average	n R	n R	-	-		<u>.</u>	-	-
	Surface	7	-	-	-		7	-	
Nitrite nitrogen (mg/L)	Middle	7	-	-	-	-	-	-	-
	Bottom Average	71	-	7	-	-	<u>.</u>	-	-
	Surface	7	-	-	-	-	7	-	
Nitrate nitrogen (mg/L)	Middle	77	-	-	-	-	-	-	-
	Bottom Average	7	-	7	-	-	n R	7	-
	Surface	- 2	7	7	7	-	7	-	-
Total inorganic nitrogen (mg/L)	Middle	7	-	7	7	-	-	-	-
	Bottom Average	n R	<u>.</u>	n R	71	-	n R	-	-
	Surface	-	7	-		7	-	-	
Total Kjeldahl nitrogen (mg/L)	Middle	7	7	-	-	-	-	-	-
	Bottom Average	צ	n R	-	-	-	-	-	-
	Surface	- 3	7	7	-	7	-	-	-
Total nitrogen (mg/L)	Middle	2	7	2	-	-	-	-	-
	Bottom Average	7	7	7	-	-	-	-	-
	Surface	7	7	7		7	-		-
Orthophosphate phosphorus (mg/L)	Middle	2	7	7	-	-	-	-	N.
	Bottom Average	7	-	7	-	-	-	-	-
	Surface	-	7	n R	-	-	-	7	-
Total phosphorus (mg/L)	Middle	7	2	2	7	-	-	-	-
	Bottom Average	7	Ä	7	-	-	-	-	-
	Surface	7	7	n R	71	-	-		
Silica (mg/L)	Middle	7	-	2	-	-	-	-	-
	Bottom	Ä	-	-	7	-	-	-	-
	Average Surface	71	71	7	71	-	-	-	
Chlorophyll– <i>a</i> (µg/L)	Middle	71	-	-	-	-	-	-	-
	Bottom	7	7	-	-	-	-	-	-
	Average Surface	7	7	-	-	2	2	-	
<i>E. coli</i> (cfu/100mL)	Middle	2	2	-		-	-	-	-
	Bottom	7	7	-	-	7	7	-	Ä
	Average Surface	7	- 2	-	71	n n	7	-	7
Faecal coliforms (cfu/100mL)	Middle	2	-	-	7	-	-	-	-
•	Bottom	7	-	-	71	-	2	-	-
	Average	7	-	-	7	7	7	-	-

- 1. Results of the Seasonal Kendall Test shown are statistically significant at $\it p < 0.05$
- 2. indicates no significant trend is detected
 3. NA (Not Applicable) indicates the measurement was not made due to shallow water
 4. Test applied to past 18 years' data from each monitoring station unless stated otherwise
- 5. VT12 has four years' data only, which is insufficient to perform Seasonal Kendall Test
 6.

 7 represents a significant increase over time
 7.

 № represents a significant decrease over time

Chapter 14 - Phytoplankton & Red Tides

Introduction

- 14.1 Eutrophication is a condition in the water body where high concentrations of nutrients (mainly nitrogen and phosphorus) stimulate blooms of algae (e.g. phytoplankton). Increased eutrophication from nutrient enrichment due to human activities is one of the leading environmental problems in many coastal waters as it can have adverse effects on the ecosystem. Phytoplankton is a critical component of coastal ecosystems and represents the first biological response to nutrient enrichment. Phytoplankton monitoring can track the biological consequences of nutrient enrichment over time and therefore forms an essential part of coastal eutrophication management.
- The Environmental Protection Department (EPD) conducts long-term monitoring of phytoplankton at 25 stations covering nine Water Control Zones (WCZs) in the territory (Figure 14.1). Monthly phytoplankton samples are collected from 1m below water surface. Detailed identification and enumeration of phytoplankton taxa are carried out using light and electron microscopes.

Composition of phytoplankton

- 14.3 A total of 89 phytoplankton species was recorded in Hong Kong waters in 2003. Of these, 54 were diatoms (61%), 24 were dinoflagellates (27%), 11 were from other minor algal groups (12%) including Cyanophyta, Chrysophyta and Prozotoa. The most dominant diatom species were *Skeletonema costatum* and *Chaetoceros* spp. which constituted 52-70% of the diatom population in the North Western, Western Buffer, Victoria Harbour and Eastern Buffer WCZs (Table 14.1). The most abundant dinoflagellate species were *Scrippsiella* spp. and *Gymnodinium vestifici*, comprising more than 50% of the dinoflagellate populations in 7 out of the 9 WCZs (i.e. Eastern Buffer, Port Shelter, Victoria Harbour, Southern, North Western, Western Buffer and Deep Bay) (Table 14.1). The majority of the other phytoplankton groups were made up of small flagellates (54-85%) in all the WCZs (Table 14.1).
- 14.4 Of the samples examined in 2003, diatoms constituted the largest component of phytoplankton in term of species number (i.e. 53-66%) followed by dinoflagellates (23-31%) and other phytoplanktons (10-20%) (Figure 14.2). In terms of cell density, diatom was also the largest phytoplankton group in eight WCZs, i.e. Southern (70%), Tolo Harbour and Channel (67%), Eastern Buffer (63%), Victoria Harbour (56%), Mirs Bay (56%), North Western (51%), Western Buffer (50%) and Port Shelter (49%) (Figure 14.3). Other minor phytoplankton groups formed the majority

Phytoplankton & Red Tides

only in the Deep Bay (57%) WCZ.

Abundance of phytoplankton groups

14.5 Figure 14.4 shows the annual mean densities of total phytoplankton at 25 sampling stations in 2003. In general, the total phytoplankton densities were 2-6 times higher at stations in Tolo Harbour and Channel than those in other WCZs. Diatom densities were found to be higher at stations in Tolo Harbour and Channel and parts of Southern water (Figure 14.5); whereas dinoflagellate densities were higher in Tolo Harbour and Channel and some stations in inner Mirs Bay and North Western waters (Figure 14.6). The other minor phytoplankton groups were more abundant in Tolo Harbour and some stations in Victoria Harbour and Southern waters (Figure 14.7).

Red tides and harmful algal blooms

- 14.6 Red tides and algal blooms are natural phenomena which occur in both polluted and unpolluted waters. Red tides are common in semi-enclosed bays with low tidal flushing and under favourable environmental conditions. Red tides and harmful algal blooms (HABs) can cause oxygen depletion in the water body resulting in fish kills and mass mortalities of other organisms. Algal toxins can contaminate seafood as well. Some phytoplankton species may cause eye, nose, skin irritations or respiratory distress in humans.
- 14.7 The Government has implemented effective measures to protect swimmers at bathing beaches from possible harmful effects of red tides/algal blooms. When a red tide (or a toxic algal bloom) is detected near a gazetted beach, warning flag will be raised and the beach will be closed. Water samples will be collected immediately and analysed in the laboratory. The beach will be reopened to the public when the bloom has dissipated and the water is free of harmful algae.

Occurrence of red tides

- Red tides generally occur more frequently in the eastern waters and Southern waters (Figure 14.8). From 1980 to 2003, some 289 of 675 red tides (43%) occurred in the Tolo Harbour and Channel WCZ, and 122 (18%) in the Mirs Bay WCZ, 89 (13%) in the Port Shelter WCZ and 108 (16%) in the Southern WCZ respectively.
- Red tides increased significantly in the 80s and reached a peak in 1988, when a total of 88 incidents were reported (Figure 14.9). Since the mid 90s, red tides fluctuated between 20 and

Phytoplankton & Red Tides

45 incidents per year. A total of 20 red tides was recorded in 2003, of these 9 occurred in Tolo Harbour, 4 occurred in Southern waters and 4 in Mirs Bay.

- Red tides generally peak during the spring months. From 1980 to 2003, 276 of 675 red tides (41%) occurred between March and May. In 2003, only 6 of the 20 red tides (30%) occurred in spring.
- 14.11 About 15% of the red tides affected bathing beaches between 1980 and 2003 (i.e. 102 of 675 incidents) (Figure 14.10). During the bathing season between March and October, 77 out of the 445 red tides (17%) affected bathing beaches. Of the 20 reported red tide incidents in 2003, only one occurred at bathing beaches.
- Among all red tide cases recorded between 1980 and 2003 (Figure 14.9), 439 were caused by dinoflagellates (65%); 115 were by diatoms (17%) and 96 were by other minor phytoplankton groups (14%) (Figure 14.11) (Note: The causative species of some red tides were unknown). Dinoflagelates caused red tides formed a peak in the spring, i.e. between March and May (208 out of 439 cases); whereas those caused by diatoms occurred more frequently in summer, i.e. between May and August (65 out of 115 cases). Red tides formed by other minor phytoplankton groups mostly occurred in winter and spring months (Figure 14.11).

Red tide causative species

- 14.13 A total 77 red tide species has been identified from Hong Kong waters since 1980 (Table 14.2). The most common species was the dinoflagellate *Noctiluca scintillans*, which accounted for a third of the reported red tides (210 out of 675). The diatom *Skeletonema costatum* and dinoflagellate *Gonyaulax polygramma* were also frequently encountered. The number of red tide species varied considerably between different WCZs: ranging from 52 species in Tolo Harbour and Channel to four species in Deep Bay.
- 14.14 The red tide species recorded from different WCZs in 2003 are listed below. Of the 17 species recorded, *Noctiluca scintillans, Mesodinium rubrum* and *Thalassiosira nordenskioeldii* were more widely distributed than others. Red tide species compositions in the Tolo Harbour and Channel WCZ were more diverse than in other WCZs. It is noted that there were considerable year-to-year variations in species composition in different WCZs. There was no red tide related fish kill in 2003.

Phytoplankton & Red Tides

Tolo Harbour and Channel WCZ:

Chattonella marina

Chattonella sp.

Cyclotella caspia

Karenia mikimotoi

Noctiluca scintillans

Prorocentrum balticum

Prorocentrum minimum

Thalassiosira proschkinae

Mirs Bay WCZ:

Karlodinium micrum

Mesodinium rubrum

Scrippsiella trochoidea

Thalassiosira nordenskioeldii

Port Shelter WCZ:

Prorocentrum dentatum

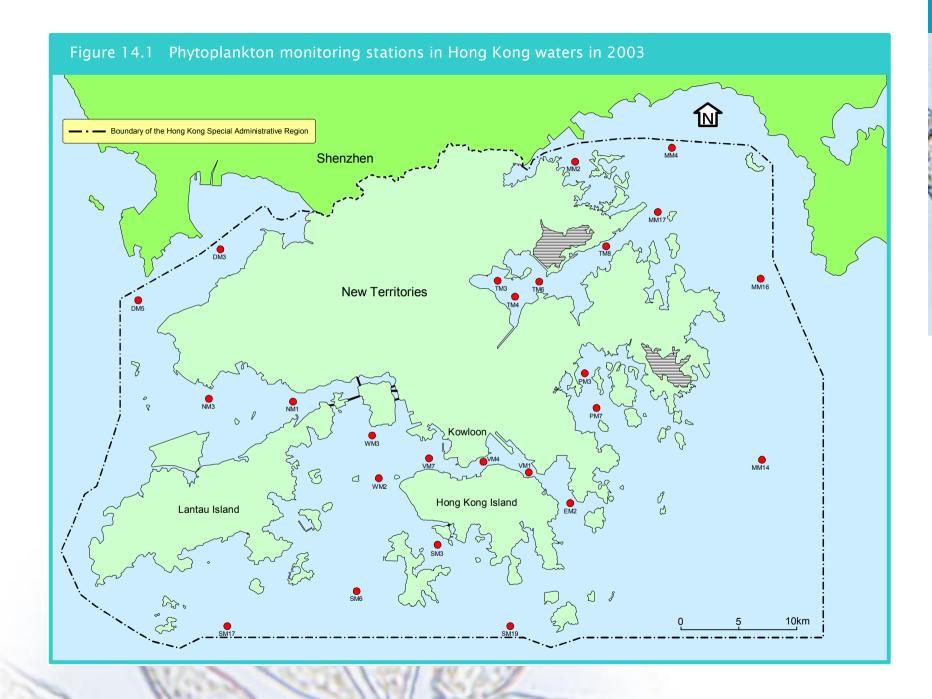
Southern WCZ:

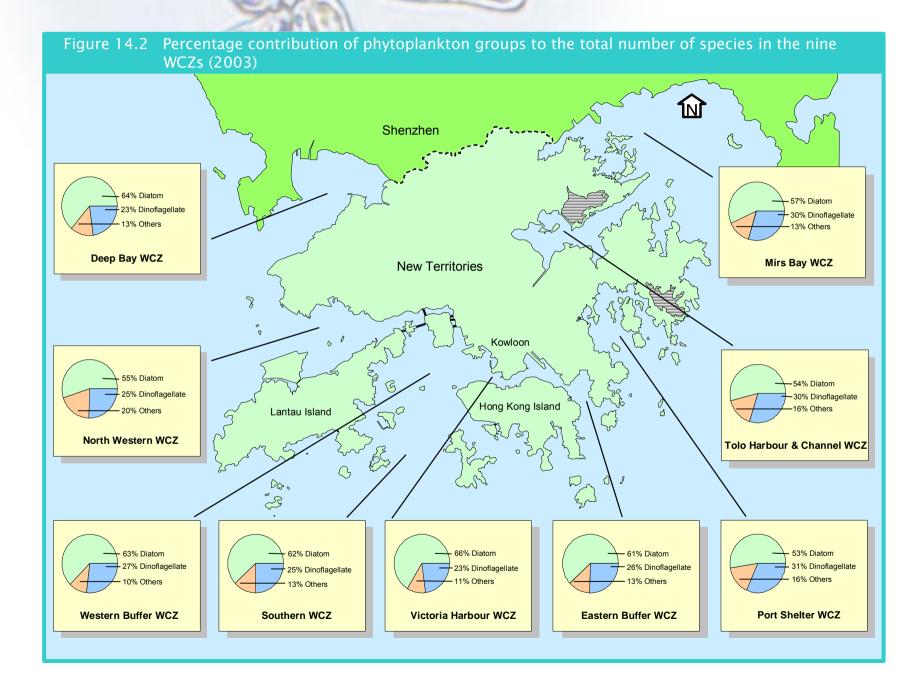
Noctiluca scintillans

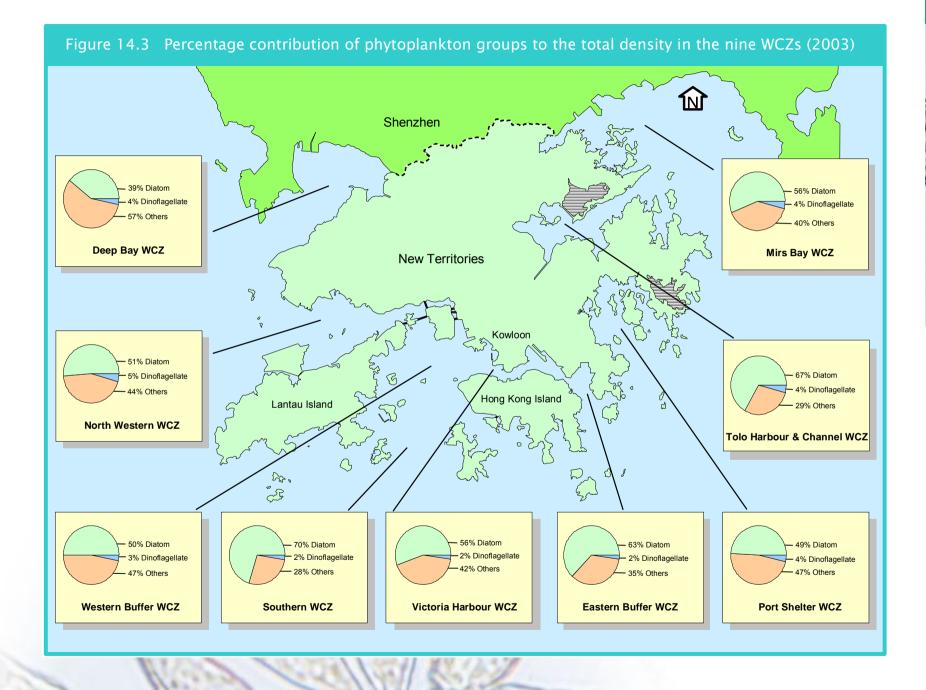
Thalassiosira nordenskioeldii

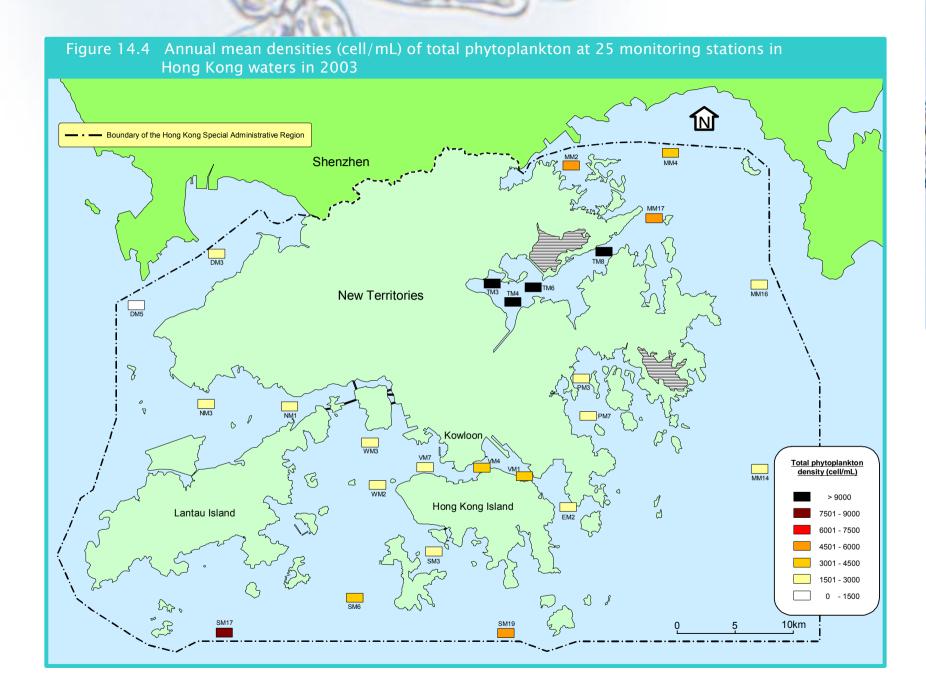
Trichodesmium erythraeum

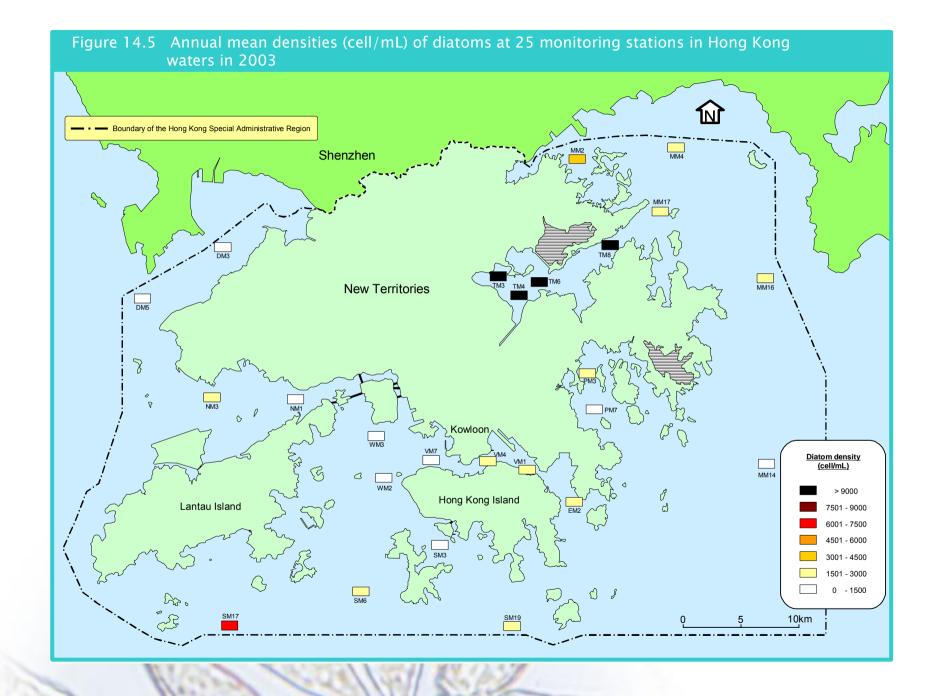
Trichodesmium thiebautii

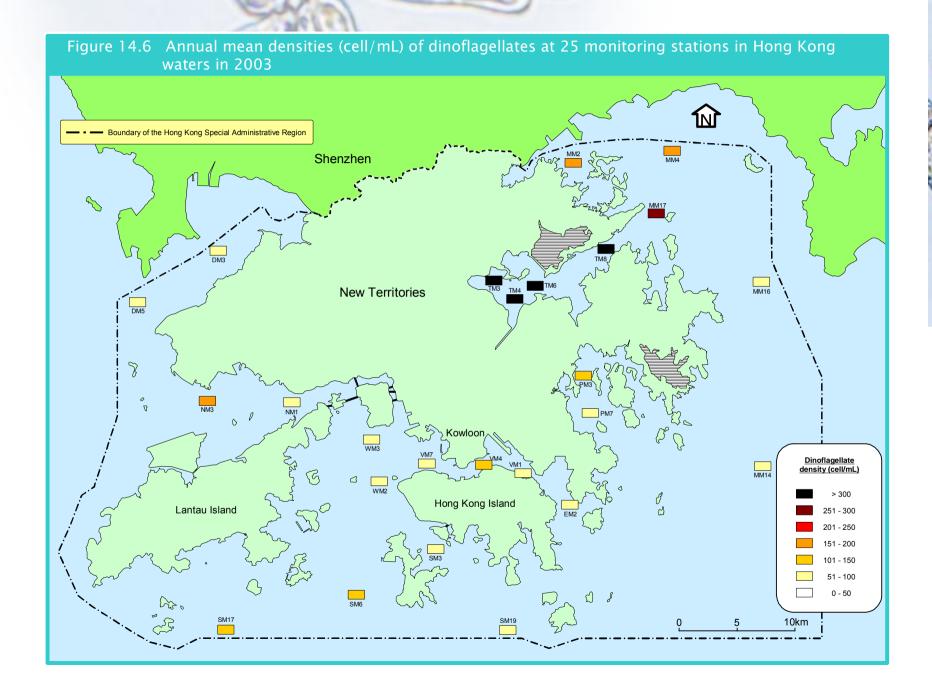

Deep Bay WCZ:

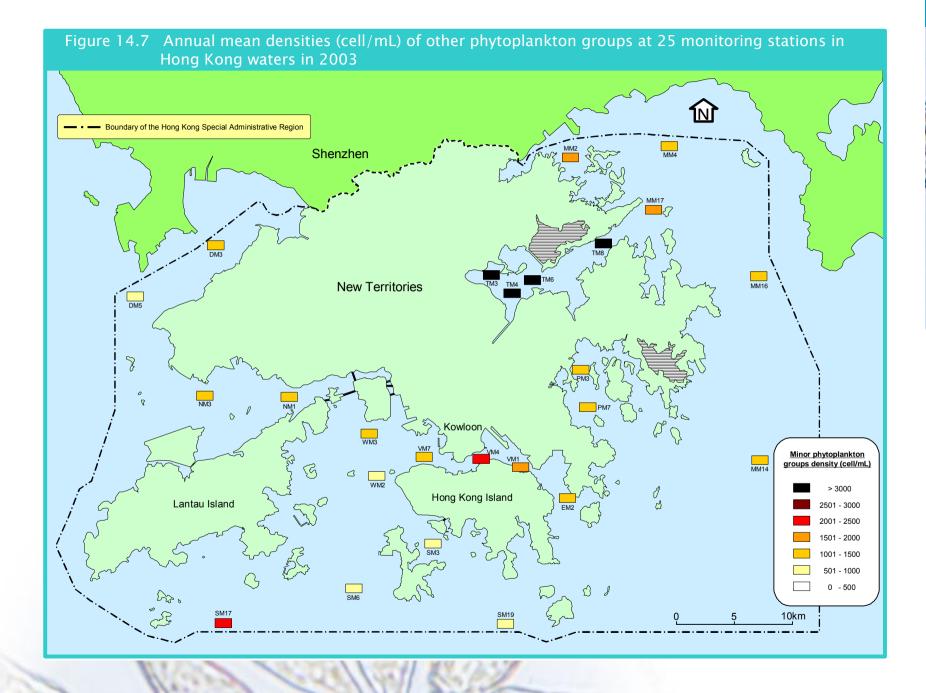

Mesodinium rubrum

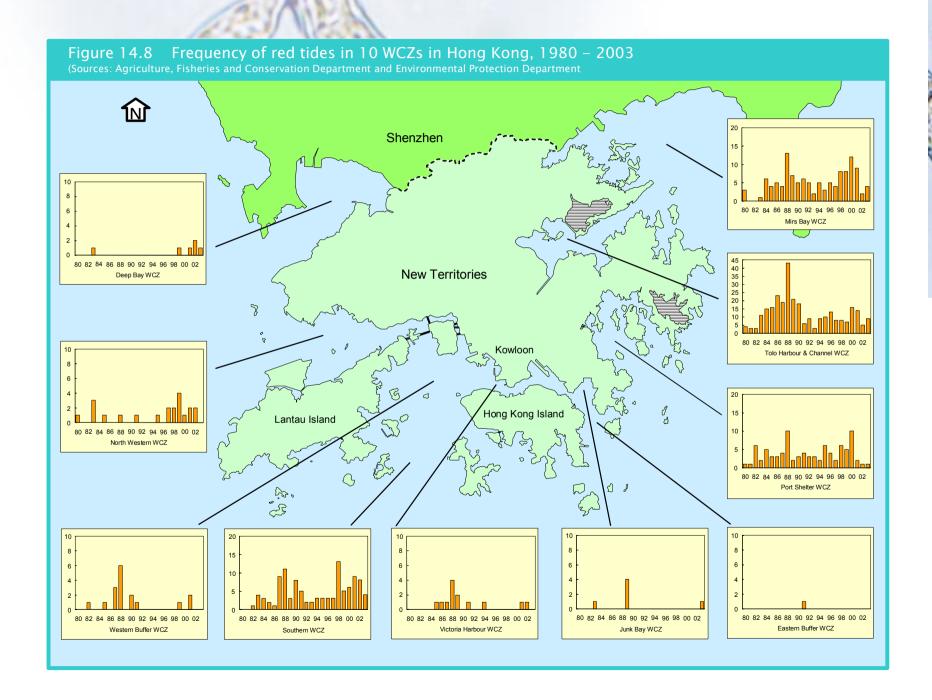

Junk Bay WCZ:

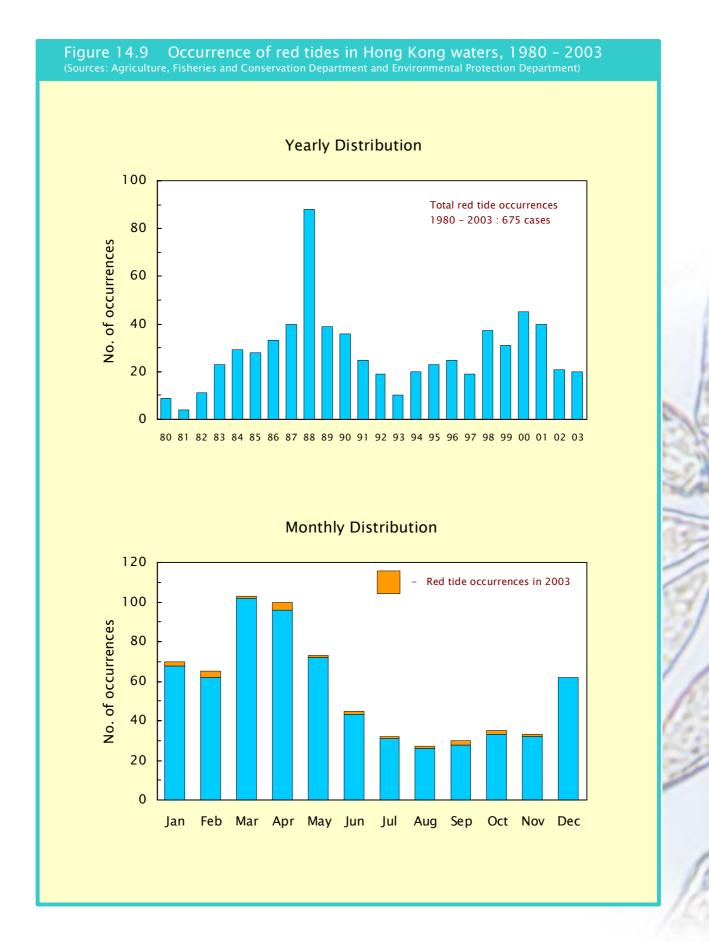

Chaetoceros curvisetus

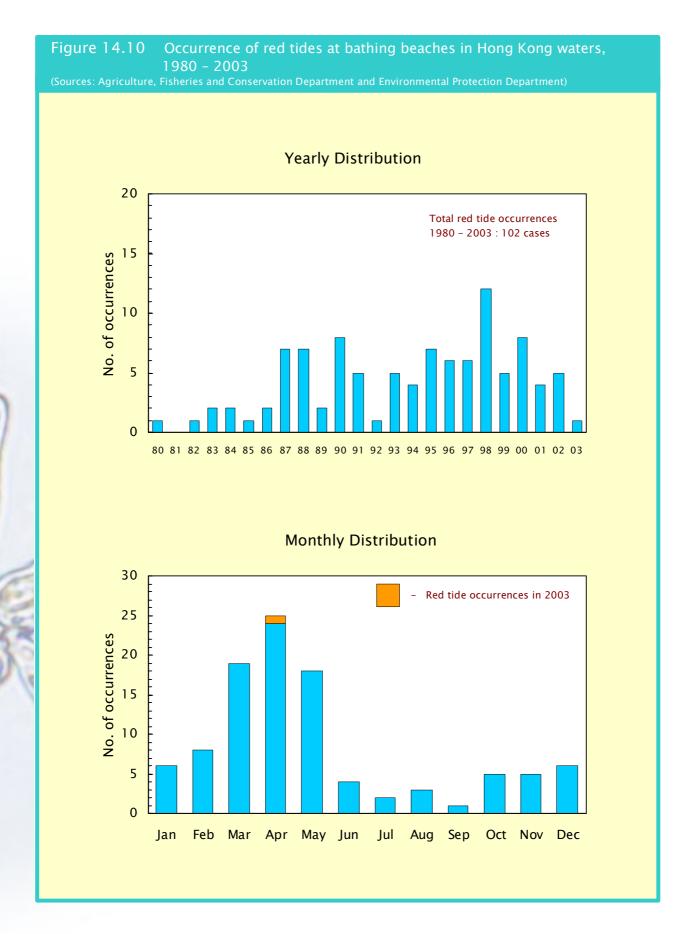

Skeletonema costatum











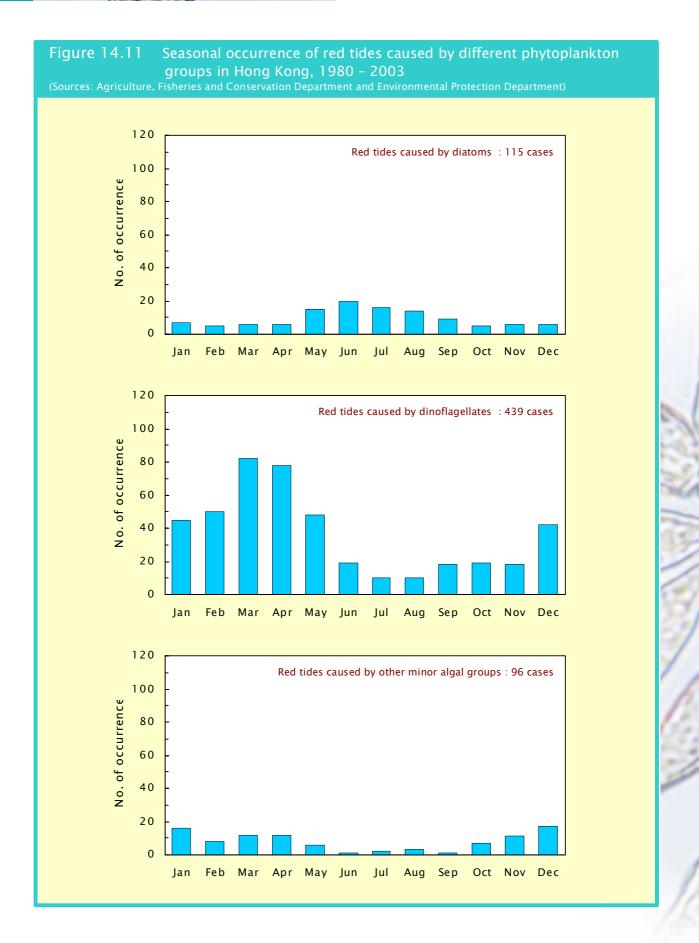


Table 14.1
Abundance and frequency of the dominant phytoplankton species in different WCZs in 2003

			toplankton species in		
Species	% Abundance ¹	Frequency ²	Species	% Abundance ¹	Frequency ²
Tolo Harbour & Channel			Southern		
Diatoms			Diatoms		
Leptocylindrus danicus	32	9	Pseudo-nitzschia delicatissima	49.3	12
Dactyliosolen fragilissimus	13.4	11	Skeletonema costatum	16	12
Chaetoceros spp.	13	12	Chaetoceros spp.	14.5	12
Dinoflagellates			Dinoflagellates		
Karenia mikimotoi	29.4	6	Gymnodinium vestifici	42.6	12
Prorocentrum minimum	28.7	8	Scrippsiella spp.	27.2	12
Scrippsiella spp.	10.8	12	Gymnodinium spp.	17	12
Others			Others		
small flagellates	78.1	12	small flagellates	82.8	12
Plagioselmis prolonga	13	12	Plagioselmis prolonga	13	12
Teleaulax acuta	7.8	10	Teleaulax acuta	3.7	12
Mirs Bay			North Western		
Diatoms			Diatoms		
Pseudo-nitzschia delicatissima	23	12	Skeletonema costatum	52.4	11
Skeletonema costatum	20.8	12	Thalassiosira spp.	22.9	12
Leptocylindrus danicus	16	9	Pseudo-nitzschia delicatissima	8.7	8
Dinoflagellates	10		Dinoflagellates	0.7	
Karenia mikimotoi	35.7	6	Scrippsiella spp.	54.4	12
	20.6	12		21.7	11
Gymnodinium vestifici		12	Gymnodinium vestifici		6
Scrippsiella spp. Others	18.4	1 2	Amphidinium spp. Others	7.8	Ö
	04.7	1.2		64.0	1.2
small flagellates	84.7	12	small flagellates	64.9	12
Plagioselmis prolonga	11.8	12	Plagioselmis prolonga	21.1	12
Teleaulax acuta	3.1	12	Teleaulax acuta	12.1	12
Eastern Buffer			Western Buffer		
Diatoms			Diatoms		
Skeletonema costatum	51.2	10	Skeletonema costatum	38.2	11
Chaetoceros spp.	18.5	9	Chaetoceros spp.	19.6	12
Pseudo-nitzschia delicatissima	8.5	9	Thalassiosira spp.	17	12
Dinoflagellates			Dinoflagellates		
Gymnodinium vestifici	36.9	12	Scrippsiella spp.	36.5	12
Scrippsiella spp.	25.8	8	Gymnodinium vestifici	28.6	12
Gymnodinium spp.	11.9	7	Gymnodinium spp.	18.8	8
Others			Others		
small flagellates	76.9	12	small flagellates	75.8	12
Plagioselmis prolonga	15.7	12	Plagioselmis prolonga	15.4	12
Teleaulax acuta	7.3	10	Teleaulax acuta	8	12
Port Shelter			Deep Bay		
Diatoms			Diatoms		
	22	r		42.7	10
Dactyliosolen fragilissimus	33	5	Thalassiosira spp. Skeletonema costatum	42.7	10
Chaetoceros spp.	14.4	12		41.4	8
Leptocylindrus danicus	13.9	6	Chaetoceros spp.	5.6	12
Dinoflagellates	20.2	1.2	Dinoflagellates	67.0	1.2
Scrippsiella spp.	30.2	12	Scrippsiella spp.	67.8	12
Gymnodinium vestifici	23.9	12	Gymnodinium spp.	11.3	11
Gymnodinium spp.	19.7	11	Gymnodinium vestifici	9.3	7
Others			Others		
small flagellates	83	12	small flagellates	54	12
Plagioselmis prolonga	13	12	Teleaulax acuta	26.5	12
Teleaulax acuta	3.1	11	Plagioselmis prolonga	17.1	12
Victoria Harbour					
Diatoms			1 % of species/group in diatom	s. dinoflagellates and o	ther phytoplankto
Skeletonema costatum	45.7	12		-	
Chaetoceros spp.	18	12	Number of occurrences out o	f 12 sampling occasion	5
Pseudo-nitzschia delicatissima	14.7	9			
Dinoflagellates					
Scrippsiella spp.	31.8	12			
Gymnodinium vestifici	30.1	12			
Gymnodinium spp.	16.1	11			
Other's					
small flagellates	77.3	12			
Plagioselmis prolonga	16.5	12			
Teleaulax acuta	6	12			

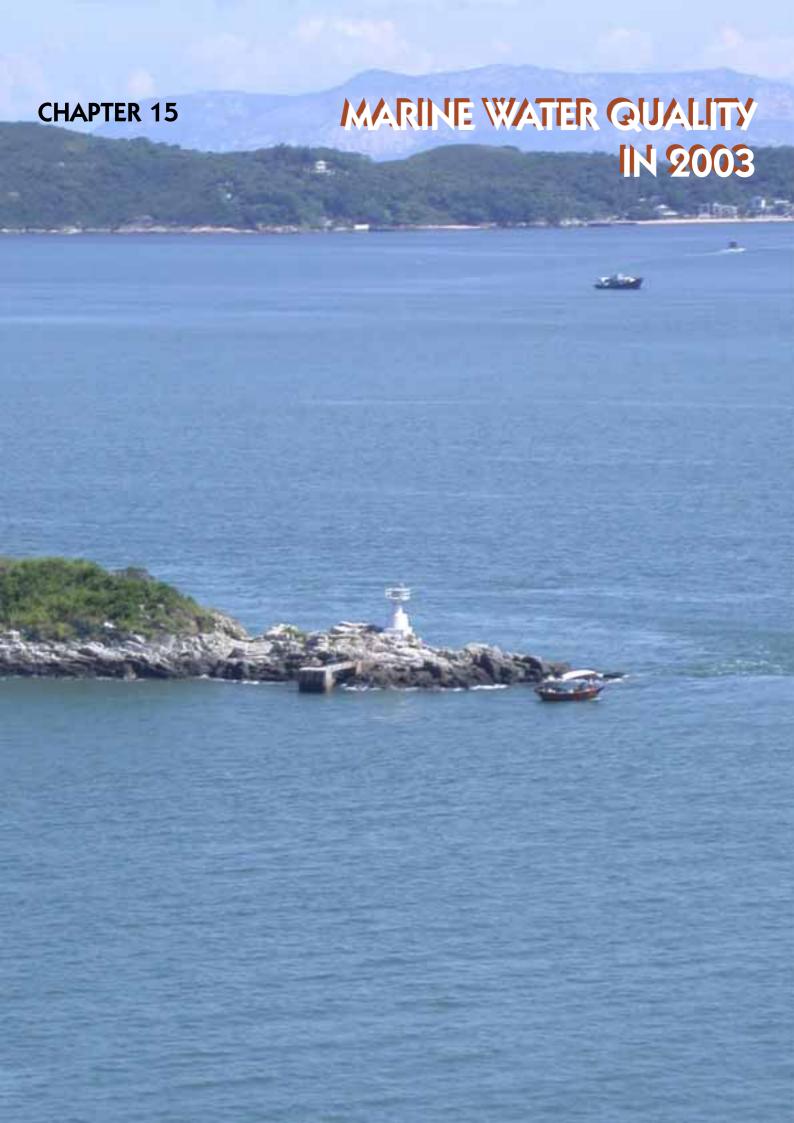


Table 14.2 Occurrence and distribution of red tide species in different WCZs, 1980 - 2003

				Port		Victoria			Western	Deep		
Species	& Channel	Mirs Bay		Shelter	Bay		Waters	Western		Bay		
	WCZ	WCZ	WCZ	WCZ	WCZ	WCZ	WCZ	WCZ	WCZ	WCZ		
Noctiluca scintillans	54	57		39			50	4	6		210	İ
Skeletonema costatum	23	2		1	3	8	7	3	7		54	
Gonyaulax polygramma	21	8		12			6	1			48	
Mesodinium rubrum	8	8		7	1		13	5		2	44	
Prorocentrum minimum Prorocentrum triestinum	42 33	1									43 33	
Ceratium furca	10	6		10							26	
Scrippsiella trochoidea	14	4		2			1				21	
Prorocentrum sigmoides	14	1		1				2			16	
Heterosigma akashiwo	10 13	2						3			15 15	
Heterocapsa circularisquama Prorocentrum dentatum	7	3		1							11	
Karenia mikimotoi	6	1		3							10	
Leptocylindrus minimus	10										10	
Thalassiosira nordenskioeldii	2 8	3				1	2		1		9	
Cryptomonas sp. Dactyliosolen fragilissimus	6	1		1							8	
Chaetoceros spp.	6			1							7	
Karenia digitata	1	3		2			1				7	
Thalassiosira mala	6 6	1					1				7 7	
Thalassiosira proschkinae Akashiwo sanguinea	2	2						1		1	6	
Gyrodinium instriatum						1		2	1	1	5	
Thalassiosira spp.	2				1		2				5	
Dictyocha speculum	4	2		1			1				4	
Eutreptiella spp. Leptocylindrus danicus	3	1									4	
Plagioselmis prolonga	4										4	
Prorocentrum micans	3	1									4	
Pseudo-nitzschia pseudodelicatissima	1		1		1		2		1		4	
Chaetoceros curvisetus Chattonella ovata		2		1	'		'				3	
Gymnodinium simplex	3	_		•							3	'
Karenia longicanalis	1	1					1				3	
Pseudo-nitzschia seriata	1	2				2	,				3	
Trichodesmium erythraeum Trichodesmium sp.		1		1			1				3	
Alexandrium tamarense				2							2	
Cerataulina pelagica	2										2	
Chattonella marina	1	1					_				2	
Chattonella sp.	1						1 2				2	
Cochlodinium polykrikoides Cochlodinium sp.	2						2				2	١.
Eucampia zodiacus							1	1			2	
Gymnodinium sp. X				2							2	
Nitzschia longissima	1	1					1				2	1
Prorocentrum balticum Prorocentrum spp.	1	1									2	
Teleaulax acuta	2										2	
Alexandrium catenella					1						1	
Chaetoceros pseudocrinitus	1						•				1	
Chaetoceros pseudocurvisetus Chaetoceros socialis							1				1	١.
Chaetoceros sp.0105	1										1	
Chaetoceros tenuissimus		1									1	
Chlamydomonas sp.	1										1	1
Cyclotella caspia	1										1	
Cyclotella spp. Cyttarocylis sp.	'			1							1	
Guinardia delicatula	1										1	
Guinardia striata	1										1	1
Gymnodinium sp.		1					,				1	II.
Gyrodinium spirale	1						1				1	ı
Haematococcus pluvialis Hermesinum adriaticum	•	1									1	п
Karlodinium micrum		1									1	
Katodinium rotundatum								1			1	
Leptocylindrus spp.	1						1				1	
Odontella mobiliensis	1										1	
Odontella sinensis Pedinomonadaceae species	1										1	
Phaeocystis globosa							1				1	
Protoperidinium quinquecorne	1										1	
Pseudo-nitzschia spp.							1			1	1	
Thalassiosira weissflogii Thalassomonas sp.	1									1	1	
Trichodesmium thiebautii							1				1	
Total : 77 species	348	122	1	88	7	12	102	21	16	5	722	
							_					4

Note: a red tide incident may involve more than one causative species.

Source: Agriculture, Fisheries and Conservation Department and Environmental Protection Department

Chapter 15 - Marine Water Quality in 2003

Water Quality in 2003

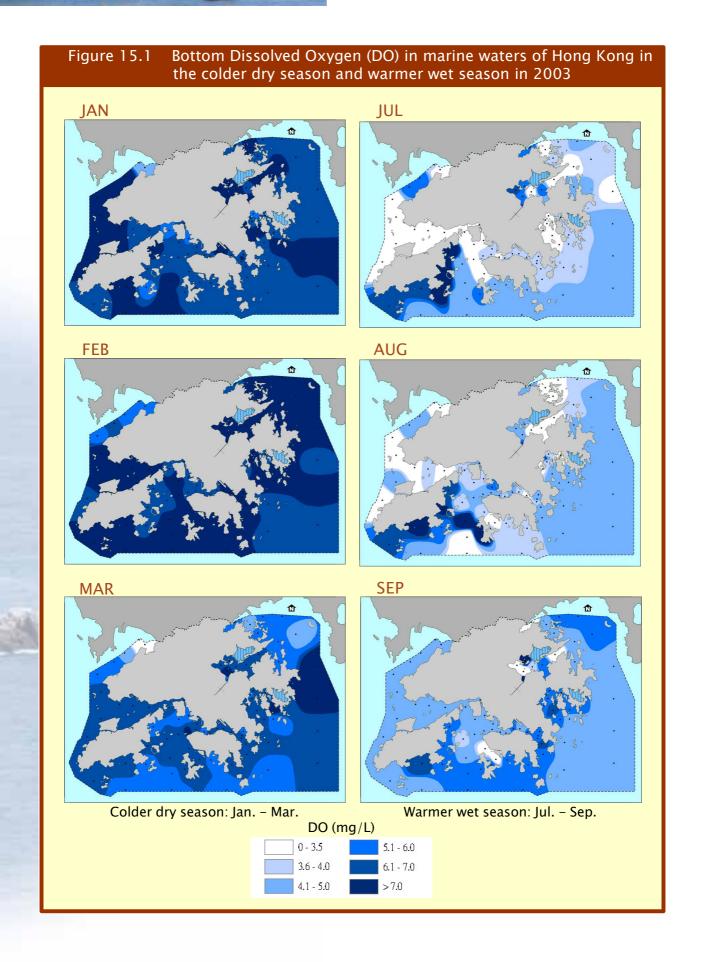
- In 2003, the water quality of Hong Kong waters was generally similar to that in 2002. The water quality of the Port Shelter and Mirs Bay Water Control Zones (WCZs) continued to be excellent, with low sewage bacteria and nutrients and high dissolved oxygen (DO) content. Under the influence of the Pearl River flow and local pollution sources such as effluent from sewage treatment works and screening plants in the western part of Hong Kong Island and northwestern New Territories, the North Western and Southern WCZs had moderate water quality. The water quality in Deep Bay remained poor, with relatively low DO and high levels of nutrients (nitrogen and phosphorus) and showing signs of further deterioration.
- 15.2 After the full commissioning of the Harbour Area Treatment Scheme (HATS) Stage I in 2002, a substantial water quality improvement (i.e. an increase in DO and reductions in *E. coli*, ammonia nitrogen and total inorganic nitrogen) was observed in central and eastern Victoria Harbour, Junk Bay and the Eastern Buffer WCZ. These improvements were sustained in 2003. On the other hand, the elevation of *E. coli* bacteria in the western harbour particularly in the vicinity of the Stonecutters Island Outfall has remained and slightly worsened. It has resulted in the closure of the beaches in Tsuen Wan during the 2003 bathing season.
- In connection with HATS development, the Government has completed several studies and trials in 2003 in order to identify long-term options for solving sewage pollution problem in Victoria Harbour. The findings have been put forward for public consultation in mid 2004. Subject to the outcome of the consultation, a scheme would be selected for future implementation.
- There was a slight but widespread decrease of DO in Hong Kong marine waters in 2003. All WCZs showed DO reduction of around 10%. The decrease may be related to the unusually warm and dry weather with rainfall being 12% below normal. The decrease of DO was more evident in the southern part of Hong Kong and parts of Mirs Bay during the summer, when there were fewer tropical cyclones than usual.

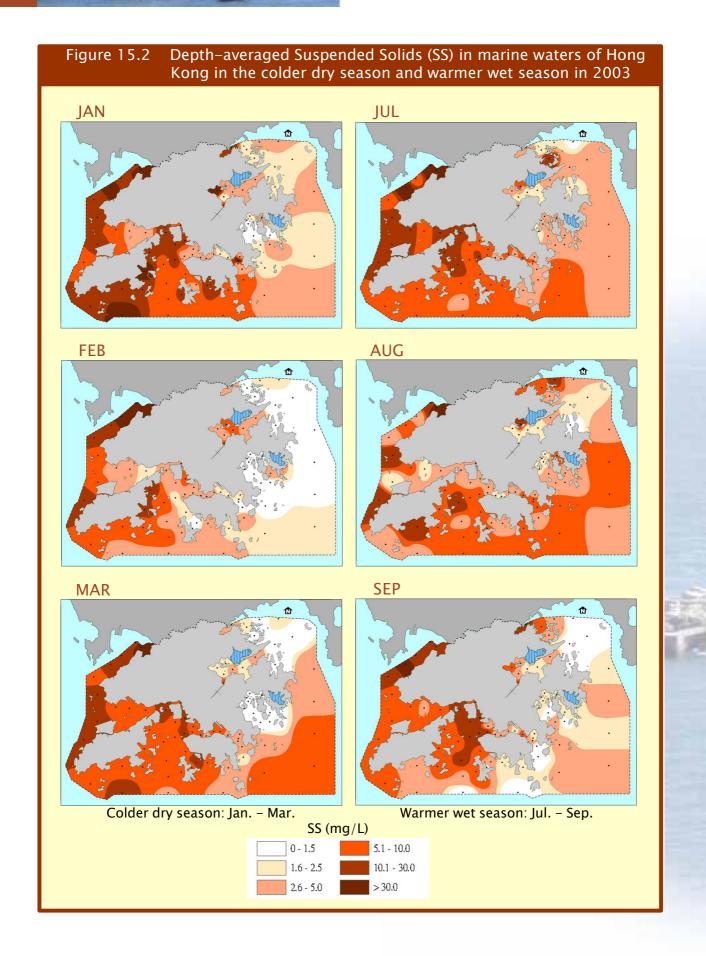
Spatial and Temporal Distributions

15.5 Figures 15.1-15.3 illustrate the spatial and temporal distributions of three key water quality parameters: DO (bottom), suspended solids (SS) and chlorophyll-a (1 m below sea surface) in marine waters in the colder dry season (January - March) and warmer wet season (July -

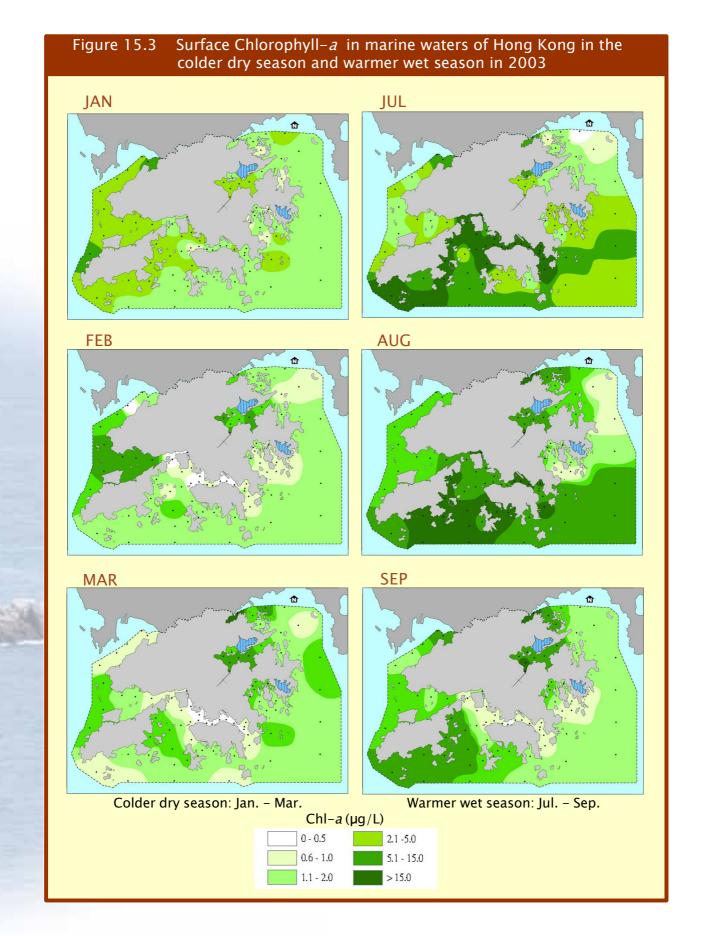
September) in 2003.

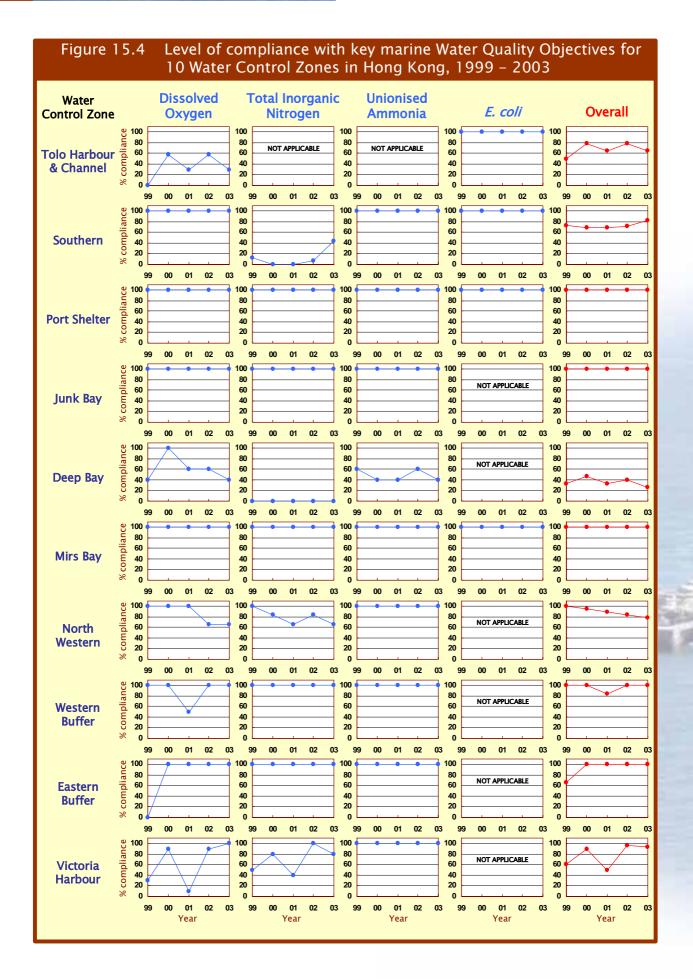
- 15.6 Figure 15.1 shows that during the colder months (January March), the bottom DO in Hong Kong waters was maintained well above 3.5 mg/L. However bottom DO fell considerably in the summer especially in July and August and it was also more unevenly distributed. This was likely to be related to the higher temperature, water column stratification and greater terrestrial discharges during these months. Hypoxia (i.e. DO<2mg/L) of bottom water occurred mainly in Deep Bay and North Western waters as well as parts of Tolo Harbour, Mirs Bay, Port Shelter and Western Buffer during summer.
- 15.7 Suspended solids (SS) were generally higher in the western side of Hong Kong due to the influence of the highly turbid Pearl River flow, local discharges and marine works (Figure 15.2). The SS levels were lower in Mirs Bay and Port Shelter in particular during the dry months.
- 15.8 Figure 15.3 shows that the concentration of chlorophyll-a (surface) was generally higher in the summer (June and July), especially in Southern waters and Victoria Harbour, indicating elevated algal productivity. Tolo Harbour generally has a higher chlorophyll-a level compared with other WCZs, and was vulnerable to algal blooms and red tides.


Compliance with Water Quality Objectives


- 15.9 In 2003, the overall compliance with the four key marine WQOs in the territory was 87%, the same as in 2002, and amongst the highest recorded (Figure 15.6).
- 15.10 Statistics on WQOs compliance for individual WCZs are summarised in Figure 15.4. In 2003, a full (100%) WQO compliance was obtained in five of the ten WCZs: Junk Bay, Port Shelter, Eastern Buffer, Mirs Bay and Western Buffer. The Deep Bay WCZ has the poorest compliance, at 27%, which was also the lowest recorded in 10 years. The North Western WCZ experienced a continued decline due to a lower compliance with the TIN and DO objectives. On the other hand, the compliance rate for the Southern WCZ has increased from 71% to 83% in 2003 relating to a marked reduction of TIN during the year.
- 15.11 The overall compliance of Hong Kong marine waters with the WQO for DO was 87% in 2003, slightly lower than the 89% in 2002 (Figure 15.5). It was mainly due to a widespread decrease of DO of around 10%. On the other hand, the compliance with the TIN objective was 74%, highest in 10 years. Full (100%) compliance with the unionised ammonia objective was achieved in all WCZs, with the exception of Deep Bay. As before, Tolo Harbour, Port Shelter, Mirs Bay

and the secondary contact recreation subzones in the Southern Water have fully achieved the WQO for *E. coli* bacteria.


Long-term Water Quality Trends


- 15.12 Figures 15.7 to 15.16 summarise the significant changes in the major water quality parameters (DO, 5-day Biochemical Oxygen Demand (BOD₅), *E. coli*, NH₄-N, nitrate nitrogen (NO₃-N), TIN, PO₄-P, chlorophyll-a, temperature and pH) in the territory over the last 18 years (1986-2003).
- Long-term decreases in depth-averaged DO were found in Deep Bay (Figure 15.17) and a large part of the Southern WCZ. On the other hand, there were decreasing trends in BOD_5 in Tolo Harbour indicating a reduction in organic pollution. Bacterial pollution has worsened in the western part of Victoria Harbour and Western Buffer as well as in the Deep Bay area.
- While Deep Bay has experienced significant increases in NH₄-N and TIN, a decrease in TIN was observed at many stations in the Mirs Bay WCZ. In the Southern WCZ, the increasing trends in nitrate nitrogen and TIN were mainly confined to the coastal area of Lantau Island.
- 15.15 Tolo Harbour and northern Mirs Bay showed a decline in orthophosphate phosphorus (PO₄-P) and the number of monitoring stations showing decreasing trends in the territory has increased from 12 in 2002 to 23 in 2003 (Figure 15.18). The level of chlorophyll-a in Hong Kong water was largely stable since the mid 80s with increasing trends found mainly in the inner (northern) part of Mirs Bay.
- Long-term increases in seawater temperature were observed in Tolo Harbour, Port Shelter, Victoria Harbour, Eastern and Western Buffer and the more confined area of Southern waters. Some parts of Mirs Bay started to show increase in water temperature as well in 2003. The mean seawater temperature in Hong Kong has risen by about 1°C in the last 18 years (1986-2003).

